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Zusammenfassung 

Die Peroxygenase des Südlichen Ackerling (Agrocybe aegerita, AaeAPO) wurde gereinigt, 

ihr Katalysepotential ermittelt und ein allgemeiner Reaktionsmechanismus postuliert. Die 

AaeAPO katalysiert sowohl H2O2-abhängige Monooxygenierungen (Zwei-Elektron 

Oxidationen) wie (a) die Spaltung aliphatischer und aromatischer Ether, (b) die regio- und 

enantioselektive Hydroxylierung von Aromaten, (c) die schrittweise Monooxygenierung von 

Toluolderivaten, (d) die N-Dealkylierung sekundärer Amine und (e) die Dehalogenierung 

chlorierter Aliphaten als auch typische Reaktionen bekannter Peroxidasen (vermutlich Ein-

Elektron-Oxidation) unter anderem (f) die Oxidation/ Polymerisierung von Phenolen und (g) 

die Halogenierung von Aromaten. Polymere Verbindungen wie Polyethylenglycol (PEG) 

werden nicht oxidiert. 

Mechanistische Untersuchungen zur Etherspaltung am Beispiel der AaeAPO haben Einblick 

in den generellen Reaktionsmechanismus dieses neuen Enzymtyps ermöglicht: (1) die 

Stöchiometrie der Spaltung von Tetrahydrofuran entspricht der einer zwei-Elektron-

Oxidation, (2) die Spaltung von Methyl-3,4-Dimethoxybenzylether zu 4-

Dimethoxybenzaldehyd und Methanol ergaben parallele Verläufe für die ermittelten 

Ausgleichsgeraden in der doppelt reziproken Darstellung, was einem „Ping-Pong“-

Reaktionsmechanismus entspricht (3) die Monooxygenierungen haben stets den Einbau eines 

aus dem Peroxid (H2O2) stammenden Sauerstoffatoms in das Produkt zur Folge, (4) die O-

Dealkylierung von 1-Methoxy-4-Trideuterummethoxybenzol zeigt einen ausgeprägten 

Deuterium Isotopen Effekt, was auf die primäre Abspaltung eines Wasserstoffatoms vom 

Substratmolekül hindeutet. Demnach verläuft die Peroxygenase-katalysierte 

Monooxygenierung über Wasserstoffabstraktion und eine unmittelbar anschließende 

Sauerstoffrückbindung (hydrogen abstraction - oxygen rebound mechanism). Diese 

Reaktionsabfolge ähnelt dem sogenannten peroxide "shunt" pathway, der von einer Reihe 

Cytochrom-P450-abhängiger Monooxygenasen her bekannt ist. 

Die physiologische Funktion der AaeAPO besteht möglicherweise in der extrazellulären 

Transformation und Detoxifikation niedermolekularer Pflanzeninhaltsstoffe, mikrobieller 

Metabolite und anthropogener Xenobiotika. Aufgrund der Stabilität und Unabhängigkeit der 

AaeAPO von teuren Kofaktoren ergeben sich vielversprechende biotechnologische 

Möglichkeiten zum Einsatz isolierter Biokatalysatoren in selektiven (bio)chemischen 

Synthesen monooxygenierter Metabolite. 
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Thesis summary 

Litter-decay fungi have recently been shown to secrete heme-thiolate peroxygenases that 

oxidize various organic chemicals, but little is known about the physiological role or the 

mechanism of these enzymes. The aromatic peroxygenase of Agrocybe aegerita (AaeAPO) 

was purified and catalytically characterized. An overall reaction mechanism was proposed. 

The results show that AaeAPO catalyzed diverse H2O2-dependent monooxygenations (two-

electron oxidations) including (a) the cleavage of aliphatic and aromatic ethers, (b) the regio- 

and enantioselective hydroxylation of aromatic compounds, (c) the stepwise oxygenation of 

benzylic compounds, (d) the N-dealkylation of secondary amines and (e) the dehalogenation 

of halogenated aliphatic compounds as well as typical peroxidase reactions (suggested to 

involve one-electron oxidation) such as (f) oxidation and polymerization of phenols and (g) 

halogenations. The enzyme failed to oxidize polymers such as polyethylene glycol (PEG). 

Mechanistic studies with several model substrates provided information about the reaction 

cycle of AaeAPO: (1) stoichiometry of tetrahydrofuran cleavage showed that the reaction was 

a two-electron oxidation that generated one aldehyde group and one alcohol group, yielding 

the ring-opened product 4-hydroxybutanal, (2) steady-state kinetics results with methyl 3,4-

dimethoxybenzyl ether, which was oxidized to 3,4-dimethoxybenzaldehyde, gave parallel 

double reciprocal plots suggestive of a ping-pong mechanism, (3) the cleavage of methyl 4-

nitrobenzyl ether, the hydroxylation of aromatics such as diclofenac and nitrophenol and the 

oxygenation of benzylic compounds, resulted in incorporation of 18O into the reaction product 

in the presence of H2
18O2, and (4) the demethylation of 1-methoxy-4-

trideuteromethoxybenzene showed an distinct observed intramolecular deuterium isotope 

effect. These results support a mechanism similar to that envisaged for the peroxygenase 

activity of P450s in which the enzyme heme is oxidized by H2O2 to give an iron species that 

carries one of the peroxide oxygen. This intermediate then abstracts a hydrogen from the 

substrate, which is followed by rebound of an •OH equivalent to produce the 

monooxygenated reaction product (hydrogen abstraction and oxygen rebound mechanism). 

AaeAPO may accordingly have a role in the biodegradation of natural and anthropogenic low 

molecular weight compounds in soils and plant litter. Moreover, the results raise the 

possibility that fungal peroxygenases may be useful for versatile, cost-effective, and scalable 

syntheses of drug metabolites and herbicide precursors. 
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1. Introduction 

The biomass on earth is the biochemical synthesized matter that consists of living organisms 

and the biological material derived from it with a photoautotrophic primary production of 

about 105 billion tonnes of carbon per year (Field et al. 1998). Lignocellulose is the major 

component of polymeric biomass, comprising around half of the photo mass and the majority 

of ether structures in the biosphere (Sanchez 2009). Almost all terrestrial fixed carbon 

consists of lignocellulose, the principal structural component of vascular plants (Hammel and 

Cullen 2008). 

 

 
 

 
It is composed of three biopolymers: cellulose, hemicellulose and lignin (Latin lignum, 

wood), forming structures named microfibrils, which are organized into macrofibrils that 

mediate structural stability in plant cell walls (Sarkar et al. 2009). The cellulose is a beta–(1–

Figure 1 The lignocellulose complex (Rubin 2008).
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4) linked chain of glucose molecules embedded and protected within a heteropolymeric three-

dimensional lignin-hemicellulose matrix (Jürgen et al. 2008). Hemicellulose is composed of 

different 5- and 6-carbon sugars such as galactose, arabinose, mannose, glucose and xylose 

(Liu et al. 2006, Kumar et al. 2009). The microfibrils are cross-linked together by 

homopolymers of hemicellulose. The complex lignin polymer consists of three major 

phenolic components, para-coumaryl alcohol (H), coniferyl alcohol (G) and sinapyl alcohol 

(S) (Rubin 2008). These phenols are bonded via inter-monomer ether bridges that contribute 

to the recalcitrance of this polymer, increasing stability and protecting the plant against 

biochemical degradation (Kirk and Farrell 1987). The lignin is tightly linked to the 

hemicellulose via ether bonds between the alpha-positions of the lignin side chains and the 

carbons of sugar residues (Sun and Sun 2002). 

The ecological balance is a result of equal formation and degradation of biomass. 

Microorganisms, predominantly filamentous fungi for the initial lignocellulose degradation, 

play an essential role in biomass recycling because: (a) their high genetic diversity and 

mutability enable them to occupy nearly all ecological niches, (b) they carry a high enzymatic 

diversity that can be rapidly induced, (c) they have a high active cell surface/ cell volume ratio 

and (d) they exhibit high rates of cell division. Without these (primary) decomposers, carbon 

and nutrients would be locked in organic molecules that cannot be metabolized by plants or 

animals. 

Like all organisms, these microorganisms have to perform biochemical reactions within the 

homeostatic constraints of a living system. Enzymes enable organisms to operate within these 

parameters by lowering the activation energy and increasing the selectivity of chemical 

reactions. For instance, the spontaneous hydrolysis of phosphate monoesters would take one 

trillion years, which is 21 orders of magnitude slower than the phosphatase catalyzed reaction 

(Lad et al. 2003). Thus, enzymes serve a wide variety of metabolic and digestive functions for 

living organisms. As such, the biological system of an organism could be described as the 

sum of the total number of enzymatic reactions taking place per unit of time. Enzymes are 

classified based on the overall reaction that they catalyze by the Enzyme Commission (EC) 

number system. The top-level classification is: 

 
• EC 1 Oxidoreductases: catalyze oxidation/reduction reactions. 

• EC 2 Transferases: transfer a functional group. 

• EC 3 Hydrolases: catalyze the hydrolysis of various bonds. 

• EC 4 Lyases: cleave various bonds by means other than hydrolysis and oxidation. 
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• EC 5 Isomerases: catalyze isomerization changes within a single molecule. 

• EC 6 Ligases: join two molecules with covalent bonds. 

 
Besides their significant physiological roles, enzymes have already proven useful in numerous 

synthetic applications, particularly the preparation of high valuable and often chiral 

compounds demanded by the pharmaceutical, agricultural, and food industries (Hult and 

Berglund 2007). Oxidoreductases such as peroxidases and oxygenases comprise a large class 

of enzymes that catalyze biological oxidation-reduction reactions. Many of them are heme-

containing proteins and are found with abundances of 2% - 4% in most proteomes (Sem et al. 

2004).  

1.1 Heme proteins  

Heme proteins are metalloproteins containing a heme prosthetic group that is covalently or 

non-covalently bound to the protein. The heme moiety consists of an iron center and a 

substituted porphyrin (Greek, πορφύρα, porphyra, tyrian purple) ligand. Four pyrrole rings are 

bonded by methene bridges, giving a planar and highly conjugated porphyrin (Nagababu and 

Rifkind 2004). Six heteroatoms coordinate the heme iron 

octahedrally. The four porphyrin nitrogens are the 

equatorial ligands (coordination sites 1-4); the remaining 

two axial ligands are located below (fifth coordination 

site, proximal) and above (sixth coordination site, distal) 

the plane of the heme. The most widespread heme 

prosthetic group is the iron protoporphyrin IX (or heme 

type b, Figure 2) (Cirino and Arnold 2003b). 

Regarding the original evolutionary function of heme 

proteins it is suggested that they were involved in electron transfers in primitive sulfur-based 

photosynthesis pathways in ancestral cyanobacteria before the appearance of molecular 

oxygen (Hardison 1999). The formation of free O2 around 2.5 billion years ago as a toxic 

waste product of photosynthesis was an “ecological disaster”. Organisms developed strategies 

for the successful degradation of oxygen and its toxic intermediates, such as hydrogen 

peroxide (H2O2), the superoxide anion (O2
•−) and the free hydroxyl radical (•OH). Moreover 

organisms integrated oxygen into the process of cellular respiration (Bernroitner et al. 2009). 

As a consequence of this evolutionary process, heme proteins are widespread from Archaea to 

higher organisms and carry out diverse biological functions, including the 

Figure 2 Iron-Protoporphyrin IX. 
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transportation/storage of diatomic gases and their detection, catalysis of redox reactions and 

electron transfer (Kaim 2005). A few heme proteins are involved in the catalysis of partly 

reduced nitric- and sulfur oxides and in the generation of reactive nitrogen species (Monzani 

et al. 2008, Roncone et al. 2006). As such, heme proteins are important in numerous vital 

biological processes such as steroid biosynthesis and aerobic respiration. Figure 3 shows the 

diverse catalytic activities observed in heme proteins. The protein that surrounds the heme 

prosthetic group plays an essential role in defining the specificity of different reactions 

catalyzed. 

 

 

 
For example, in heme enzymes whose iron does not directly bind oxygen or peroxides, the 

proximal and distal coordination sites are occupied by heteroatoms from nucleophilic amino 

acid residues. These atoms are an imidazole nitrogen from histidine and a methionine sulfur in 

the case of cytochrome c. Heme enzymes that bind oxygen from either O2, H2O or H2O2 at the 

distal coordination site have a basic amino acid heteroatom as the proximal ligand, which is 

highly conserved throughout each enzyme family. For instance, all heme peroxidases, except 

Figure 3 Catalytic activities found in heme proteins modified according to (Kaim 2005). 
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for the chloroperoxidase from Caldariomyces fumago (CfuCPO), carry nitrogen from 

histidine as the proximal ligand. Sulfur from cysteinate is the proximal ligand in CfuCPO and 

in all P450s whereas it is oxygen from tyrosine in catalase. This distal side of the heme serves 

as the catalytic center, and its coordination varies during the catalytic cycle (Cirino and 

Arnold 2003b). 

Most of the heme proteins of one family also exhibit catalytic behavior characteristic of a 

different family (Cirino and Arnold 2003b). It was demonstrated that peroxidases show 

activities typically associated with that of P450s, and vice versa (Rabe et al. 2008, Guengerich 

2001). Enzymes from both families show catalase activity, and catalase has slight peroxidase 

activity (Zamocky et al. 2008, Bernroitner et al. 2009). Moreover, myoglobin (Mb), whose 

physiological function is the transport of oxygen, can also oxidize diverse substrates (Hayashi 

et al. 2006). In addition to these cross reactivities of heme proteins, there is an enormous 

catalytic variety within one protein family with regard to the primary reaction catalyzed, 

substrate specificity, and catalytic rate. This variation is affected by the construction of the 

protein itself, which determines parameters such as the redox potential and stability of the 

oxidative iron species, the accessibility of substrates to the active site, and overall enzyme 

stability (Cirino and Arnold 2003b). 

1.1.1 Cytochrome P450 monooxygenases 

Cytochromes P450s belong to a large superfamily of monooxygenases that are of central 

physiological importance in the detoxification or activation of a tremendous number of 

foreign hydrophobic compounds, including various therapeutic drugs, chemical carcinogens, 

and environmental pollutants (Phillips 2006). These monooxygenases, with an average 

molecular mass of 50 kDa, were named “P450s” because they exhibit a characteristic UV-

absorption maximum at 450 nm upon binding of carbon monoxide by the reduced protein. 

P450s are ubiquitous enzymes found in all five biological kingdoms (Nebert et al. 1989), 

although it is known that certain primitive species of bacteria do not contain any forms of the 

enzyme, possibly indicating that the ancestral P450 gene developed around 3.5 billion years 

ago (Nelson et al. 1996, Nelson et al. 1993). More than 6300 protein sequences and 31 X-ray 

structures of different P450s have been determined so far (Fischer et al. 2007). While their 

sequence identities are quite low (typically 20% on the amino acid level), the overall P450 

fold is quite conserved (Figure 4). At the sequence level, there are only a few conserved 

residues: the heme-coordinating cysteine that is essential for the function of P450s, a 

phenylalanine located seven amino acids N-terminal to the conserved cysteine, a threonine in 
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the I-helix, which is involved in proton transfer to the heme center (Vidakovic et al. 1998), 

and a glutamic acid/arginine pair of the ExxR motif located in the K-helix (Ravichandran et 

al. 1993). 

 

 

 
Thus, the P450 fold appears to be uniquely adapted for the heme-thiolate chemistry required 

for oxygen activation, the binding of redox partners and the stereochemical requirements of 

substrate recognition (Poulos and Johnson 2005, Poulos 2005). 

 1.1.1.1 Cytochrome P450-catalyzed reactions  

P450s predominantly catalyze the incorporation of an O2-derived oxygen atom into a carbon-

hydrogen (C-H) bond. NADH or NADPH serves as a reductant for the oxygen, and transfers 

its reducing equivalents by way of a protein electron transport system. Depending on the 

P450, this system consists of either two proteins (reductase and ferredoxin protein) or a P450 

reductase flavoprotein (Phillips 2006). The P450 reaction mechanism can be formally 

described as:  

 
RH + NAD(P)H + H+ + O2 →ROH + NAD(P)+ + H2O. 

 
As a result of substrate activation via oxygen incorporation, P450s are some of the most 

versatile redox proteins, catalyzing diverse reactions such as hydrocarbon hydroxylations, 

heteroatom releases, heteroatom oxygenations, dealkylations (ethers, thioethers and 

substituted amines) as well as epoxidations and group migrations (Isin and Guengerich 2007). 

Some unusual P450-dependent reactions are oxidations involving C-C and C=N bond 

Figure 4 An example of some P450s structures from different organisms illustrating the common 
three-dimensional fold. (CYP101) complex with camphor (Poulos et al. 1987); (CYP102), 
heme domain (Ravichandran et al. 1993); (CYP107A1) complex with 6-deoxyerythronolide 
B,(Cupp-Vickery and Poulos 1995). Structures adapted from Kirill 
(http://www.icgeb.org/~p450srv/P450_MOLSCRIPT.html, 2009). 
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cleavage, or reductions such as dehydrase, reductase and isomerase reactions (Mansuy 1998). 

Figure 5 illustrates several reactions catalyzed by P450s.  

 

1.1.1.2 Reaction mechanism 

The catalytic cycle of cytochrome P450s involves at least one or more short-lived highly 

oxidizing intermediates at the heme iron close to the bound substrate (Cirino and Arnold 

2003b). The reaction cycle of P450s is illustrated in Figure 6. It starts with a P450 low-spin 

six-coordinate iron (Sligar and Gunsalus 1976) in the ferric state [(1), H2O…heme(FeIII)] with 

water as the distal ligand. Binding of the substrate (R-H) near the distal region of the heme 

causes a dehydration of the active site resulting in a five-coordinated heme iron within the 

enzyme-substrate complex [(2), R-H…heme(FeIII)] (Ortiz de Montellano 2005). Water 

exclusion from the active site is believed to be important for the change in coordination and 

reduction potential as well as to improve the coupling efficiency of electron transfer. 

Depending on the enzyme, the iron turns predominantly to the high spin state in the substrate-

free situation. This causes an increase of the reduction potential which primes the enzyme for 

Figure 5 Selected P450s-catalyzed reactions according to (Mansuy 1998, Ortiz de Montellano 2009, 
Grobe et al. 2009) 
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substrate turnover by allowing electron transfer to occur (Sligar 1976). The reaction step from 

(1) to (2) may or may not facilitate the next reaction step depending on the P450 (Guengerich 

2001). It has been shown that this reaction step is faster, which is why it is shown first. 

Oxygen can now bind to the activated ferrous P450 [(3), (R-H)…heme (FeII)] after (2) has 

been reduced by a flavin/ferredoxin or diflavin reductase with an NAD(P)H-derived electron 

forming an unstable ferrous-oxy species [(4), (R-H)…heme (FeII-O2)], which then accepts the 

second electron (Groves 2006). The electron transfer steps are believed to be rate determining 

under natural conditions as they depend on the protein electron transport system.  

 

 
The resulting ferric peroxy anion [(5), (R-H)…heme (FeIII-O2

−)] is protonated to form the 

hydroperoxy complex (also referred to as Compound 0, [(6), (R-H)…heme (FeIII-O-OH)], 

which than undergoes heterolytic/homolytic cleavage between the oxygen atoms with the 

Figure 6 Catalytic cycle of P450s including the peroxide “shunt” pathway. RH is substrate, and 
ROH is product of the reaction. Overall charges: (3)−, (4)−, (5)2− and (6)−. Modified 
according to (Ullrich and Hofrichter 2007). (1) native (hydro)ferric enzyme (resting state), 
(2) ferric heme-substrate complex, (3) ferrous heme-substrate complex, (4) ferrous-
dioxygen complex, (5) ferric peroxy anion complex, (6) ferric hydroperoxy complex 
(Compound 0), (7) putative oxy-ferryl radical complex (compound I), (8) product-ferric 
enzyme complex. 
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release of H2O giving rise to the putative oxy-ferryl state [(7), (R-H)…heme (FeIV=O)•+]. The 

two electrons required for the two reaction steps from (5) to (7) originate from the heme, 

resulting in heme oxidation forming the suggested oxy-ferryl porphyrin π-cation radical. The 

highly reactive porphyrin species (7) can be written as [FeV=O] but the precise electronic 

configuration is unknown. Relating to the precedent of heme peroxidase and catalase 

Compound I, which are stable and have been extensively studied, the most common 

perception is that the iron Fe4+ and the porphyrin is one-electron deficient [FeIV O2-porphy•+] 

(Guengerich 2001). This electron-deficient complex may abstract a hydrogen atom or one 

electron from the substrate to form a sigma complex (8) with the substrate. A consequent 

collapse of the complex generates the reaction product, which then dissociates and the cycle 

can restart (Guengerich 2001, Isin and Guengerich 2007). From studies of site-directed 

mutants it has been proposed that besides the putative oxy-ferryl species (7) the reactive 

intermediates peroxy-iron (5) and hydroperoxy-iron (6) are active oxygenating species with 

varying electrophilic or nucleophilic properties, contributing to the versatility of P450s (Vaz 

et al. 1998, Vaz et al. 1996, Kimata et al. 1995).  

1.1.2 Fungal heme peroxidases 

Peroxidases are secreted, microsomal or cytosolic enzymes found in all kingdoms of life and 

the majority of them are b-type heme proteins (Rogerio et al. 2008). The historical 

nomenclature of peroxidases within the EC-number system, which identifies the enzyme in 

terms of the particular reaction catalyzed, stands in contrast to the phylogenic observations 

that divided peroxidases into seven superfamilies (Passardi et al. 2007b). Thus peroxidases 

with very different molecular architecture and mechanistic behavior can be found under the 

same EC-number (Figure 7). Considering these complexities, it is reasonable to classify 

peroxidases according to their structural properties and sequence information (Passardi et al. 

2007a). Concerning the heme peroxidases, this has led to the classification of different 

superfamilies, among which those of peroxidase-cyclooxygenases (former animal 

peroxidases) and non-animal peroxidases (former plant peroxidases) are the largest groups. 

The non-animal peroxidases comprise three classes based on structural similarities and 

suspected common evolutionary origin (Welinder 1992, Azevedo et al. 2003).  
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Class I peroxidases are intracellular proteins predominantly found in organelles of prokaryotic 

origin (plastids and mitochondria) including cytochrome c peroxidases (CcPs), chloroplast 

and cytosolic ascorbate peroxidases (Apx), hybrid ascorbate-cytochrome c peroxidase (APx-

CcP) and the gene duplicated catalase-peroxidases (CPs). A general feature of these proteins 

is their lack of bound carbohydrates, disulphide bridges, calcium ions or peptide sequences for 

secretion (Banci 1997). 

Class II peroxidases are secreted by fungi and include lignin peroxidases (LiPs) and 

manganese peroxidases (MnPs) both from white rot fungi such as Phanerochaete 

chrysosporium, Phlebia radiata and Lentinula edodes, as well as versatile peroxidases (VPs) 

from various Pleurotus and Bjerkandera species and other peroxidases, for example from 

Coprinus cinereus (CiP) as well as from Arthromyces ramosus (ARP). Class III peroxidases 

are secreted by plants and comprise more than 3000 known enzymes. Well known examples 

Figure 7 Schematic representation of the phylogenic relations between the different families of 
peroxidases. Modified according to (Passardi et al. 2007b, Passardi et al. 2007a, Oliva et al. 
2009).  
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include horseradish peroxidase (HrP) from Armoracia rusticana and the soybean peroxidase 

(SbP) from Glycine max. (Cosio and Dunand 2009). Class II and III peroxidases share several 

structural features such as signal peptide sequences for secretion, protein glycosylation (Class 

II up to 5% and Class II up to 30%) as well as four conserved disulphide bridges and two 

calcium ions (Banci 1997). Heme peroxidases and catalases are closely related to P450s 

(Passardi et al. 2007a). Peroxidases are also found as manganese- and vanadium- containing 

or even metal-free proteins. In contrast to P450s, peroxidases are capable of using the 

peroxide form of O2 to catalyze reactions via unstable highly reactive intermediates. H2O2 as 

an early evolutionary intermediate of photosynthetic water oxidation and respiration processes 

may have favored the evolution of proteins that are able to use this toxic side product 

(Bernroitner et al. 2009). From this point of view peroxidases and predominantly catalases, 

which are capable of using H2O2 as the second substrate, can be considered as detoxifying 

enzymes. In this connection, several biological active compounds such as fatty acids, amines, 

phenols, halogens and xenobiotics are substrates for various peroxidases. Physiological 

reactions include the alpha-oxidation of fatty acids during plant growth, iodination and 

coupling of tyrosine (thyroid hormone) by thyroid peroxidases, the oxidation of cytochrome c 

by cytochrome c peroxidases, the oxidation of chloride to antibacterial hypochlorite and the 

oxidative degradation of lignin structures by manganese and lignin peroxidases. A very 

interesting example is the usage of H2O2 and hydroquinone in an explosive peroxidase-

catalyzed reaction yielding oxygen and oxidizing benzoquinone used by the bombardier 

beetle (Kaim 2005). The structural conservation among heme peroxidases is quite high. The 

three-dimensional structure of these proteins mainly consists of an alpha-helix and a single 

short beta-thread. The general topology is conserved among family members including the ten 

alpha-helices and four disulfide bridges. In all heme peroxidases, the heme group is located 

between the two α-helices. Class III peroxidases present three additional alpha-helices 

(Dunford 1999). 

1.1.2.1 Peroxidase-catalyzed reactions 

The oxidative dehydrogenation is the major physiological reaction catalyzed by peroxidases 

(Cirino and Arnold 2003b). The peroxidase reaction mechanism can be formally described as 

a one-electron oxidation: 

RH2 + H2O2 → R• + 2 H2O (RH =donor, Catalase: R = O2). 
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Table 1 Peroxidase-catalyzed reactions adapted from (Adam et al. 1999, van Deurzen et al. 1997, 
Cirino and Arnold 2003b) 
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The enzymatic decomposition (disproportionation) of metastabilized H2O2 by catalases is one 

of the most efficient enzymatic reactions with maximum turnover numbers up to 107 s−1 

(Deisseroth and Dounce 1970).  

Heme haloperoxidases have been shown to catalyze the peroxide and halide ion-dependent 

halogenation of activated (benzylic or allylic) carbon (Littlechild 1999, Hofrichter and Ullrich 

2006). The halide ion is initially oxidized to an active halogenating intermediate, which then 

halogenate the substrate (Cirino and Arnold 2003b, Hofrichter and Ullrich 2006). The overall 

reaction scheme is: 

 
RH + H2O2 + H+

 + X− → RX + 2 H2O. 

 
A few heme peroxidases such as CfuCPO can perform two-electron oxidations along with 

oxygen transfer reactions and resemble in this respect P450s (Hofrichter and Ullrich 2006). 

They are being explored for synthetic applications, as the reactions often proceed 

stereospecifically. The overall reaction for this peroxygenase activity is:  

 
R + H2O2 → RO + H2O. 

 
Some of the reactions catalyzed by peroxidases are listed in Table 1 and include oxidation of 

aromatic and heteroatom compounds, epoxidation, enantioselective reduction of racemic 

hydroperoxides, oxidation of C-H bonds in allylic/benzylic compounds, alcohols, and indole, 

free radical oligomerizations and polymerizations of electron-rich aromatics, and the 

oxidative degradation of lignin structures (van Deurzen et al. 1997, Adam et al. 1999, 

Colonna et al. 1999). 

1.1.2.2 Reaction mechanism 

P450s and peroxidases share key elements of their mechanisms. The proximal ligands and 

distal and proximal protein environments influence the mechanism of O-O bond cleavage, the 

stability of the intermediates and the accessibility of substrates to the heme. The peroxidase 

cycle shows similarities to the P450 cycle and passes through the following intermediates: the 

native (hydro)ferric peroxidase [(1), heme(FeIII-H2O)] binds H2O2 to form an extremely short-

lived iron(-III)-peroxide complex [(2), heme(FeIII-O-OH)] (“Compound 0” of P450s), which 

is heterolytically cleaved between the oxygen atoms by a two-electron transfer from the heme. 

As a result, a water molecule is expelled and Compound I, an oxy-ferryl heme radical cation 

complex [heme((3), FeIV=O)•+], emerges and can react with a first substrate to give a 
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phenoxyl radical and Compound II. The latter is an oxy-ferryl heme [(4), heme(FeIV=O)] and 

reacts with the second substrate molecule resulting in the formation of a second radical and 

the native ferric enzyme. 

 

 

 
The oxy-ferryl radical complex is suggested to exist in different mesomeric forms: (3b) 

oxyiron (V) complex, (3c) oxy-radical ferryl complex, (4) Compound II (oxy-ferryl complex). 

In summary, within the typical heme-peroxidase cycle, two substrate molecules are oxidized 

by one-electron abstraction (but without oxygen transfer) while one molecule of H2O2 is 

consumed and two water molecules are produced. 

1.1.2.3 Lignin peroxidases (LiPs) 

Lignin peroxidases (LiPs) were first discovered in the extracellular medium of Phanerochaete 

chrysosporium grown under nitrogen-limiting conditions by two independent groups 

(Kuwahara et al. 1984, Gold et al. 1984, Tien and Kirk 1983, Tien and Kirk 1984). They are 

monomeric glycosylated heme proteins with molecular masses around 40 kDa consisting of 

343-344 amino acids. They resemble classical peroxidases, in that their FeIII is 

pentacoordinated to the four heme tetrapyrrole nitrogens and to a histidine residue. LiPs 

Figure 8 Catalytic cycle of peroxidases. RH is the substrate and R• is the product radical. Modified 
according to (Ullrich and Hofrichter 2007). (1) Native (hydro)ferric enzyme, (2) iron(III)-
peroxide complex (analogous to Compound 0 of P450s), (3a) peroxidase Compound I (oxy-
ferryl radical complex) that exists in different mesomeric forms: (3b) oxyiron (V) complex, 
(3c) oxy-radical ferryl complex, (4) Compound II (oxy-ferryl complex). 
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perform the reaction cycle illustrated above (Figure 8). The key functional difference between 

LiPs and classical peroxidases is that LiPs can oxidize aromatics that are only moderately 

activated by electron-donating substituents, whereas classical heme peroxidases act only on 

strongly activated aromatic substrates. For this reason LiPs have been suggested to play a 

essential role in the biodegradation of lignin (Hammel and Cullen 2008). 

1.1.2.4 Manganese Peroxidases (MnPs) 

A longstanding problem with the idea of a central ligninolytic role for LiPs is that many white 

rot fungi apparently lack them. A different group of secreted oxidoreductases, the manganese 

peroxidases (MnPs) is more widespread and has been extensively researched as a possible 

alternative (Orth et al. 1993, Gold Michael et al. 2009). The first MnP was discovered in the 

fungus Phanerochaete chrysosporium, almost simultaneously with PceLiP (Kuwahara et al. 

1984). The purified enzyme was found to be a monomeric glycoprotein with a molecular 

weight of 46 kDa that contains a ferriprotoporphyrin IX and four calcium ions per protein 

molecule. MnPs are also strongly oxidizing and undergo a classical peroxidase cycle but do 

not oxidize nonphenolic lignin-related structures directly because they lack the invariant 

tryptophan residue required for electron transfer to aromatic substrates. Instead, they have a 

manganese-binding site that consists of several acidic amino acid residues plus one of the 

heme propionate groups. Accordingly, one-electron transfer to Compound I of MnP occurs 

from bound Mn2+ (Wariishi et al. 1992). The product, Mn3+, is released from the active site if 

various bidentate chelators are available to stabilize it against disproportionation to Mn2+ and 

insoluble Mn4+. The physiological chelator is thought to be oxalate, an extracellular 

metabolite of many white rot fungi (Kuan and Tien 1993). The purpose of this reaction is 

evidently to transfer the oxidizing power of MnP to a small agent - Mn3+ 
- that can diffuse into 

the lignified cell wall and attack it from within (Hammel and Cullen 2008).  

1.1.2.5 Versatile Peroxidases (VPs) 

When an Mn2+-binding site was introduced into a Phanerochaete chrysosporium LiP 

(PceLiP) by site-directed mutagenesis, the resulting enzyme had MnP activity (Mester and 

Tien 2001). Conversely, when a tryptophan residue analogous to the essential one in LiPs was 

introduced into a PcMnP, this enzyme acquired LiP activity (Timofeevski et al. 1999). These 

results show that hybrid peroxidases with both activities could occur naturally. Recently, 

enzymes of this type, now termed versatile peroxidases (VPs), have been found in various 

Pleurotus and Bjerkandera species and extensively characterized (Camarero et al. 1999, 



INTRODUCTION 

 16 

Mester and Field 1998). The Pleurotus eryngii VP (PeVP) termed VPL has the three acidic 

amino acid residues required for Mn2+ binding, and a catalytic efficiency (kcat/Km) for Mn2+ 

oxidation in the general range exhibited by typical MnPs. In addition, PeVP has a tryptophan 

residue, trp164, analogous to the PceLiP trp171 that participates in electron transfer from 

aromatic donors and consequently enables the enzyme to oxidize nonphenolic lignin-related 

structures (Perez-Boada et al. 2005). However, the catalytic efficiency of PeVP on veratryl 

alcohol is relatively low at about 1 x 103 M−1 s−1, as opposed to about 3 x 104 M−1 s−1 when 

the same reaction is catalyzed by PceLiP (Perez-Boada et al. 2005, Tien et al. 1986). Given 

the already low efficiency of PceLiP when it directly oxidizes large lignin model compounds, 

it will be important to determine how well VPs deal with these and with even larger synthetic 

lignins (Hammel and Cullen 2008).  

1.1.2.6 DyP-type Peroxidases (DyPs) 

An exceptional group of peroxidases was recently identified in fungi and bacteria. These 

heme proteins are capable of catalyzing the oxidative decolorization of synthetic high redox-

potential reactive dyes of the anthraquinone type, which are not converted by any of the 

peroxidases mentioned above (Kim and Shoda 1999). Based on this distinctive feature they 

were named as dye-decolorizing peroxidases or, in short, DyP-type peroxidases (DyPs) (Kim 

and Shoda 1999, Zubieta et al. 2007b, Zubieta et al. 2007a). Comparison based on structural 

informations and sequence alignments with representative members of all classes of the 

peroxidases demonstrated that DyPs cannot be integrated within either of these classes 

(Sugano et al. 2007). They show only slight sequence similarity (0.5–5%) to fungal 

peroxidases such as MnPs, LiPs or CiP and lack the typical heme-binding region, which is 

conserved within the plant peroxidase superfamily (Sugano et al. 1999, Sugano 2009). Even if 

several peptide sequences of DyP-type peroxidases are deposited in protein databases, just 

seven proteins from two bacterial species have been characterized so far (Kim and Shoda 

1999, Sugano et al. 1999, Zubieta et al. 2007a, Scheibner et al. 2008). An involvement of 

DyPs in lignin degradation has been suggested as these enzymes were able to cleave dimeric 

non-phenolic lignin model compounds (Liers et al. 2009). However, the physiological 

function of this enzyme remains obscure. 

1.1.2.7 Peroxidase from Coprinopsis cinerea (CiP) 

Coprinopsis cinerea ( formerly Coprinus cinereus) peroxidase (CiP), essentially identical to 

Arthromyces ramosus peroxidase (ARP), exhibits a specific activity such as the oxidation of 



INTRODUCTION 

 17

nonphenolic lignin model compounds but also maintains the broad substrate specificity of 

peroxidases such as HrP (Morita et al. 1988, Dunford 1999, Pezzotti et al. 2004, Kim et al. 

2009). In addition, CiP comprises a single species of enzyme, whereas HrP consists of several 

isoenzymes with unique catalytic properties (Kim et al. 2009). CiP is commercially produced 

on a large scale by Novozymes Co. and has been a target for directed evolution (Cherry et al. 

1999). Promising applications are dye transfer inhibition in laundry detergents, in situ stain 

bleaching and dye house wastewater treatment. 

 1.1.3 Heme proteins with peroxygenase activity 

The term “peroxygenase” is attributed to a group of oxidoreductases that catalyzes the direct 

transfer of one liberated oxygen atom from a hydroperoxide that is reduced, to a substrate 

which will be oxidized (Hanano et al. 2006). The mechanism can be formally described as:  

 
RH + H2O2 → ROH + H2O. 

 
Although natural peroxygenase activities have been found in many organisms and also occur 

as a side reaction of other enzymes, the activity has no EC-number yet (Pecyna et al. 2009). 

Peroxygenases are of commercial interest as they perform the regio- and stereoselective 

incorporation of oxygen into organic molecules (Otey et al. 2006). Consequently, scientists 

are focused on the exploration of natural peroxygenase activities and in the assembling of 

synthetic peroxygenases because they are able to utilize H2O2 as single oxygen donor and 

electron acceptor thus avoiding the need for cost-intensive cofactors such NAD(P)H. 

1.1.3.1 Plant seed peroxygenases  

In general the term peroxygenase is used for special heme proteins from plants, which neither 

belong to the P450s nor to the peroxidases but show sequence similarity with calcium-binding 

proteins named caleosins (Hanano et al. 2006, Partridge and Murphy 2009). They are able to 

catalyze the H2O2-dependent hydroxylation of aromatics, the sulfoxidation of xenobiotics, and 

epoxidations of unsaturated fatty acids (Blee et al. 1993, Ishimaru and Yamazaki 1977, Blee 

and Durst 1987, Hamberg and Hamberg 1990). Caleosins with peroxygenase activity are 

generally found as lipid-body associated, seed-specific proteins in the plant storage tissues. 

Recently it has been shown also that separate membrane-bound isoforms of caleosins are 

expressed during stress by salt or drought or through pathogen infection of plants (Partridge 

and Murphy 2009). Caleosin-like genes are ubiquitous in multicellular plants, green algae and 
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true fungi, where their peroxygenase activity is suggested to have a role in the formation of 

epoxy hydroxyl alcohols from fatty acids hydroperoxides. These oxylipin metabolites are 

known to play a role in plant response to abiotic and biotic stresses. Similar oxylipins are also 

involved in various aspects of fungal spore development and probably serve as anti-fungal 

compounds in some fungi that can deter the growth of competing fungal species (Tsitsigiannis 

and Keller 2007).  

1.1.3.2 Peroxide “shunt” of P450s 

Peroxygenase-like activities have also been reported as side reactions in P450s, which can 

utilize an oxygen atom from a peroxide to catalyze oxygen insertion without electron 

transport proteins or the NAD(P)H cofactor (Joo et al. 1999). This alternative pathway offers 

the opportunity to employ cell-free P450s catalysis without cofactor regeneration, additional 

proteins, or dioxygen and eliminates rate-limiting electron transfer steps (Cirino and Arnold 

2003a). As illustrated in Figure 6 the peroxide “shunt” pathway bypasses a large portion of 

the enzyme’s natural catalytic cycle, including the rate-limiting first electron transfer step. 

Various peroxides and other oxidants (e.g., iodosobenzene, peracids and sodium periodate) 

will support the reaction, depending on the enzyme (Ortiz de Montellano 2005). 

1.1.3.3 Peroxygenase activity of Chloroperoxidase (CfuCPO)  

The filamentous fungus Caldariomyces fumago secretes a heme-thiolate hemoprotein that has 

versatile catalytic properties. While functionally categorized as a haloperoxidase, CfuCPO 

possesses catalytic characteristics of peroxidases, P450s and catalases. Thus, CfuCPO 

chlorinates, brominates, and iodinates organic compounds including aromatic substrates and 

catalyzes a series of non-halogenating oxidations, among others, epoxidation and 

hydroxylation of activated C-H bonds, as well as selective sulphoxidations (van Rantwijk and 

Sheldon 2000). The CfuCPO proximal ligand is cysteinate sulfur as in P450s. In the distal 

pocket, the catalytic base used for O-O cleavage is glutamate rather than the typical 

peroxidase histidine and the distal region is more hydrophobic than in other peroxidases, 

which allows it to bind substrates and promote P450-type reactions (Table 1). However, the 

presence of polar residues and restricted access to the distal face make the active site more 

peroxidase-like than P450-like. Thus the peroxygenase activity of CfuCPO is restricted to 

activated, non-aromatic substrates (Ullrich and Hofrichter 2007, Manoj and Hager 2008). The 

tertiary structure of CfuCPO resembles neither the P450s nor peroxidases (Sundaramoorthy et 

al. 1995).  
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1.1.3.4 Engineered peroxygenases 

The idea of using laboratory-evolved bacterial P450s for selective oxygenation by optimizing 

the protein structure is a scientific approach to produce commercial available and selective 

redox biocatalysts. Suggested fields for synthetic applications of optimized P450s are the 

production of reference metabolites as well as reactive intermediates of drugs, fine chemicals 

and fragrances, the development of biosensors and for bioremediation (Urlacher and Eiben 

2006). Site-directed mutagenesis has been widely used for optimizing the stability, activity, 

specificity and the electron transport and redox partner interactions of P450s (Otey et al. 

2006, Gillam 2008, Damsten et al. 2008). However, significant scope remains for optimizing 

artificial fusion proteins by improving the coupling between P450s and reductase domains 

and exploiting alternative electron transport partners (Gillam 2008). 

A myoglobin from Physeter macrocephalus (sperm whale) was engineered at the distal 

pocket to form a peroxygenase, which catalyzed the sulfoxygenation of thioanisole and the 

epoxidation of styrene with incorporation of oxygen from H2O2. The results showed that this 

mutant is a much better peroxygenase than wild type Mb and even HrP (Ozaki et al. 1997). 

The HrP is the best-characterized heme peroxidase because of its high catalytic activity and 

its broad specificity for electron donors. Commercial HrP was shown to hydroxylate benzene 

to phenol when benzene was used as the solvent with just 0.1– 5% phosphate buffer, whereas 

in aqueous buffered media benzene was inert to HrP attack (Akasaka et al. 1995). Oxygen, in 

this reaction, came from H2O2, as demonstrated in reactions using H2
18O2. HrP is currently the 

subject of genetic engineering to improve the oxygen transfer potential. Variants have been 

obtained that have at least some of the key functional properties of P450 (Savenkova et al. 

1998, van Rantwijk and Sheldon 2000, Smith and Ngo 2007). It was recently shown that 

engineered HrP show stereoselectivity and activity similar to that of the P450s and CfuCPO 

(Smith and Ngo 2007). 

1.1.3.5 Extracellular fungal aromatic peroxygenases (APOs) 

Recently a new group of heme-thiolate oxidoreductases was identified in several litter-decay 

fungi such as Coprinellus radians, Coprinopsis verticillata and Agrocybe aegerita (Ullrich et 

al. 2004, Anh et al. 2007). These very stable and highly glycosylated proteins with an average 

molecular mass of 44 kDa have been shown to oxidize many organic chemicals. The 

absorption spectrum of the native enzymes and of their carbon monoxide adduct closely 

resemble those of P450s (Ullrich and Hofrichter 2005, Anh et al. 2007). They show some 
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functional similarities with heme peroxidases by catalyzing the H2O2-dependent oxidation of 

ABTS, halogens and phenols but also with P450 by mediating selective hydroxylation of 

numerous substrates.  

The best-characterized fungal enzyme of this type, from Agrocybe aegerita, was first claimed 

to be a haloperoxidase due to its ability to catalyze the bromination of phenols in acidic 

solution that contain bromide ions. Moreover, its ability to oxidize aryl alcohols, such as 

veratryl- and benzyl alcohols into the corresponding aldehydes and further typical peroxidase 

substrates such as 2,6-dimethoxyphenol or 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) 

(ABTS) indicated that the enzyme acts as a true peroxidase (Ullrich et al. 2004). However, 

later investigation showed that the enzyme can oxidize toluene and naphthalene to produce 

hydroxylated derivatives at neutral pH (Ullrich and Hofrichter 2005, Kluge et al. 2007). 

Consequently, it has been suggested that aside from its peroxidase activity, the reactions 

catalyzed by this novel enzyme proceed via a peroxide “shunt”-like pathway as observed in 

P450s (Ullrich and Hofrichter 2007). 

A screening for this new enzyme activity was recently performed, and it was found to exist in 

Coprinellus radians and Coprinopsis verticillata, exhibiting the same catalytic properties 

such as hydroxylation of aromatic substrates (Anh et al. 2007). Thus, these enzymes are 

widely distributed and may belong to a new superfamily of fungal extracellular heme-thiolate 

enzymes that act as aromatic hydrocarbon monooxygenating catalysts. As a consequence of 

this catalytic activity, in particular the oxidation of aromatic substrates, the novel enzyme was 

named Aromatic Peroxygenase (APO), by analogy to the nomenclature used for aromatic 

hydroxylases (Suske et al. 1997). Another enzyme, classified as a peroxidase, has been 

isolated from crude extracts of Coprinus spec. and has been found to catalyze the oxidation of 

diverse benzylic compounds to give corresponding aldehydes (Russ et al. 2002, Hauer et al. 

2004) but it was not purified or further investigated. 

The affiliation of APOs to a new superfamily of oxidoreductases was confirmed recently as 

the APO from Agrocybe aegerita (AaeAPO) exhibits low sequence and structure identity 

(Figure 9, ca. 29%) with heme CfuCPO and no significant genomic sequence identity with the 

P450s (Pecyna et al. 2009).  

The core helices of AaeAPO and CfuCPO are reasonably well conserved and structural 

conservation around the heme is high e.g. in the “CfuCPO-signature” region and at the cation 

binding site. The cation Mn2+ in CfuCPO is an Mg2+ in AaeAPO, which may mediate 

structural stability of the protein, similar to Ca2+ ions in LiP and MnP. The X-ray results 

indicate that the active side of AaeAPO has a broad entrance for relatively large molecules. 
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This is supported by the observation 

that PAHs like pyrene and perylene are 

oxygenated at the active heme-thiolate 

side of AaeAPO (Aranda et al. 2009). 

It has been shown that a phenylalanine 

(phe204) is in contact with the heme, 

and from there extends a relay of 

stacked phenylalanines to a 

phenylalanine (phe232) at the surface. 

Some of these phenylalanines (phe233) 

are sandwiched by arginine (arg208) 

and nearby are two acidic residues, which is a situation similar to that found for tryptophan 

(trp171) in LiP. This result may indicate the presence of a long-range electron transfer 

(LRET) pathway for bulky substrates. Six N-glycosylation sites were identified (at Asn 11, 

141, 161, 182, 286, 295) with high-mannose type N-glycosylation site at Asn 141 with eight 

carbohydrate molecules. No evidence for O-glycosylation sites has been found. 

1.2 Aims and objectives 

So far, little is known about the catalytic cycle of the AaeAPO and other fungal 

peroxygenases. The physiological function of these enzymes is also unclear, but their 

extracellular location and widespread occurrence in the fungal kingdom (Pecyna et al. 2009) 

suggest a role in the biodegradation or detoxification of organic chemicals encountered by the 

fungi. Their hydroxylation activity towards aromatic substrates raises the assumption that 

APOs can also be applied in diverse fields of synthetic chemistry.  

 

The overall aim of this study was to obtain catalytic and physiologic parameters of the novel 

peroxygenase from Agrocybe aegerita including following objectives: 

 
• A screening for novel enzyme activities 

• Mechanistic characterization of single reactivities 

• Proposal for a general reaction cycle based on mechanistic studies 

• Structural suggestions for the active site 

 
Further objectives that address the physiological role of the enzyme were: 

Figure 9 Superposition of AaeAPO (red) and CfuCPO 
(blue) (Piontek 2009). 
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• Assessment of whether the enzyme is involved in the degradation of polymers such as 

lignin 

• Screening for potential physiological substrates of the enzyme 

 
Finally, this study aimed to develop perspectives for synthetic applications of fungal 

peroxygenases in the field of selective hydroxylation. 
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2. Materials and Methods 

Some of the methods used in this work are standard procedures in the laboratory of the 

International Graduate School of Zittau and were not described in detail: cultivation of fungi 

on agar plates, in submerse cultures and fermentors, spectrophotometric enzyme assays, the 

determination of protein amounts (Bradford test), protein electrophoresis, micro- and 

ultrafiltration, vacuum distillation, accelerated solvent extraction, freeze dying, solid phase 

micro extraction and centrifugations. Sally Ralph (USDA Forest Product Laboratories, 

Madison, USA) performed the NMR analyses. Some of the used materials and methods were 

described and published before (Kinne et al. 2008, Kinne et al. 2009b, Kinne et al. 2009a, 

Aranda et al. 2008).  

2.1 Reactants 

Commercially available chemicals were purchased from Sigma-Aldrich, Fluka, Chemos 

GmbH, Merck and TCI Europe. H2
18O2 (90 atom %, 2% wt/vol) was obtained from Icon 

Isotopes. Terminally brominated polyethylene glycol (PEG, approx. 2 kDa) was purchased 

from Iris Biotech GmbH. Pisatin was obtained from Apin Chemicals Ltd. All of the aliphatic 

ethers used as substrates were the highest grade available, contained no antioxidant, and were 

received from the manufacturer under nitrogen in small bottles. A new bottle of each aliphatic 

ether was opened for each experiment and analyzed beforehand by gas chromatography/ mass 

spectrometry (GC/MS). The results showed that none of these ethers contained detectable 

levels of the alcohols, aldehydes, or ketones that have been detected as reaction products in 

the experiments described below. 

2.1.1 Methyl 3,4-dimethoxybenzyl ether 

Methyl 3,4-dimethoxybenzyl ether was prepared by reacting 3,4-dimethoxybenzyl alcohol in 

methanol containing para-toluenesulfonic acid as previously described (Schmidt et al. 1989), 

but with modified product purification. At the conclusion of the reaction, the mixture was 

extracted with several portions of cyclohexane, which were dried over MgSO4 and 

concentrated on a rotary evaporator to produce a thick syrup. This crude product was 

fractionated by vacuum column chromatography on silica gel with cyclohexane as the eluant 

(Pedersen and Rosenbohm 2001). Fractions were analyzed by thin layer chromatography and 

by 1H NMR analysis, and those showing no detectable impurities were pooled for solvent 
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removal. MS m/z (%) 182 (M+, 44), 166 (3), 151 (100), 139 (7), 124 (4), 107 (14), 91 (9), 77 

(12), 65 (5), 51 (4). 1H NMR (CDCl3) δ (ppm) 3.35 (s, 3H, -CH2OCH3), 3.86 (s, 3H, -OCH3), 

3.87 (s, 3H, -OCH3), 4.37 (s, 2H, -CH2O-), 6.81 (d, J = 8.1 Hz, 1H, -ArC5H), 6.85 (dd, J = 8.1 

Hz, 2.0 Hz, 1H, -ArC6H), 6.87 (d, J = 2.0 Hz, -ArC2H). 

2.1.2 Methyl 4-nitrobenzyl ether 

Methyl 4-nitrobenzyl ether was prepared from 4-nitrobenzyl alcohol and CH3I as described 

previously (Lawson et al. 1995) and recrystallized twice at 4 °C, first from petroleum ether 

and then from water. MS m/z (%) 167 (M+, 4), 166 (11), 136 (11), 121 (14), 120 (35), 108 

(13), 107 (100), 106 (14), 105 (13), 91 (27), 90 (25), 89 (85), 78 (47), 77 (81), 65 (11), 63 

(27), 51 (28), 50 (16). 1H NMR (CDCl3) δ (ppm) 3.48 (s, 3H, -OCH3), 4.59 (s, 2H, -CH2O-), 

7.53 (d, J = 8.6 Hz, 2H, -ArC2,6H), 8.24 (d, J = 8.6 Hz, 2H, -ArC3,5H). 

2.1.3 1-Methoxy-4-trideuteromethoxybenzene 

1-Methoxy-4-trideuteromethoxybenzene was prepared from 4-methoxyphenol and CD3I (99.5 

atom % D) as described previously (Foster et al. 1974) and recrystallized twice from aqueous 

ethanol. MS m/z (%) 141 (M+, 100), 126 (70, - CH3), 123 (62, - CD3), 98 (34, - CH3, - CO), 

95 (31, - CD3, - CO). 1H NMR (360 MHz, CDCl3) δ 6.84 (s, 4H), 3.77 (s, 3H).  

2.1.4 PEG terminated 4-nitrophenyl ether 

PEG terminated with 4-nitrophenyl ethers was prepared by stirring 1 g of dibromo-PEG 

(approx. 0.5 mmol) overnight in acetone that contained 10 mmol each of 4-nitrophenol and 

powdered K2CO3. The acetone was then removed by rotary evaporation and the product was 

redissolved in water, after which it was dialyzed twice against 100 mM NaHCO3 and twice 

against distilled water, using a 1 kDa cutoff bag, and finally lyophilized. Approximately 60% 

of the PEG end groups were 4-nitrophenyl-substituted by this method, as shown by 

integration of the 1H-NMR signals (in CDCl3) for the aromatic protons (6.99 and 8.20 ppm) 

and the internal polyoxyethylene protons (3.65 ppm). 

2.1.5 4-Hydroxybutanal 2,4-dinitrophenylhydrazone 

4-Hydroxybutanal 2,4-dinitrophenylhydrazone standards were prepared by adding aliquot 

portions of 2-ethoxytetrahydrofuran to excess 0.1% 2,4-dinitrophenylhydrazine solution in 0.6 

N HCl. 
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2.1.6 Arylglycerol beta-aryl ethers 

Arylglycerol beta-aryl ethers and a dehydrogenase polymer (DHP) of coniferyl alcohol were 

prepared by Paula Nousiainen (Laboratories of Organic Chemistry, University of Helsinki, 

Finland) according to methods described previously (Sipilä and Syrjänen 1995, Hofrichter et 

al. 1999). Threo-1-(4-ethoxy-3-methoxy-ring-[14C]phenyl)-2-(2-methoxyphenoxy)-1,3-

dihydroxypropane (1.0 mCi mmol−1), a model of the major nonphenolic arylglycerol-beta-

aryl ether structure in lignin, was prepared as described previously (Kawai et al. 1995, 

Landucci et al. 1981). 

2.1.7 Milled pine and poplar wood  

Milled pine and poplar wood was prepared from a mixture of air-dried sap- and heartwood of 

Scots pine (Pinus silvestris) and Poplar (Populus spec.). The obtained powder contained all 

wood components including the extractives. Part of the wood was further extracted in 5 mg 

portions with (a) 3 x 1 ml of 0.5% Tween 20 in 50 mM potassium phosphate and (b) 3 x 1 ml 

of H2O2 with vigorous shaking for 10 min. After centrifugation, the supernatant containing 

the extractable wood constituents (mostly aromatic compounds) was separated from the 

insoluble wood pellet. The latter was washed with water prior to use.  

2.2 Enzyme preparations 

The extracellular peroxygenase of A. aegerita (isoform II, 44 kDa) was produced and purified 

as described previously (Ullrich et al. 2004, Ullrich et al. 2009). The enzyme preparation was 

homogeneous by SDS polyacrylamide gel electrophoresis and exhibited an A418/A280 ratio of 

1.75. The specific activity of the peroxygenase was around 120 U mg−1, where 1 U represents 

the oxidation of 1 µmol of 3,4-dimethoxybenzyl alcohol to 3,4-dimethoxybenzaldehyde in 1 

min at 23 °C at pH 7 (Ullrich et al. 2004). 
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Figure 10 Fruiting bodies of A. aegerita formed during solid state fermentation (left). Submerse 
cultivation of the A. aegerita in a stirred bioreactor for the production of extracellular
proteins. Soybean served as complex medium. The time course shows the volume activity
of AaeAPO (red line), laccase blue line and the pH during fermentation process (Ullrich et 
al. 2009). 

Figure 11  Separation of different AaeAPO forms by chromatofocusing. Left: Elution profile recorded 
after chromatofocusing on the mixed anion exchanger Mono P; separated AaeAPO forms 
are highlighted in gray. Red line, absorbance at 420 nm; green circles, AaeAPO activity 
assayed with veratryl alcohol (pH 7.0). (Right) Separated AaeAPO forms visualized in an 
IEF gel; AaeAPO I (pI 6.1), AaeAPO II (pI 5.6), AaeAPO III (pI 5.2). The FPLC-
instrument and the ion exchange column are shown. Data and drawings according to 
(Ullrich et al. 2009). 
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CfuCPO was obtained from Sigma Aldrich 

and purified by Fast Protein Liquid 

Chromatography (FPLC). CfuCPO was 

separated and fractionated with an ÄKTA 

FPLC instrument GE Healthcare Europe 

GmbH, Freiburg, Germany) equipped with 

a strong anion exchanger (Mono Q HR 5/5) 

using a linear gradient from 10 mM Na-

acetate to 30% of 1 M NaCl over 22 

column volumes and was hold for 5 

column volumes at pH 5.5 (Figure 12). The 

collected fractions with the highest 

CfuCPO-activities were combined. The specific activity of the CfuCPO was around 310 U 

mg−1, where 1 U represents the oxidation of 1 µmol of monochloro dimedone (1,1-dimethyl-

4-chloro-3,5-cyclohexaenedione) to dichloro dimedone (1,1-dimethyl-4,4-dichloro-3,5-

cyclohexaenedione) in 1 min at 23 °C at pH 2.75 (Hager et al. 1966).  

 

 

2.3 UV-Vis Spectroscopy 

UV-Vis spectra of resting AaeAPO (6-8 µM) as well as of its ligand complexes were recorded 

in quartz cuvettes (diameter 10 mm) containing 50 mM potassium phosphate buffer (pH 7 or 

pH 3) in the scanning range from 200 to 800 nm at 23 °C using a Cary 50 spectrophotometer 

(Varian, Darmstadt, Germany). For the reduced enzyme complex, samples were reduced with 

a few grains of sodium dithionite until the UV-Vis spectra exhibit no changes anymore. The 

NO-enzyme complex was achieved by flushing the enzyme sample using NO until steady 

conditions were reached. Other ligand spectra’s were recorded by adding an appropriate 

amount of the ligand until the steady spectral conditions. Difference spectra were recorded as 

described before but reaction mixtures were split prior to each experiment. One aliquot was 

transferred into the reference cuvette and the other in the sample cuvette. The instrument 

baseline was set to zero with the reference cuvette in the sample beam. Than the sample 

cuvette was placed into the spectrophotometer, the ligand was added and the spectrum was 

recorded. 

Figure 12 FPLC-elution profile of different isoforms 
(I and II) of CfuCPO.  
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2.4 Standard reaction conditions  

Typical reaction mixtures (0.2-1.0 ml) contained purified peroxygenase (1-2 U ml−1), 

potassium phosphate buffer (50 mM, pH 7.0 and for halogenation reactions pH 3), and the 

substrate (0.1-10 mM). Some of the reactions contained ascorbic acid (4-12 mM) to inhibit 

further oxidation of the phenolic products that were released (Kinne et al. 2008, Kinne et al. 

2009b). The reactions were started by the addition of H2O2 (0.1-5 mM) and stirred at room 

temperature for 3 min, at which time chromatographic analyses showed that product 

formation was complete. In some of the reaction, H2O2 was supplied continuously via a 

syringe pump (KDScientific).  

2.5 Product identification 

2.5.1 HPLC-Method  

Reaction products such as 4-methoxyphenol, 4-ethoxyphenol, 4-propoxyphenol 2-

methoxyphenol, 3-methoxyphenol, 4-methylanisol, 2-chloro-4-methoxyphenol, O-

desmethylnaproxen, 6-alpha-hydroxymaackiain, 2-(4-hydroxyphenoxy)propionic acid, 1-

naphthol, N-desisopropylpropranolol, 5-hydroxypropranolol, 4-hydroxypropranolol, 5-

hydroxydiclofenac, 4’-hydroxydiclofenac, halogenated methoxybenzenes and para-

benzoquinone were analyzed HPLC using an Agilent Series 1050, 1100 or 1200 instrument 

(Waldbronn, Germany) equipped with a diode array detector, which was fitted with a reversed 

phase Synergi Fusion 4-µm RP-80A column (4.6 mm diameter by 150 mm length, 5 µm 

particle size, Phenomenex). The column was eluted at 40 °C and 1 ml min−1 with aqueous 

phosphoric acid solution (15 mM, pH 3)/acetonitrile, 95:5, for 5 min, followed by a 20-min 

linear gradient to 100% acetonitrile.  

2.5.2 HPLC-MS Method I 

Reaction products such as 3,4-dimethoxybenzaldehyde, 1-(4-hydroxy-3-methoxyphenyl)-2-

(2-methoxyphenoxyl)propane-1,3-diol, 4-nitrophenol, 4-nitrocatechol, benzyl alcohol, 4-nitro 

benzyl alcohol, benzaldehyde, 4-nitrobenzaldehyde, benzoic acid, and 4-nitrobenzoic acid 

were analyzed by high performance liquid chromatography (HPLC) using the instrument 

described above and an Agilent LC/MSD VC (Waldbronn, Germany) electrospray ionization 

mass spectrometer (ESI-MS). Reverse phase chromatography was performed on a Luna C18 

column (4.6 mm diameter by 150 mm length, 5 µm particle size, Phenomenex), which was 
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eluted at 0.35 ml min−1 and 40 °C with aqueous 0.1% vol/vol ammonium formate (pH 

3.5)/acetonitrile, 95:5 for 5 min, followed by a 25-min linear gradient to 100% acetonitrile. 

Products were identified relative to authentic standards, based on their retention times, UV 

absorption spectra, and [M + H]+ or [M-H]− ions. 

2.5.3 HPLC-MS Method II 

Phenolic reaction products such as 2-methoxyphenol, 3-methoxyphenol, 4-methoxyphenol, 4-

ethoxyphenol, 4-propoxyphenol etc. were analyzed by liquid chromatography/ mass 

spectroscopy using a reversed phase Synergi Gemini C6-Phenyl 110A column (4.6 mm 

diameter by 150 mm length, 5 µm particle size, Phenomenex). The isocratic mobile phase 

consisted of 5% vol/vol acetonitrile and 95% aqueous 0.1% vol/vol ammonium formate that 

had been adjusted to pH 10 beforehand with NaOH. The column was operated at 40 °C and 1 

ml min−1 for 5 min. Electrospray ionization was performed in the negative ionization mode. 

For each m/z value, the average total ion count within the 4-nitrobenzaldehyde peak was used 

after background correction to generate the ion count used for mass abundance calculations. 

2.5.4 Aliphatic aldehydes or ketones 

Aliphatic aldehydes or ketones were analyzed as their 2,4-dinitrophenylhydrazones after 

addition of 0.2 volume of 0.1% 2,4-dinitrophenylhydrazine solution in 0.6 N HCl to each 

reaction mixture. The derivatized products were analyzed using the same HPLC apparatus as 

above, but the Luna C18 column was eluted with aqueous 0.1% vol/vol ammonium formate 

(pH 3.5)/acetonitrile, 70:30 for 5 min, followed by a 25-min linear gradient to 100% 

acetonitrile. With two exceptions, the dinitrophenylhydrazones were identified relative to 

authentic standards, based on their retention times, UV absorption spectra, and [M-H]− ions. 

As no standards of the 5-hydroxypentanal or 2-(2-hydroxyethoxy)acetaldehyde derivatives 

were available, they were tentatively identified based on their [M-H]− ions. 

2.5.5 4-Nitrobenzaldehyde 

The reaction product 4-nitrobenzaldehyde was analyzed by GC of a benzene extract, using a 

Hewlett Packard 6890 chromatograph equipped with a Hewlett Packard 5973 mass 

spectrometer. GC was performed isothermally at 150 °C, using helium as the carrier gas at a 

column flow rate of 1 ml min−1 on a 5% polysiloxane column (Zebron ZB-5, 250 µm 

diameter by 30 m length, 0.25 µm film thickness, Phenomenex). The product was identified 

relative to an authentic standard by its retention time and by electron impact MS at 70 eV. 
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2.5.6 Ethanol, 2-propanol and tert-butanol 

The products ethanol, 2-propanol and tert-butanol were detected by subjecting 

dichloromethane extracts of the aqueous reaction mixtures to GC/MS analysis using the 

equipment just described. GC was performed using a linear temperature program from 40 °C 

to 150 °C (10 °C min−1), using helium as the carrier gas at a column flow rate of 1 ml min-1, 

on a 5% phenyl-methylpolysiloxane column (DB-5MS, 250 µm diameter by 30 m length, 

0.25 µm film thickness, J&W Scientific). The products were identified relative to authentic 

standards by their retention times and by electron impact MS at 70 eV. 

2.5.7 Methanol 

The reaction product methanol was analyzed by GC/MS as described previously (Li et al. 

2007) using the equipment just described plus a Hewlett Packard 7694 headspace sampler. 

The aqueous sample solutions (2 ml) were equilibrated at 90 °C in the headspace oven, after 

which GC was performed isothermally at 45 °C, using helium as the carrier gas at a column 

flow rate of 1 ml min−1, on the DB-5MS column described above. The methanol was 

identified relative to an authentic standard by its retention time and by electron impact MS at 

70 eV. 

2.5.8 4-nitrophenyl-terminated PEG 

To look for evidence that the peroxygenase cleaved ether bonds in 4-nitrophenyl-terminated 

PEG, we analyzed reaction mixtures by gel permeation chromatography on a column of 

Sephadex G-25 superfine (15 mm diameter, 300 mm length, GE Healthcare) in aqueous 

Na2SO4 (0.35 M, adjusted to pH 3.5) at room temperature (Kerem et al. 1999). The UV 

absorbance of the eluant was monitored with a diode array detector to determine whether a 

shift in the polymer’s molecular weight distribution had occurred (Hernandez and Ruiz 1998). 

2.5.9 (R) and (S)-2-(4-hydroxyphenoxy)propionic acid 

The (R) and (S)-enantiomers of 2-(4-hydroxyphenoxy)propionic acid (HPOPA) were analyzed 

using the instrument described above but equipped with an reversed phase Zorbax SB-C18 

Rapid Resolution Cartridge column (2.1 mm diameter by 30 mm length, 3.5 µm particle size, 

Agilent) connected in series with an ORpak CDBS-453 column (4.6 mm diameter by 150 mm 

length, 3 µm particle size, Shodex). The isocratic mobile phase consisted of 10% acetonitrile 
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and 90% aqueous 0.2 mM sodium chloride that contained 1% vol/vol acetic acid. The 

columns were operated at 10 °C and 0.5 ml min−1 for 35 min.  

2.5.10 Milled wood and DHP  

The reaction mixtures were analyzed by high performance size exclusion chromatography 

(HPSEC) for the determination of the molecular mass distribution of lignocellulose fragments 

suggested to be formed by AaeAPO. The HPLC instrument equipped with a diode array 

detector was fitted with a HEMA-Bio linear column (8 by 300 mm, 100 µm, Polymer 

Standard Service Mainz). The mobile phase consisted of 20% acetonitrile and 80% of an 

aqueous solution of 0.5% NaCl and 0.2% K2HPO4; the pH was adjusted to 10.0 by the 

addition of NaOH. 

2.5.11 Amines  

Aniline, 4-(methylamino)phenol, 2-aminophenol and 4-aminophenol were analyzed using the 

HPLC-MS Method I but with an ammonium formate buffer at pH 7. 

2.6 Stoichiometrical analyses 

Stoichiometrical analyses of tetrahydrofuran cleavage were performed by HPLC as described 

above, using an external standard curve of 4-hydroxybutanal-2,4-dinitrophenylhydrazone for 

quantification of UV absorbance at 360 nm. Stoichiometrical analyses of methyl 3,4-

dimethoxybenzyl ether cleavage were also performed by HPLC as described above, using an 

external standard curve of 3,4-dimethoxybenzaldehyde for quantification. Both standard 

curves had linear regression values with R2 > 0.99. Concentrations of H2O2-solution were 

spectrophotometrically determined using the extinction coefficient of 39.4 M−1 cm−1 at 240 

nm prior to each experiment. 

2.7 Enzyme kinetics 

2.7.1 1,4-dimethoxybenzene 

The kinetic of 1,4-dimethoxybenzene cleavage was analyzed in stirred reactions (0.20 ml, 23 

°C) that contained 0.52 µM of the peroxygenase, potassium phosphate buffer (50 mM, pH 

7.0), and 0.010-1.500 mM of the ether. The reactions were initiated with 2.00 mM H2O2 and 

stopped with 0.020 ml of 50% trichloric acid solution after 5 s, at which time less than 6% of 
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the tetrahydrofuran had been consumed. The resulting 4-methoxyphenol was quantified by 

HPLC as described above, and an apparent value of the Km for 1,4-dimethoxybenzene was 

obtained by nonlinear regression using the Michaelis-Menten model in the ANEMONA 

program (Hernandez and Ruiz 1998) . 

2.7.2 Tetrahydrofuran  

The kinetic of tetrahydrofuran cleavage was analyzed in stirred reactions (0.20 ml, 23 °C) that 

contained 0.193 µM of the peroxygenase, potassium phosphate buffer (50 mM, pH 7.0), and 

0.060-2.500 mM of the ether. The reactions were initiated with 2.00 mM H2O2 and stopped 

with 0.400 ml of 0.1% 2,4-dinitrophenylhydrazine solution in 0.60 N HCl after 10 s, at which 

time less than 6% of the tetrahydrofuran had been consumed. The resulting 4-hydroxybutanal-

2,4-dinitrophenylhydrazone was quantified by HPLC as described above, and an apparent 

value of the Km for tetrahydrofuran was obtained by nonlinear regression using the Michaelis-

Menten model in the ANEMONA program (Hernandez and Ruiz 1998). 

2.7.3 Methyl 3,4-dimethoxybenzyl ether  

The kinetics of methyl 3,4-dimethoxybenzyl ether cleavage were analyzed in stirred reactions 

(2.00 ml, 23 °C) that contained 0.098 µM of the peroxygenase, potassium phosphate buffer 

(25 mM, pH 7.0), and 0.500-2.000 mM of the ether. The reactions were initiated with 0.067-

0.200 mM H2O2, and the initial velocity of 3,4-dimethoxybenzaldehyde formation was 

measured by the increase in absorbance at 310 nm (ε = 9300 M−1 cm−1) (Tien et al. 1986) 

using a Cary 50 UV/visible spectrophotometer. Three kinetic traces were obtained for each 

pair of substrate concentrations. Kinetic parameters were determined by nonlinear regression 

using the ping-pong model in the ANEMONA program (Hernandez and Ruiz 1998). 

2.8 Experiments with 18O-isotopes 

2.8.1 Methyl 4-nitrobenzyl ether 

The reaction mixtures (0.50 ml, stirred at room temperature) contained 2 U ml−1 of the 

peroxygenase, potassium phosphate buffer (50 mM, pH 7.0), and 0.5 mM methyl 4-

nitrobenzyl ether. The reaction was initiated with 2.0 mM H2
18O2 and stopped after 5 s by 

rapid mixing with 0.50 ml of benzene. A portion of the upper organic phase was immediately 

removed with a pipette and analyzed by GC/MS as described above. For each m/z value, the 
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average total ion count within the 4-nitrobenzaldehyde peak was used after background 

correction to generate the ion count used for mass abundance calculations. 

2.8.2 Aromatic substrates 

The reaction mixtures (0.20 ml, stirred at room temperature) contained 0.4 U ml−1 of the 

peroxygenase, potassium phosphate buffer (25 mM, pH 7.0), and 0.5 mM of the substrate 

(1,4-dimethoxybenzene, 1,4-diethoxybenzene, 4-nitroanisol, propranolol, diclofenac and 

acetanilide). The reactions were initiated with 2.0 mM H2
18O2. The reaction products were 

analyzed as described before. The products were identified relative to an authentic standard, 

based on its retention time and [M-H]− ion. For each m/z value, the average total ion count 

within the product peak was used after background correction to generate the ion count used 

for mass abundance calculations. 

2.8.3 Arylglycerol beta-aryl ethers 

The reaction mixtures (0.20 ml) contained 0.4 U of the purified peroxygenase, potassium 

phosphate buffer (50 mM, pH 7.0), acetonitrile (5 %) and the arylglycerol beta-aryl ether (0.5 

mM). When indicated the reactions also contained ascorbic acid (12 mM) to inhibit further 

oxidation of the phenolic products that were released (Kinne et al. 2008). The reactions were 

started by the addition of H2
18O2 (5 mM) via syringe pump and continuously stirred for 1 hour 

at room temperature, at which time chromatographic analyses (HPLC-MS Method I) showed 

that product formation was complete. Aliquots of the reactions were derivatized using the 2,4-

dinitrophenylhydrazine-solution (0.1%) to analyze the aldehydes released during reaction. In 

some of the reaction H2
18O (99 % atom) was added. 

2.8.4 2-Phenoxypropionic acid 

The reaction mixtures (0.2 ml) contained 2 U ml−1 (0.9 µM) of purified AaeAPO, 50 mM 

potassium phosphate buffer (pH 7), and 0.5 mM of the substrate. The reaction was started by 

the addition of H2O2 (2 mM) and stirred at room temperature. Ascorbic acid was added to a 

final concentration of 4 mM. The reactions mixtures were analyzed by HPLC-MS Method II.  

2.9 Deuterium isotope effect experiment 

The reaction mixtures (0.20 ml, stirred at room temperature) contained 0.4 U of the 

peroxygenase, potassium phosphate buffer (50 mM, pH 7.0), 4 mM ascorbate, and 0.5 mM 1-
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methoxy-4-trideuteromethoxybenzene. The reaction was initiated with 2.0 mM H2O2, and 10 

s later a portion was analyzed by LC/MS as described above. For each m/z value, the average 

total ion count within the 4-methoxyphenol peak was used after background correction to 

generate the ion count used for mass abundance calculations. 

2.10 Experiments with 14C-labeled compounds 

To detect and quantify radio labeled products, fractions (0.5 ml) of HPLC-separated reaction 

mixtures were collected and assayed for 14C by liquid scintillation counting (Tri-Carb 

2900TR, Perkin-Elmer, USA) after mixing of the fraction with an scintillation cocktail 

(Emulsifier-Safe, Perkin-Elmer, USA) to a total volume of 5 ml. 

2.11 Experiments with milled wood 

The reaction mixture contained in a total of 1 ml of 50 mM potassium phosphate buffer (pH 

7.0), 0.5% Tween 20, 10 mM glucose, 0.16 U ml−1 of glucose oxidase (from Aspergillus 

niger; Sigma-Aldrich) and 2 U ml−1 of AaeAPO. The extracted wood (Tween 20 and water 

extracts) and the wood extract supernatant were incubated in reaction tubes (2 ml) closed with 

parafilm with vigorous stirring at 25°C for 24 h and 48 h after which time samples were 

analyzed by HPSEC as described above. 

2.12 In vivo-incubation experiments  

Liquid cultures (25 ml) of Agrocybe aegerita containing a soybean medium were prepared as 

described before (Ullrich et al. 2004). After five days of incubation a solution that contains 

Adlerol (1-(4-methoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol) solved in 

ethanol was added to give a final concentration of approximately 100 µM. The AaeAPO 

activity was monitored for 30 days of incubation using the veratryl alcohol assay described 

previously (Ullrich et al. 2004). To extract the Adlerol a whole culture flask was solved in 

ethanol (42 ml) mixed, centrifuged and analyzed by an HPLC-calibrated method as described 

above. 
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3. Results 

3.1 UV-Vis spectrophotometric features of AaeAPO 

AaeAPO exhibits spectrophotometric and kinetic features of heme-thiolate proteins. Data 

from UV-Vis spectroscopy and difference spectroscopy are reported.  

3.1.1 Ligands of AaeAPO 

UV-Visible spectrophotometry has been used extensively in the detection and characterization 

of heme proteins, where the influence of substrate binding has marked effect on the 

appearance of the overall spectrum, especially with respect to the positions and intensities of 

the major absorption bands (Dawson et al. 1983). To describe the electronic structure and 

ligand binding properties a search for AaeAPO-ligands was performed.  

 

 
The UV-Visible spectrum of the purified resting AaeAPO exhibits a characteristic absorption 

peak at 418 nm (Soret band) and two charge transfer maxima at 537 and 572 nm (Figure 13, 

(Ullrich 2004)). Electronegative ligands, such as azide and cyanide were found to cause 

characteristic shifts of the Soret and charge transfer bands in the UV-Visible absorption 

spectra. Band positions of different AaeAPO ligand complexes are shown in Table 2. 

Figure 13 Absorption spectra of resting state AaeAPO (black), the N3
− -complex (red) and its CN− -

complex (blue). 
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 Ligand δ Soret band β α 

 nm 

Resting 357 418 537 572 
Reduced (dithionite) - 407 553 (565) 
CO (Fe2+) 363 445 553 567 
NO 359 430 544 579 
CN-/ CN-(Fe2+) 366 438/443 566 - 
N3

- 362 428 546 577 
1-Phenylimidazole 360 424 542 (570) 
Hydroxylamine 359 420 542 (572) 

 

3.1.2 Difference spectrophotometry 

The addition of a wide variety of substrates and inhibitors to P450s causes characteristic 

changes in the optical absorption spectrum, which reflect changes in the environment and 

electron density of the heme. According to Lewis two major specific types of difference 

binding spectra have been identified (Lewis and Sheridan 2001):  

 
• Type I, which is characterized by a decrease in intensity of the Soret absorption peak 

around 418 nm, coupled with a concomitant increase in the band intensity of the 390 

nm absorption. This type of UV-Visible absorption is indicative of the substrate’s 

influence on the P450 heme iron spin-state equilibrium (Figure 14, A). 

• Type II changes correspond to a shift of the Soret to longer wavelengths, with a 

consequent decrease in absorption at around 390- 420 nm and the formation of a peak 

at 420 to 435 nm in the difference spectrum (Figure 14, B).  

 
The results in Figure 14 indicate that phenol, a substrate of AaeAPO (Ullrich et al. 2004), 

caused a type I spectral change with the formation of a maximum around 390 nm and a 

minimum around 419 nm. A binding type II-like spectral change with a consequent formation 

of a minimum at 417 nm and a maximum around 440 nm was found when the heme protein 

inhibitor cyanide was added to the enzyme solution.  

Table 2 delta-, Soret-, beta- and alpha-bands of AaeAPO ligand complexes. 
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The difference spectra obtained for several compounds that were added to the peroxygenase 

solution are given in Table 3. The results show that substrates of AaeAPO such as 3,4-

dimethoxybenzyl alcohol, cause a type I binding spectrum whereas known heme protein 

inhibiters like azide cause a type II binding spectrum. 

Ligand λmax (nm) λmin (nm) Spectral type 
3,4-dimethoxybenzyl alcohol 390 418 I 
Phenol 389 419 I 
H2O2 --- 418 n.d. 
Kaempferol 379 422 I 
DMF 380 418 I 
1Br- 392 421 I 
1Cl- 405 390/416 I 
1J- 385 425 I 
SH- 378 419 I 
HCOO- 430 408 II 
CH3COO- 428 408 II 
CN- 440 417 II 
N3

- 428 417 II 
1F- 425 390 II 

     1pH was 3 

 
The halogen ions caused no changes in the absorption spectra at pH 7 but show spectral 

changes at lower pH. For example, chloride induced a split of the Soret band with two 

maxima at 390 and 416 nm. 

Figure 14 Difference absorption spectra of AaeAPO obtained by the addition of A: phenol, (gray: 250 
µM, black: 1 mM; blue: 5 mM; red: 10 mM) and B: cyanide (gray: 1 µM; black: 10 µM; 
blue: 100 µM; red: 250 µM). 

Table 3 Difference absorption spectra of AaeAPO obtained by the addition different compounds 
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3.2 Oxidation of ethers 

AaeAPO cleaves many types of ether, including some significant environmental pollutants, 

pharmaceuticals, phytoalexins and lignin model compounds. Data from stoichiometrical 

analyses, steady-state kinetics experiments, H2
18O2-labeling studies, determinations of 

intramolecular deuterium isotope effects and 14C-radiolabeling tests are reported. In addition, 

limitations on the etherolytic reactions that the enzyme can accomplish are shown. 

Information about reaction products, which were identified by their mass spectra rather than 

by an authentic standard and which have not been published before is found in the appendix 

section. 

 3.2.1 Aromatic ethers  

Table 4 provides an overview of some alkyl aryl ethers that were cleaved by AaeAPO in the 

presence of H2O2. The methoxybenzenes I-V (Table 4) were cleaved by AaeAPO with a 

consequent formation of formaldehyde and the corresponding phenolic products. For some of 

the substrates it could be shown that aromatic ring hydroxylation was the preferred reaction 

catalyzed via the general peroxygenase activity of AaeAPO. Additionally a number of the 

phenols tended to undergo further oxidation to quinones and polymeric products because 

AaeAPO exhibits a peroxidase activity. To prevent product polymerization for some of the 

reactions ascorbic acid was used, scavenging the phenoxy radicals produced via the 

peroxidase activity of AaeAPO. 

For example anisole (I) was completely converted by AaeAPO. The major reaction product in 

the presence of ascorbic acid was 4-methoxyphenol. Without ascorbate, para-benzoquinone 

was detected and the formation of a brown colored reaction liquid could be observed. 

Formaldehyde was released with and without ascorbate but phenol was not detectable. The 

formation of several hydrophilic reaction products could be observed but they were not 

identified. To study the regioselectivity of AaeAPO-catalyzed demethylation the 

dimethoxybenzenes II-IV were investigated and found to show different behavior as shown 

by product spectra. AaeAPO converted all the tested dimethoxybenzenes (ortho, metha and 

para). In a comparative analysis without ascorbate, the maximum conversion was: 5% for 

1,2-dimethoxybenzene (II), 96% for 1,3-dimethoxybenzene (III) and 75% for 1,4-

dimethoxybenzene (IV). 
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 Substrate Carbonyl product Phenol product 

I 

OCH3

CH2 O [M-H]− 209 n.d. 

II 

OCH3
OCH3 CH2 O [M-H]− 209

OCH3
OH [M-H]− 123 

III 

OCH3

OCH3 

CH2 O [M-H]− 209

OCH3

OH 

[M-H]− 123 

IV 

OCH3

R  
R: CH3, NO2, OCH3, F, Br

CH2 O [M-H]− 209

OH

R  

CH3 
NO2 
OCH3 
F 
Br 
 

[M-H]− 107 
[M-H]− 138 
[M-H]− 123 
[M]+     112 
[M]+     172 
 

V 

OCH3

OCH3

Cl

 

CH2 O [M-H]− 209

OH

OCH3

Cl
[M]+ 158 

VI 

OC2H5

OC2H5 

H5C2 O [M-H]− 223

OH

OC2H5

[M-H]− 137 

VII 

OC3H7

OC3H7 

H7C3 O [M-H]− 237

OH

OC3H7

[M-H]− 151 

VIII 

O

NO2

R

 
R: C2H4OH, CH2CO2H 

n.d. 

OH

NO2  

[M-H]− 138 

Table 4 Products identified by mass spectroscopy after cleavage of alkyl aryl ethers by AaeAPO in 
the presence of limiting H2O2. The m/z value for the major observed diagnostic ion is 
shown in each case. 



RESULTS 

 40 

IX 
O

OH

O
 

CH2 O [M-H]− 
209 

OH

OH

O
 

[M-H]− 
215 

X 

O

O

O

O

OH

O

 

CH2 O [M-H]− 
209 

O

O

O

O

OH
OH

 

[M-H]−
299 

 

However, 1,2-dimethoxybenzene and 1,3-dimethoxybenzene gave only traces of the 

corresponding phenols and formaldehyde, whereas 1,4-dimethoxybenzene gave 4-

methoxyphenol as the major products of the reaction with AaeAPO and H2O2 in the presence 

of ascorbate (Figure 15A II and B).  

 

 

 
Additionally, para-benzoquinone and some side products were formed when the reaction was 

conducted without a radical scavenger (Figure 15A III). The apparent Km of the peroxygenase 

for 1,4-dimethoxybenzene was 0.36 mM, and the kcat was 106 s−1. When the reactions were 

conducted with the related phenols 2-, 3- and 4- methoxyphenol conversion during the 

AaeAPO-catalyzed reaction was 100% with production of formaldehyde and colored 

byproducts. When 4-nitroanisole (IV) was used as the substrate, 4-nitrophenol and 

Figure 15 A: HPLC elution profiles showing the O-demethylation of 1,4-dimethoxybenzene to the 
corresponding 4-methoxyphenol after incubation with AaeAPO. Control without enzyme
(I). Completed reaction with ascorbic acid added (II). Completed reaction without ascorbic 
acid (III). B: Time course showing the formation of 4-methoxyphenol and the 
decomposition of 1,4-dimethoxybenzene in the presence of ascorbic acid. The dashed line 
represents the sum of the concentration of substrate and product. 
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formaldehyde were the major reaction products with and without a radical scavenger. No 

polymerization was observed. When the reaction was conducted with 2-chloro-1,4-

dimethoxybenzene (V), a secondary metabolite of white rot fungi, two major reaction 

products appeared and were suggested as 3-chloro-4-methoxyphenol (see Appx. 1) and  

formaldehyde. AaeAPO converted the alkoxybenzenes VI-VII (Table 4) with formation of the 

corresponding aldehydes and phenolic products. For example 1,4-diethoxybenzene (VI) and 

1,4-dipropoxybenzene (VII) were converted to the corresponding phenols (4-ethoxy- and 4-

propoxyphenol) and aldehydes (acetaldehyde and propionaldehyde) in the AaeAPO-catalyzed 

reaction with H2O2. Several reaction products could be detected in the presence of a radical 

scavenger. The amount of byproducts increased with the size of the alkyl side chain. Without 

ascorbate, para-benzoquinone was detected and the formation of a brown colored reaction 

liquid could be observed. 

  

 

 
Corresponding aldehydes were produced with and without ascorbate and could be detected as 

their 2,4-dinitrophenylhydrazones (Figure 16). The mass spectra in Figure 16 give conclusive 

Figure 16 HPLC elution profiles showing different 2,4-dinitrophenylhydrazones from the reaction of 
AaeAPO with 1,4-dimethoxybenzene (II), 1,4-diethoxybenzene (III), 1,4-dipropoxybenzene 
(IV) and H2O2. Control without enzyme (I, 2,4-dinitrophenylhydrazine).  
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evidence that the aldehydes have the same carbon content as the alkyl side chain of the 

dimethoxybenzenes where they were released. 

When reactions were conducted with 2-(4-nitrophenoxyl)ethanol and 2-(4-

nitrophenoxyl)acetic acid (VIII), the major reaction products was 4-nitrophenol. Naproxen 

((S)-2-(6-methoxynaphthalen-2-yl)propanoic acid, IX) a non-steroidal anti-inflammatory 

drug, was selectively demethylated to give formaldehyde and (+)-(S)-2-(6-

hydroxynaphthalen-2-yl)propanoic acid, which is a human drug metabolite via liver 

metabolism. The phytoalexin pisatin (X) from pisum sativum was selectively oxidized to give 

formaldehyde and although in this case no authentic standards were available, the m/z value 

for one of the reaction products was the same as that expected for the demethylated product 

3,6-alpha-dihydroxy-8,9-methylene-dioxypterocarpan (also called 6-alpha-

hydroxymaackiain, 6-alpha-hydroxyinermin, see Appx. 2). Other phytoalexins such as 3,5-

dimethoxystilbene were rapidly oxidized and polymerized (see Appx. 3). 

3.2.2 Aliphatic ethers 

Table 5 provides an overview of the alkyl ethers that were cleaved via AaeAPO- catalyzed 

reactions in the presence of H2O2. In qualitative experiments done with limiting H2O2, 

AaeAPO cleaved diverse aliphatic ethers (I-VII, Table 5). The products were carbonyls 

(aldehydes and ketones), which were identified by HPLC/MS as their 2,4-

dinitrophenylhydrazones, and alcohols, which were identified directly by GC/MS.  

For example diethyl ether (I) was selectively cleaved by AaeAPO to give formaldehyde and 

ethanol. The GC-MS elution profile clearly shows that both metabolites are formed (Figure 

17). Some of the metabolites were further oxidized by AaeAPO to give aliphatic acids. 

Diethylene glycol (II) a building block compound in organic synthesis was cleaved to give 

hydroxyacetaldehyde and other reaction products (see Appx. 4). The widely used solvent 

diisopropyl ether (III) gave the cleavage products acetone and isopropyl alcohol. Notably, the 

gasoline additive methyl t-butyl ether (IV) yielded formaldehyde and tert-butanol, and 

diethylene glycol was cleaved to give 2-hydroxyacetaldehyde. The cyclic ether 

tetrahydrofuran (V) was ring-opened to give 4-hydroxybutanal as the initial reaction product 

during the AaeAPO-catalyzed reaction. 
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 Substrate Carbonyl product Alcohol product 

I O  O [M-H]− 223 OH [M]+ 46 

II O
OHOH

 
O

OH [M-H]− 239 n.d. 

III 
O  

O

 
[M-H]− 237 OH

 
[M-CH3]+ 45 

IV 
O

 
CH2 O [M-H]− 209 

OH

 
[M-CH3]+ 59 

V O

 

O OH 
[M-H]− 267 

VI 
O

 

OHO
 

[M-H]− 281 

VII 
O

O  

O
OHO

 
[M-H]− 283 

VIII 
O

 

O

 

[M]+ 106 CH3 OH [M+H]+ 31 

IX 

O

NO2  

O

NO2  

[M]+ 151 CH2 O [M+H]+ 31 

X 

O

OCH3
OCH3  

O

OCH3
OCH3

[M+H]− 167 CH2 O [M+H]+ 31 

 

The solvents tetrahydropyran (VI) and 1,4-dioxane (VII) were oxidized, and although in this 

case no authentic standards were available, the m/z values for the derivatized products were 

the same as those expected for the 2,4-dinitrophenylhydrazones of the ring-opened product 5-

Table 5 Products identified by mass spectroscopy after cleavage of alkyl ethers by AaeAPO in the 
presence of limiting H2O2. The m/z value for the major observed diagnostic ion is shown in 
each case. 
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hydroxypentanal in the case of tetrahydropyran and 2-(2-hydroxyethoxy)acetaldehyde in the 

case of 1,4-dioxane. 

 

 
When these reactions were conducted with nonlimiting H2O2, oxidation of the resulting 

alcohol moieties also occurred, thus generating additional carbonyl groups. For example, 1,4-

dioxane was cleaved at both ether linkages and then further oxidized to glyoxal under these 

conditions. 

3.2.3 Stoichiometry of ether cleavage 

A quantitative analysis of tetrahydrofuran cleavage in the presence of limiting oxidant showed 

that one equivalent of 4-hydroxybutanal was formed per equivalent of H2O2 supplied (Table 

6).   

 

 H2O2 added 4-Hydroxybutanal produced 4-Hydroxybutanal/H2O2 

µM  
100 
200 
300 
400 
500 

101 
194 
292 
375 
489 

1.01 
0.97 
0.97 
0.94 
0.98 

         aThe initial tetrahydrofuran concentration was 10 mM. 
 

Figure 17 GC-MS profile showing products formed by AaeAPO after conversion of diethylether. 
Completed reaction (I). Control without enzyme (II). Insets show the mass spectra of the 
reaction products.  

Table 6 Stoichiometry of tetrahydrofuran oxidation by AaeAPO.a
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The apparent Km of the peroxygenase for 

tetrahydrofuran was 2.1 mM, and the initial 

turnover rate of the enzyme with 2.5 mM 

of this ether and 2.0 mM H2O2 was 33 s−1. 

The peroxygenase cleaved methyl benzyl 

ethers such as VIII, IX and X (Table 5), 

yielding benzaldehydes and methanol, 

which were identified by HPLC and 

GC/MS without derivatization.  

The benzyl alcohols were not detectable as 

products, even when H2O2 was limiting, 

and formaldehyde was found only in 

extended reactions with excess H2O2. For 

example, the HPLC results obtained with 

methyl 4-nitrobenzyl ether (IX) showed that the initial reaction product of the AaeAPO 

catalyzed reaction was 4-nitrobenzaldehyde (Figure 18). The presence of 4-nitrobenzyl 

alcohol was not observed but 4-nitrobenzaldehyde was further oxidized by AaeAPO to give 4-

nitrobenzoic acid. 

   

H2O2 added 3,4-Dimethoxybenzaldehyde 
produced 

3,4-Dimethoxybenzaldehyde/ 
H2O2 

µM  
11 
22 
33 
44 
55 
110 

12 
23 
33 
43 
54 
105 

1.09 
1.05 
1.00 
0.98 
0.98 
0.95 

      aThe initial methyl 3,4-dimethoxybenzyl ether concentration was 1.0 mM. 

 
HPLC/MS results obtained with methyl benzyl ether (VIII) and methyl 3,4-dimethoxybenzyl 

ether (X) showed no formation of the corresponding alcohols but rather give clear evidence 

that the aldehyde was the initial reaction product. 

A quantitative analyses of methyl 3,4-dimethoxybenzyl ether cleavage in the presence of 

limiting H2O2 was consistent with this picture, showing that one equivalent of 3,4-

dimethoxybenzaldehyde was produced per equivalent of oxidant supplied (Table 7).  

Figure 18 Time course showing the formation of 
4-nitrobenzaldehyde (◊) and the 
decomposition of methyl 4-nitrobenzyl 
ether (ο) during AaeAPO catalyzed 
reaction. 4-nitrobenzyl alcohol (Δ) was 
not detected. 

Table 7 Stoichiometry of methyl 3,4-dimethoxybenzyl ether oxidation by AaeAPOa 
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3.2.4 pH-Optimum of ether cleavage 

The pH optimum the AaeAPO-catalyzed reaction of 3,4-dimethoxybenzyl ether was 7.0, with 

50% activity occurring at pH 5.4 and pH 8.4 (Figure 19).  

 

 

3.2.5 Bisubstrate kinetics  

Since a direct spectrophotometric assay is 

available to monitor the production of 3,4-

dimethoxybenzaldehyde (Tien et al. 1986), 

methyl 3,4-dimethoxybenzyl ether was 

selected for initial rate kinetics 

experiments at pH 7.0, assuming steady-

state conditions and using a nonlinear 

regression method to calculate the kinetic 

parameters (Hernandez and Ruiz 1998). 

The results gave a kcat of 720 ± 87 s−1, a 

Km for H2O2 of 1.99 ± 0.25 mM (kcat/Km = 

3.6 × 105 M−1 s−1), and a Km for methyl 

3,4-dimethoxybenzyl ether of 1.43 ± 0.23 

Figure 19 Relative rates of methyl 3,4-dimethoxybenzyl ether cleavage by the AaeAPO at various pH 
values. 

Figure 20 Double reciprocal plots of the kinetics data for methyl 3,4-dimethoxybenzyl ether 
(MDMBE) cleavage by AaeAPO. The H2O2 concentrations used were 0.067 mM (◊), 0.100 
mM (ο), and 0.200 mM (Δ). The kinetic parameters reported in the text were calculated by a 
nonlinear regression method (Hernandez and Ruiz 1998). 
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mM (kcat/Km = 5.0  × 105 M−1 s−1). Double reciprocal plots of the same data gave parallel lines 

(Figure 20).  

3.2.6 Source of the oxygen introduced during ether cleavage 

It was shown by 18O-labeling that H2O2 supplies the oxygen atom that the AaeAPO introduces 

when it hydroxylates aromatic rings. The analogous experiment is difficult with alkyl ethers, 

because the oxygen on the resulting aliphatic aldehyde exchanges rapidly in water. However, 

benzaldehyde oxygens exchange less 

rapidly, making the assay feasible with 

benzyl ethers if a short reaction time is 

employed (Tien and Kirk 1984). 

Methyl 4-nitrobenzyl ether (IX, Table 

5) was selected as the substrate because 

the nitro substituent in the resulting 

benzaldehyde has been reported to slow 

the exchange additionally (Samuel 

1965). GC/MS analysis showed that the 

peroxygenase-catalyzed cleavage of 

this ether in the presence of 90 atom % 

H2
18O2 resulted in 69% 18O 

incorporation into the carbonyl group 

of the resulting 4-nitrobenzaldehyde, as  

 
evidenced by the shift of the principal 

molecular ion from m/z 151 to m/z 153 

(Figure 21). The results indicate that the introduced 18O-species from H2O2 is released with 

the carbonyl product instead of with the alcoholic product during the ether cleavage by 

AaeAPO. Experiments done with 4-nitroanisole, 1,4-dimethoxybenzene and 1,4-

diethoxybenzene and AaeAPO in the presence of 18O-labeled H2O2 and/ or H2O were 

consistent with this picture. The results showed no changes in the mass of the molecular ion 

Figure 21 Incorporation of 18O from H2
18O2 into the carbonyl group of 4-nitrobenzaldehyde after 

cleavage of methyl 4-nitrobenzyl ether by AaeAPO. Upper: MS of the product obtained 
with natural abundance H2O2. Structural assignments for m/z values are as follows: [M]+, 
151; [M - O]+, 135; [M - NO - H]+, 120; [M - NO2]+, 105. Lower: MS of the product 
obtained with 90 atom % H2

18O2. 
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of the corresponding phenolic (alcoholic) mass (Table 8). The release of 18O-labeled 

formaldehyde or acetaldehyde was not observed because of the rapid exchange rates of 

oxygen in aliphatic aldehydes with water. 

Substrate Reaction with… Product 

H2
16O2 in H2

16O 

H2
18O2 in H2

16O 

O
16

R

R

 H2
16O2 in H2

18O 

OH
16

R  
 

3.2.7 Deuterium isotope effect experiments 

As previously shown, AaeAPO cleaved alkyl aryl ethers, yielding aliphatic aldehydes and 

phenols. The phenols tended to undergo further oxidation to polymeric products and 1,4-

benzoquinone because this enzyme exhibits general peroxidase activity (Ullrich and 

Hofrichter 2007). However, the phenolic products were readily detectable when ascorbate was 

included in the assay to suppress their further oxidation (Kinne et al. 2009b, Kinne et al. 

2008). By this method it was found, for example, that 1,4-dimethoxybenzene (IV, Table 4) 

was oxidized to 4-methoxyphenol. Since 1,4-dimethoxybenzene is symmetrical and its 

methoxyl carbons are not prochiral, it is a suitable substrate to determine whether a catalyzed 

etherolytic reaction exhibits an intramolecular deuterium isotope effect, which gives an 

approximate value for the intrinsic deuterium isotope effect on cleavage of the ether bond 

(Foster et al. 1974, Yun et al. 2005, Nelson and Trager 2003). HPLC/MS analysis showed that 

the peroxygenase-catalyzed cleavage of 1-methoxy-4-trideuteromethoxybenzene resulted in a 

marked preponderance of 4-methoxyphenol-d3 (m/z 126, [M-H]−) over 4-methoxyphenol-h3 

(m/z 123, [M-H]−) and a preponderance of formaldehyde-2,4-dinitrophenylhydrazone-h2 (m/z 

209, [M-H]−) over formaldehyde-2,4-dinitrophenylhydrazone-d2 (m/z 211, [M-H]−) (Figure 

22). The observed mean intramolecular isotope effect [(kH/kD)obs] from three experiments 

was 11.9 ± 0.4. 

 

 

Table 8 Conversion of alkyl aryl ethers with the AaeAPO in the presence 18O-isotope enriched 
H2

18O und H2
18O2 
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3.2.8 Arylglycerol beta-aryl ether  

AaeAPO cleaves nonphenolic lignin model compounds of the arylglycerol beta-aryl ether 

(beta-O-4) type by selective demethylation of the para-methoxyl group to give the 

corresponding aldehydes and phenols followed by oxidative cleavage of the phenolic dimer 

and polymerization of the monomeric reaction products. Hydroxylation of aromatic rings was 

observed. Table 9 provides an overview of the arylglycerol beta-aryl ethers that were cleaved 

by the AaeAPO in the presence of H2O2. Typical HPLC elution profiles for completed 

AaeAPO-catalyzed reactions of a lignin model compounds are shown in Figure 23. 

Figure 22 Preferential cleavage by AaeAPO of the non-deuterated methoxyl group in 1-methoxy-4-
trideutero-methoxy-benzene. A: MS of 4-methoxyphenol-h3 obtained from the oxidation of 
natural abundance 1,4-dimethoxybenzene. B: MS of the 4-methoxyphenol-h3/4-
methoxyphenol-d3 mixture obtained from the oxidation of 1-methoxy-4-
trideuteromethoxybenzene. C: MS of formaldehyde-2,4-dinitrophenylhydrazone obtained 
from the oxidation of natural abundance 1,4-dimethoxybenzene. D: MS of the 
formaldehyde-2,4-dinitrophenylhydrazone-h2/formaldehyde-2,4-dinitrophenylhydrazone-
d2 mixture obtained from the oxidation of 1-methoxy-4-trideuteromethoxybenzene. B: MS 
shown is one of three used to calculate the observed mean intramolecular isotope effect. 
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Table 9 Products identified by mass spectroscopy after cleavage of non-phenolic arylglycerol beta-
aryl ethers by the AaeAPO in the presence H2O2 and ascorbic acid. The m/z value for the 
major observed diagnostic ion is shown. 

 Substrate Carbonyl product Phenol product  

I 

OH

O
O

OH

O
O

 

CH2 O [M-H]− 209

II 

OH

O
O

OH

O
O

 

H5C2 O [M-H]− 223

OH

O
OH

OH

O
O

 

[M-H]− 319 

Figure 23 HPLC elution profile of AaeAPO-catalyzed conversion of compound I. Front line: reaction 
without enzyme, second line: reaction in the presence of ascorbic acid (12 mM) and dotted 
line: reaction in the absence of ascorbic acid. Insets of respective mass spectra are shown.
The substrate mass is [M+HCOOH-H]− 379. 
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AaeAPO-catalyzed the H2O2-dependent cleavage of 1-(4-methoxy-3-methoxyphenyl)-2-(2-

methoxyphenoxyl)-propane-1,3-diol (I, adlerol) a dimeric model compound that represents 

the major nonphenolic structure in lignin. The results show that AaeAPO generated numerous 

products from the lignin model I in the presence of H2O2.  

In the presence of ascorbic acid, solely dimeric products of model I could be detected. The 

total conversion of compound I (500 µM) was 175 µM (35%) with a consequent formation of 

110 µM of the major reaction product III (Table 10, 1-(4-hydroxy-3-methoxyphenyl)-2-(2-

methoxyphenoxyl)propane-1,3-diol; 63% of total conversion) and 20 µM of formaldehyde-

2,4-dinitrophenylhydrazone. When the reaction was conducted with compound II, 1-(4-

ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxyl)propane-1,3-diol, (etherol; 400 µM) instead 

of compound I, total conversion was 170 µM (43%) with a consequent formation of 150 µM 

compound III (88% of total conversion) and 30 µM acetaldehyde-2,4-

dinitrophenylhydrazone.  

The formation of ring-hydroxylated products can be suggested, as some of the minor peaks in 

Figure 23 show mass spectra with appropriate ion shifts of the principal [M-H]− ions of I, II 

and III to m/z [M-H+16]− and m/z [M-H+32]−. When H2
18O2 was added as oxidant instead of 

natural abundance H2O2, the m/z of the demethylated product III stayed constant as described 

before.  

  Further Reaction Products 

III 

OH

O
OH

OH

O
O

 

O

O
O  
n.d. 

IV 

OH

O
OH

OH

O
O

O

 

O

OH

O
OOH  

[M-H]− 211 

 
O

O
OH

OH

O
O

O

 
[M+H]+ 349 

O

O
O

O

 
[M+H]+ 169

Table 10 Products identified by mass spectroscopy after cleavage of phenolic arylglycerol beta-aryl 
ethers by the AaeAPO in the presence H2O2 and ascorbic acid. The m/z value for the major 
observed diagnostic ion is shown. 
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The principal [M-H]− ion masses of some side product ions shifted from natural abundance 

m/z ([m/z +16] and [m/z +32] of I, II and III) to [m/z+16+2] and [m/z+16+4] suggesting ring 

hydroxylation with oxygen introduction into the substrate from H2O2. The identification of 

ring-hydroxylated products by means of authentic standards was not performed, as the yields 

were very low. A formation of alpha-carbon ketones from substrate I and II was not observed. 

In the absence of ascorbic acid, predominantly monomeric and polymerization products of 

compound I and II could be detected (Figure 23). Models I and II were cleaved to give the 

hydroxylated species of 3-hydroxy-2-(2-methoxyphenoxyl)propanal and traces of 2-

methoxybenzoquinone.  

 

    

Figure 24 Incorporation of 18O from H2
18O2 into 

the suggested hydroxylated species of 
3-hydroxy-2-(2-methoxyphenoxyl)-
propanal after hydroxylation of the 
arylglycerol aryl ether by AaeAPO. 
Upper: MS of the product obtained 
with natural abundance H2O2. Lower:
MS of the product obtained with 90 
atom % H2

18O2.  

Figure 25 Incorporation of 18O from H2
18O 

into the quinone group of 3,5-
dimethoxybenzoquinone after 
cleavage of compound I by 
AaeAPO. Upper: MS of the 
product obtained with natural 
abundance H2O2. Lower: MS of the 
product obtained with 20% of 90 
atom % H2

18O.  
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When the AaeAPO-catalyzed oxidations of I and II were conducted with H2
18O2 in place of 

H2O2, mass spectral analysis of the resulting hydroxylated species of 3-hydroxy-2-(2-

methoxyphenoxyl)propanal showed that the principal [M-H]− ion had shifted from the natural 

abundance m/z of 211 to m/z 213 (Figure 24). 2-Methoxybenzoquinone could not be detected 

by mass spectrometry as it was rapidly polymerized by AaeAPO. 

To analyze quinone formation compound III, 1-(4-hydroxy-3,5-dimethoxyphenyl)-2-(2-

methoxyphenoxyl)propane-1,3-diol, the substrate was incubated with AaeAPO, which gave 

the products 3,5-dimethoxybenzoquinone and hydroxylated species of 3-hydroxy-2-(2-

methoxyphenoxyl)propanal during the AaeAPO-catalyzed reaction. HPLC/MS analysis 

showed that the peroxygenase-catalyzed cleavage of IV in the presence of 20% H2
18O resulted 

in 20% 18O incorporation into 3,5-dimethoxybenzoquinone, as evidenced by the shift of the 

principal molecular ion from m/z 169 to m/z 171 (Figure 25). The presence of 3-hydroxy-1-(4-

hydroxy-3,5-dimethoxyphenyl)-2-(2-methoxyphenoxy)propan-1-one (Table 10) was 

confirmed from its mass spectrum. 

Polymerization of the reaction products from the reaction of arylglycerol beta-aryl ethers with 

AaeAPO and H2O2 was observed in the 

absence of a radical scavenger. To quantify the 

polymerization products threo-1-(4-ethoxy-3-

methoxy-ring-[14C]phenyl)-2-(2 -methoxy-

henoxy)propane-1,3-diol was incubated with 

AaeAPO and H2O2 and then filtered through a 

filter membrane with a 10-kDa cut-off (Figure 

26). In a reaction were a total activity of 97599 

dpm of the radiolabeled substrate was used 

25996 dpm (27%) was found to pass the 

membrane and 71633 dpm (73%) was retained. 

In the presence of ascorbic acid no 

polymerization was detected.  

3.2.9 Scope of ether cleavage 

It was found that the AaeAPO failed to cleave some ethers. For example, although it produced 

4-nitrophenol from 4-nitroanisole (Table 4), no release of 4-nitrophenol was detectable when 

4-(4-nitrophenoxyl)benzoic acid was employed instead as a substrate. Hexaethylene glycol 

was not converted by AaeAPO. It was also found that the ether linkages in a 4-nitrophenyl-

Figure 26 HPLC radiochromatogram of 
products obtained from the 
treatment of radiolabeled model II 
with AaeAPO. Red: completed 
reaction. Black: 10 kDa permeate of 
the completed reaction. 
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terminated PEG (Figure 27) and in a dehydrogenative polymer (DHP) of coniferyl alcohol 

(i.e., synthetic lignin) were not detectably cleaved. 

O2N

O

NO2

O
n

 
 

 

As described previously, it was found that the peroxygenase released n-propanal efficiently 

from 1,4-di-n-propoxybenzene, but released only traces of n-butanal from 1,4-di-n-

butoxybenzene. The enzyme failed to cleave phenoxypropionic acid and propranolol (Table 

11). In vivo experiments conducted with arylglycerol beta-aryl ethers and Agrocybe aegerita 

showed no conversion of the lignin model compounds even when the enzyme was secreted. 

Moreover, SEC-results from reactions mixtures of AaeAPO incubated with milled pine and 

poplar wood in the presence of glucose oxidase and glucose as an H2O2- generating system 

showed no release of soluble aromatic compounds. The wood extracts (supernatant fractions) 

were polymerized by AaeAPO.  

3.3 Ring hydroxylation of aromatic compounds 

AaeAPO hydroxylated aromatic rings of many compounds, including some significant 

pharmaceuticals and industrially relevant substances. Data from 18O-labeling studies and an 

enantio- and regioselective analysis are reported. Table 11 provides an overview of some 

aromatics that were hydroxylated by AaeAPO in the presence of H2O2.  

 Substrate Phenolic product 

1 

NO2

 

NO2

OH  

[M-H]− 138 

Figure 27 4-Nitrophenyl-terminated polyethylene glycol (n≈45).

Table 11 Products identified by mass spectroscopy after ring hydroxylation of aromatics by AaeAPO
in the presence of H2O2. The m/z value for the major observed diagnostic ion is shown in 
each case. 
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II 
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[M-H]− 274 
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Cl

Cl

O

OH

OH

[M-H]−311 

3.3.1 Nitroaromatics 

Nitrobenzene was hydroxylated by AaeAPO to give 4-nitrophenol in experiments conducted 

with continuous addition of H2O2 via a syringe pump. For example, in reactions where one 

equivalent of H2O2 was added over 40 min using 5 U ml−1 of the peroxygenase, 

approximately 2% of nitrobenzene was hydroxylation to 4-nitrophenol. 

Figure 28 illustrates the HPLC elution profiles of reaction mixtures after AaeAPO-catalyzed 

oxidation of nitrophenol. After treatment with AaeAPO, one major metabolite appeared and 

was identified as 4-nitrocatechol in the presence of a radical scavenger. In the absence of 

ascorbic acid, 4-nitrocatechol was further oxidized to give several unidentified hydrophilic 

products. Polymerization was not observed.  
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When reactions were conducted with 18O-enriched 

H2O2 the ion mass m/z of 4-nitrocatechol shifted 

from 154 to 156 (Figure 29). The presence of 18O-

enriched H2O had no influence on the ion mass of 4-

nitrocatechol. Reaction mixtures that have been 

flushed with nitrogen showed no changes in the rate 

of product formation. The results obtained from 18O 

isotope labeling experiments shows that in the 

presence of ascorbate a product can be observed, in 

which the m/z had shifted from natural abundance 

170 to 172 and 174 when H2
18O2 was used as 

oxidant. In the absence of ascorbic acid, two further 

reaction products with different retention times 

were identified. 

The m/z of these metabolites shifted from natural 

Figure 28 HPLC elution profile of AaeAPO-catalyzed conversion of 4-nitrophenol I: reaction in the 
absence of ascorbic acid, II: reaction in the presence of ascorbic acid and III: reaction 
without enzyme, Insets of respective UV-Vis spectra are shown.  

Figure 29  Incorporation of 18O from H2
18O2 into the phenolic group of 4-nitrocatechol after 

hydroxylation of 4-nitrophenol by AaeAPO. Upper: MS of the product obtained with 
natural abundance H2O2. Lower: MS of the product obtained with 90 atom % H2

18O2. 
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abundance 170 to 172 and from 186 to 188 in the presence of H2
18O. The detected reactions 

products show typical UV-Vis spectra of nitro-aromatics with bands in the near visible region 

around 360 nm. para-Benzoquinone was not detected. 

3.3.2 Regio-and stereoselective hydroxylations 

Some of the AaeAPO-catalyzed aromatic hydroxylations were shown to proceed regio- and 

stereoselectively. With respect to the broad substrate spectrum of AaeAPO, selected results 

from biocatalytic conversion of compounds of pharmacological and industrial interest are 

reported. 

3.3.2.1 2-Phenoxypropionic acid  

AaeAPO catalyzed the H2O2-dependent hydroxylation of 2-phenoxypropionic acid (POPA) to 

give the herbicide precursor 2-(4-hydroxyphenoxy)propionic acid (HPOPA). To assess POPA 

hydroxylation, a racemic mixture of POPA was treated with purified AaeAPO and two 

equivalents of H2O2 in the presence of ascorbic acid. This last ingredient was included to 

prevent HPOPA polymerization, an undesirable side reaction attributable to the general 

peroxidase activity of AaeAPO (Koizumi and Titani 1938).  

 

 

 
The results showed that the reaction proceeded rapidly and regioselectively, giving HPOPA as 

the sole detectable product (Figure 30, left; calculated isomeric purity was 98%), and that 

27% conversion of the POPA occurred under these conditions (Figure 30, right). Chiral 

Figure 30 HPLC elution profile (left) of products formed by AaeAPO during the conversion of 
POPA to HPOPA in the presence of ascorbic acid. Control without enzyme (I); 
Complete reaction (II); The reaction was started by addition of H2O2 at pH 7.0. Time 
course of AaeAPO-catalyzed hydroxylation of POPA to HPOPA (right). 
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HPLC analyses after AaeAPO catalyzed oxidations of racemic POPA showed that both 

enantiomers were hydroxylated, but that (R)-POPA was clearly the preferred substrate. The 

resulting HPOPA contained a 60% enantiomeric excess (ee) of the R-enantiomer (Figure 31). 

When the oxidations were performed on either of the pure POPA enantiomers, the 

corresponding HPOPA enantiomer was obtained as the sole detectable product in each case. 

 

 
Natural abundance H2O2 with H2

18O2 as the oxidant in AaeAPO-catalyzed hydroxylations of 

POPA to HPOPA was compared. The mass spectra of the products (Figure 32) show that the 

principal [M-H]− ion had an m/z of 181, as expected for the reaction with natural abundance 

H2O2, but shifted to m/z 183 with almost complete disappearance of the m/z 181 ion when 

H2
18O2 was used. A similar experiment using H2

18O gave no detectable 18O incorporation, as 

expected because phenolic oxygens are not readily exchangeable with water under our 

reaction conditions (Koizumi and Titani 1938). An additional experiment with natural 

abundance H2O2 in an N2-purged reaction mixture showed that HPOPA production was not 

inhibited by depletion of O2 and therefore molecular oxygen did not 

Figure 31 HPLC elution profile of products formed by AaeAPO during the conversion of racemic 
POPA to HPOPA in the presence of ascorbic acid. Control without enzyme (I); Completed 
reaction (II). The reaction was started by the addition of H2O2 at pH 7.0. 
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contribute significantly as an electron acceptor.  

These results show that the new phenolic oxygen 

in HPOPA originated from H2O2. A similar 

experiment using H2
18O gave no detectable 18O 

incorporation, as expected because phenolic 

oxygens are not readily exchangeable with water 

under our reaction conditions (Ullrich and 

Hofrichter 2005). An additional experiment with 

natural abundance H2O2 in an N2-purged reaction 

mixture showed that HPOPA production was not 

inhibited by depletion of O2. 

 

 

 

3.3.2.2 Propranolol 

AaeAPO catalyzed the H2O2-dependent hydroxylation of the multi-function beta-adrenergic 

blocker propranolol [2-hydroxy-3-(naphthalen-1-yloxy)propyl](propan-2-yl)amine to give the 

human drug metabolite 5-hydroxypropranolol. A racemic mixture of the compound was 

treated with purified AaeAPO and H2O2 in the presence of ascorbic acid. The reaction 

proceeded rapidly and regioselectively, converting about 20% of the propranolol to 5-OHP. 

The formation of byproducts was insignificant: 4-hydroxypropranolol and 1-naphthol 

occurred only in trace quantities, and N-desisopropylpropranolol was not found. The 

enantiomeric excess of S-5-OHP during AaeAPO-catalyzed hydroxylation of propranolol was 

less than 2% (i.e., the reaction was not enantioselective. Control reactions without AaeAPO or 

with heat-inactivated enzyme gave no conversion of propranolol. 

 

Figure 32 Incorporation of 18O from H2
18O into the phenolic group of HPOPA after hydroxylation of 

POPA by AaeAPO. Upper: MS of the product obtained with natural abundance H2O2. 
Lower: MS of the product obtained with 90 atom % H2

18O2. 
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When the AaeAPO-catalyzed oxidation of 

propranolol was conducted with H2
18O2 in place 

of H2O2, mass spectral analysis of the resulting 

5-OHP (Figure 34) showed that the principal 

[M-H]− ion had shifted from the natural 

abundance m/z of 274 to m/z 276. A similar 

experiment using H2
18O gave no detectable 18O 

incorporation. An additional experiment with 

natural abundance H2O2 in an N2-purged 

reaction mixture showed that propranolol 

production was not inhibited by depletion of 

O2, and therefore O2 did not contribute 

significantly as an electron acceptor. These 

results show that the new phenolic oxygen in 5-

OHP originated from H2O2. 

Figure 33 HPLC elution profile (left) of products formed by AaeAPO during the conversion of 
propranolol to 5-OHP. Control without enzyme (I). Complete reaction (II). Insets show 
UV/visible absorption spectra of the reactants. Time course of AaeAPO-catalyzed 
hydroxylation of propranolol to 5-OHP (right). 

Figure 34 Mass spectra showing molecular ions of 5-OHP obtained from the oxidation of propranolol 
with AaeAPO in the presence of natural abundance H2O2 (top) or H2

18O2 (bottom) 
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3.3.2.3 Diclofenac  

AaeAPO catalyzed the H2O2-dependent hydroxylation of the non-steroidal anti-inflammatory 

drug diclofenac (2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid) to give the human drug 

metabolite 4’-hydroxydiclofenac (4’-OHD). The reaction proceeded rapidly and 

regioselectively, converting about 65% of diclofenac to 4’-OHD (Figure 35, left). During 

diclofenac oxidation, the second human drug metabolite 5-hydroxydiclofenac (5-OHD) was 

not formed, but traces of several other unidentified byproducts were detected. Control 

reactions without AaeAPO or with heat-inactivated enzyme gave no conversion of diclofenac. 

 

 

 
When the AaeAPO-catalyzed oxidation of diclofenac was conducted with H2

18O2 in place of 

H2O2, the principal [M-H]− ion of the resulting 4’-OHD shifted from an m/z of 310 to an m/z 

of 312 (Figure 35, right). Experiments using H2
18O gave no detectable 18O incorporation, as 

expected because phenolic oxygens are not readily exchangeable with water under our 

reaction conditions. An additional experiment with natural abundance H2O2 in an N2-purged 

reaction mixture showed that 4’-hydroxydiclofenac production was not inhibited by depletion 

of O2, and therefore O2 did not contribute significantly as an electron acceptor. These results 

show that the new phenolic oxygens in 4’-OHD originated from H2O2. 

Figure 35 HPLC elution profile (left) of products formed by AaeAPO during the conversion of 
diclofenac to 4’-hydroxydiclofenac. Control without enzyme (I). Complete reaction (II). 
Insets show UV/visible absorption spectra the reactants. Mass spectra (right) showing 
molecular ions of 4’-hydroxydiclofenac obtained from the oxidation of diclofenac with 
AaeAPO in the presence of natural abundance H2O2 (top) or H2

18O2 (bottom) 
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3.3.2.3 Acetanilide  

Acetanilide, a precursor of paracetamol was selectively para-hydroxylated to give the major 

reaction product paracetamol (acetaminophen, N-(4-hydroxyphenyl)acetamide) and 3-

hydroxyacetaminophen (Figure 36, left). The reaction proceeded rapidly and regioselectively, 

converting about 80% of the acetanilide to paracetamol (Figure 36, rigth). The formation of 

byproducts was insignificant: 3-hydroxyacetaminophen occurred only in trace quantities. 

 

 
 

 
When AaeAPO-catalyzed oxidation of acetanilide was conducted with H2

18O2 in place of 

H2O2, mass spectral analysis of the resulting paracetamol showed that the principal [M-H]− 

ion had shifted from the natural abundance m/z of 150 to m/z 152 and for 3-

hydroxyacetaminophen from m/z of 166 to m/z 170.  

Figure 36 HPLC elution profile (left) of products formed by AaeAPO during the conversion of 
acetanilide to paracetamol and 3-hydroxyacetaminophen. Control without enzyme (I). 
Complete reaction (II). Time course of AaeAPO-catalyzed hydroxylation of acetanilide to 
paracetamol (right).  
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3.4 Benzylic oxygenation  

AaeAPO hydroxylated toluene and 4-nitrotoluene to give the corresponding benzyl alcohols, 

benzaldehydes and benzoic acids. The reactions proceeded rapidly with total conversions of 

93% for toluene and 12% for 4-nitrotoluene (Figure 38). The low extent of 4-nitrotoluene 

oxidation is attributable to inhibition of the enzyme by the substrate, which has also been 

observed during P450-catalyzed oxidations of nitroaromatics (Sternson and Gammans 1975, 

Kuropteva and Kudriavstev 1997). The initial product of toluene oxidation was benzyl 

alcohol, which then declined with concomitant production of benzaldehyde, which in turn 

declined with concomitant production of benzoic acid. When benzyl alcohol was used instead 

of toluene as the starting substrate, the products were benzaldehyde and benzoic acid, whereas 

with benzaldehyde as the starting material, only benzoic acid was formed. 

 

Figure 37 Mass spectra showing molecular ions of paracetamol (A and B) and 3-
hydroxyacetaminophen (C and D) obtained from the oxidation of acetanilide with AaeAPO
in the presence of natural abundance H2O2 (top) or H2

18O2 (bottom).   
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In reactions with 4-nitrotoluene as the starting substrate, the reaction sequence was not as 

apparent (Figure 38), but other experiments with 4-nitrobenzyl alcohol or 4-

nitrobenzaldehyde as starting substrates showed the same precursor-product relationships as 

in the experiments with toluene.  

An 18O-labeling study established that H2O2 supplied the oxygen incorporated during 

AaeAPO-catalyzed oxidation of the two toluenes (Figure 39). When the reaction was 

conducted with toluene and H2
18O2, mass spectral analysis of the resulting benzyl alcohol 

showed that its principal ion had shifted from the natural abundance m/z of 108 to m/z 110. 

Similarly, the reaction with 4-nitrotoluene and H2
18O2 yielded 4-nitrobenzyl alcohol in which 

the principal ion had shifted from m/z 153 to m/z 155. It was also observed that incorporation 

of 18O from H2
18O2 occurred in the benzaldehyde and benzoic acid formed from toluene in 

these experiments. To clarify this finding, we performed labeling experiments using each of 

the intermediate products as AaeAPO substrates, and thus showed that 18O was incorporated 

from H2
18O2 at each oxidation step. With benzyl alcohol as the substrate, some of the resulting 

benzaldehyde shifted from its natural abundance m/z of 106 (100%) to m/z 108 (22%), which 

indicates 18% incorporation of 18O from H2
18O2. The m/z values for the benzoic acid formed 

in this experiment also shifted, in this case from m/z 121 to m/z 123 (100%) and m/z 125 

(9.5%). 

Figure 38 Time course of AaeAPO-catalyzed hydroxylation of toluene (◊, left) and 4-nitrotoluene (◊, 
right) to the corresponding benzyl alcohols (□), benzaldehydes (Δ) and benzoic acids (Ο). 
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When benzaldehyde was used as the substrate instead, the resulting benzoic acid shifted 

quantitatively from its natural abundance m/z of 121 to m/z 123 (Figure 40). 

The same trend was apparent with 4-nitro-substituted substrates. In reactions started from 4-

nitrobenzyl alcohol, some of the resulting 4-nitrobenzaldehyde shifted from the natural 

abundance m/z of 151 (100%) to m/z 153 (15.5%), thus indicating 13% incorporation of 18O 

from H2
18O2. The m/z values for the 4-nitrobenzoic acid formed in this experiment also 

shifted, in this case from m/z 166 to m/z 168 (100%) and m/z 170 (9.5%). The shift from the 

natural abundance m/z of 166 to m/z 168 was quantitative for 4-nitrobenzoic acid when 4-

nitrobenzaldehyde was used instead as the starting substrate (Figure 40). 

 

 

 

Figure 39 Reaction scheme showing the yields of 18O-incorporation into reaction products during 
AaeAPO-catalyzed oxidation of toluene and 4-nitrotoluene in the presence of H2

18O2. 
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. 

3.5 Further oxidation reactions 

A substrate screening of AaeAPO-catalyzed oxygenating activity was performed. The results 

showed that AaeAPO is able to oxidize diverse substrates, yielding intermediates that 

subsequently undergo specific autocatalytic reactions. 

3.5.1 Phenol oxidation 

Figure 41 illustrates the HPLC elution profiles of the AaeAPO-catalyzed oxidation of phenol. 

After treatment with AaeAPO in the presence of ascorbic acid, two major metabolites 

appeared and one of them was identified as 1,4-hydroquinone. In the absence of ascorbic acid, 

phenol was completely oxidized to give 1,4-benzoquinone, biphenyl-4,4'-diol and 

polymerization products. The products 1,2-benzoquinone and catechol were detected as side 

products.  

Figure 40 Incorporation of 18O from H2
18O2 into the carboxyl group of benzoic acid after oxidation of 

benzaldehyde (middle) and benzyl alcohol (bottom) by AaeAPO. MS of the product 
obtained with natural abundance H2O2 (top). 
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3.5.2 Dehalogenation  

Figure 42 illustrates the HPLC elution profile of the AaeAPO-catalyzed oxidation of benzyl 

chloride. After treatment with AaeAPO, one major metabolite appeared and was identified as 

benzaldehyde.  

 

 

Figure 41 HPLC elution profiles of products formed by AaeAPO during the conversion of phenol.
Control without enzyme (I). Complete reaction with ascorbic acid (II). Completed reaction 
(III). 

Figure 42 HPLC elution profile (left) of products formed by AaeAPO during the conversion of benzyl 
chloride. Control without enzyme (I). Complete reaction (II). A fresh solution of benzyl 
chloride was prepared prior to each experiment since benzyl chloride hydrolyzes to form 
benzyl alcohol and hydrochloric acid. (Beste and Hammett 1940) 
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The formation of benzaldehyde shows the ability of AaeAPO to catalyze dehalogenations. 

The results showed that the reaction proceeded rapidly and regioselectively, giving 

benzaldehyde as the initial reaction product (Figure 42, left), and that 52% conversion of 

benzyl chloride occurred under these conditions (Figure 30, right). When 4-nitrobenzyl 

chloride was incubated with AaeAPO two major reaction products appeared and were 

identified as their 4-nitrobenzaldehyde (initial reaction product) and 4-nitrobenzoic acid. 

Aldehydes released from qualitative reactions of AaeAPO, 2,2-dichlorodiethylether and H2O2 

could be detected as their 2,4-dinitrophenylhydrazones (Figure 43). Several metabolites 

appeared and were proposed as 2-hydroxyacetaldehyde, glyoxal, (2-

chloroethoxy)acetaldehyde and chloroacetaldehyde. While the formation of 

chloroacetaldehyde and glyoxal shows again the ether-cleaving activity of AaeAPO, the 

formation of (2-chloroethoxy)acetaldehyde and glyoxal shows the ability of AaeAPO to 

catalyze dechlorination reactions. 

 

 

Figure 43 Mass spectra showing molecular ions of products obtained from the oxidation of 2,2-
dichlorodiethylether with AaeAPO in the presence DNPH. 
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3.5.3 N-dealkylation 

Figure 44 illustrates the HPLC elution profiles for the AaeAPO-catalyzed oxidation of N-

methylaniline. After treatment with AaeAPO, several metabolites appeared and were 

identified as aniline (yield ≈ 50%), 4-(methylamino)phenol (yield < 23%), 2-aminophenol 

(yield ≈ 1%) and 4-aminophenol (yield ≈ 10%) . 

  

 
While the formation of 4-aminophenols shows again the hydroxylation activity of AaeAPO, 

the formation of aniline shows the ability of AaeAPO to catalyze N-dealkylation. When the 

reaction was conducted without ascorbic acid, reaction mixtures became dark- colored with 

formation of insoluble reaction products. Some of the mass spectra indicated that the amino 

group becomes hydroxylated. 

3.5.4 Halogenation 

AaeAPO catalyzed the hydrogen peroxide-dependent halogenation of anisole in the presence 

of chloride or bromide in a pH range from 2 to 5. The major reaction products were identified 

as 2- and 4-bromoanisole in the presence of bromide and 2- and 4- chloroanisol when chloride 

was added to the reaction mixtures.  

 

 

Figure 44 HPLC elution profile of AaeAPO-catalyzed conversion of N-methylaniline. I: Control 
without AaeAPO, II: completed reaction in the presence of ascorbic acid. 
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Enzyme Halogen Anisole left 2-Br-anisole 4-Br-anisole 2-Cl-anisole 4-Cl-anisole 
  µM 

- 498 - - - - 
Br- 0 19 520 - - AaeAPO 
Cl- 327 - - 24 37 
- 497 - - - - 

Br- 57 24 558 - - CfuCPO 
Cl- 366 - - 90 144 

 

The results are summarized in Table 12 and are compared with those obtained with CfuCPO. 

It is evident that AaeAPO exhibits a strong brominating and a weak chlorinating activity 

towards anisole. CfuCPO, by contrast, was able to catalyze both reactions to give relatively 

high yields of the halogenated anisoles. 

Table 12 The halogenation activity of AaeAPO compared to CfuCPO
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4. Discussion 

4.1 Reaction mechanisms of AaeAPO-catalyzed reactions  

4.1.1 General mechanistic aspects 

The results provide an experimental base for formulating a general mechanism of AaeAPO-

catalysis. Activities of AaeAPO, which results from this general mechanism, will be discussed 

separately. 

4.1.1.1 AaeAPO shares spectrophotometric features with heme-thiolate proteins 

The nature of the axial ligand of a heme protein has an essential effect on the balance between 

low spin and high spin-configuration of the heme iron. For example a strong axial heme 

ligand causes a relatively large split of the d-orbitals of the heme iron leading to low spin 

configuration (Segall 1997). This behavior is apparent, when reduced carbon monoxide 

complexes of proteins with a histidine ligand (hemoglobin, horseradish peroxidase) and 

proteins with a cysteine ligand (P450s, CfuCPO) are compared. The axial ligand field strength 

of cysteine is lower compared to that of histidine and as a result the 

 

Ligand AaeAPO CfuCPO P450cam1 HrP2 

 (nm) 
Resting 418 399 417 402 
Reduced (dithionite) 407 408 408 439 
CO (Fe2+) 445 445 446 423 
NO 430 437 430 419 
CN-/ CN- (Fe2+) 438/443 439/454 439/n.d. 423/432 
N3

- 428 432 427 416 
1-Phenylimidazole 424 424 424 402 
Hydroxylamine 420 421 n.d. 402 
F- (418) 420 (417) 404 

 

carbon monoxide complex of P450 shows a shift in the Soret absorbtion band to higher 

wavelength (450 nm) as compared to hemoglobin (420 nm) (Segall 1997). When the positions 

of the stationary Soret bands of different ferric (FeIII) and ferrous (FeII) ligand complexes are 

Table 13 Ligand complexes of different heme proteins. Soret-bands of AaeAPO are almost identical 
to the respective bands of CfuCPO and P450s. 1(Dunford 1999) 2(Lewis 2001) 
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compared with those of common heme proteins (CfuCPO, P450cam from Pseudomonas 

putida and HrP), it is evident that the Soret positions of AaeAPO, CfuCPO and P450cam 

display a high correspondence of complexes for all ligands tested but differ considerably from 

that of HrP. For example, P450s, CfuCPO, and AaeAPO exhibits an absorption maximum at 

445 nm for its CO-coordinated state, indicating cysteine as the proximal ligand of the heme 

iron (Table 13). However, some differences of the Soret wavelength for CfuCPO and 

AaeAPO are found in the resting state. AaeAPO also shows difference binding type spectra 

typical of P450s. For example, camphor gives a binding type I spectrum, whereas cyanide 

gives a binding type II spectrum for both AaeAPO and P450s (Lewis 2001). In general, these 

results suggest that the electron environment of AaeAPO resemble that of heme thiolate 

proteins such as P450s. 

4.1.1.2 The substrate range of AaeAPO resembles that of heme-thiolate proteins  

H2O2-dependent AaeAPO-catalyzed reactions exhibit two major activities: (a) a strong 

monooxygenation activity, which yields oxygenated reaction products and (b) a peroxidase 

activity, which may yield radicals that form halogenated or polymerized products (Figure 45).  

 

 

 
The peroxygenase activity of AaeAPO is related to the P450 peroxide “shunt” pathway, as 

both enzymes are able to catalyze the incorporation of an H2O2-derived oxygen into an 

Figure 45 Suggested reactions catalyzed by AaeAPO.
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aromatic or aliphatic C-H bond or into a heteroatom (Isin and Guengerich 2007). CfuCPO has 

also been shown to catalyze the monooxygenation of many substrates but aromatic rings are 

not susceptible to oxygen transfer by CfuCPO (Ullrich and Hofrichter 2007). The peroxidase 

activity of AaeAPO is related to that found for heme peroxidases such as CfuCPO, LiPs and 

MnPs, as these enzymes are able to catalyze the oxidation of halogens, phenols and ABTS 

(Ullrich et al. 2004). However, one key functional difference between AaeAPO and 

peroxidases is that AaeAPO has not been observed to directly abstract electrons from aromatic 

rings to form aryl cation radicals as observed for peroxidases such as LiPs (Ullrich and 

Hofrichter 2007). 

4.1.1.3 Reactions exhibit an equimolar stoichiometry  

The results presented here demonstrate that there exists a 1:1 stoichiometry in the oxidation of 

the aliphatic ether moiety in tetrahydrofuran (and in methyl 3,4-dimethoxybenzyl ether) by 

H2O2. This stoichiometry of the reaction is consistent with the following overall process: 

 

RCH2OCH2R + H2O2 → RHCO + HOCH2R + H2O 

 

in which RCHO corresponds to the aldehyde and HOCH2R to the alcohol. For instance, 

analyses of tetrahydrofuran cleavage in the presence of limiting oxidant showed that one 

equivalent of 4-hydroxybutanal was formed per equivalent of H2O2 supplied, thus identifying 

the catalyzed reaction as a two-electron oxidation that splits this ether into one aldehyde and 

one alcohol. This reaction is independent of the presence of dioxygen, as shown by the results 

presented above. 

4.1.1.4 Bisubstrate kinetics suggest a ping-pong mechanism 

Kinetic investigations of the AaeAPO-catalyzed reactions presented some experimental 

problems. First, oxidation kinetics done at a saturating H2O2 concentration will underestimate 

the intrinsic kinetic values of the reaction, because under these conditions AaeAPO exhibits 

an interfering catalase activity (Ullrich 2008). To address this problem, bisubstrate reactions 

require an experimental design that varies the concentrations of both substrates (Segel 1994). 

Furthermore, the cumbersome nature of an HPLC assay for the calculation of enzyme kinetics 

makes initial rate determinations difficult. A spectrophotometric assay will generally give 

results for the kinetic constants with superior accuracy. Both of the above approaches were 

adopted for the kinetics study reported here. Data from bisubstrate kinetics under steady state 
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conditions, which were spectrophotometrically recorded for the AaeAPO-catalyzed reactions 

at varying concentrations of 3,4-dimethoxybenzyl ether and H2O2, give parallel lines for 

double reciprocal plots of the data. This result is consistent with a ping-pong enzymatic 

mechanism (Segel 1994). In such a mechanism, the substrate [A] binds to the resting enzyme 

[E] to form the enzyme substrate complex [EA]. Substrate [A] converts the enzyme to the 

enzyme substrate complex [E*A]. Only after the substrate [A] is released in the form of [P] 

can the second substrate [B] bind to the transformed enzyme [E*], yielding the enzyme 

substrate complex [E*B], and then react with the modified enzyme, finally regenerating the 

unmodified enzyme to [E] with release of the product [Q] (Bisswanger 2000). 

 

 

 
It is interesting to compare the kinetic values obtained in this work with those obtained for 

functionally similar enzymes. Some P450s that cleave aromatic ethers such as 

alkoxycoumarins bind them more strongly with Km values around 1-10 µM, but have much 

lower kcat values in the vicinity of 0.1 s−1 or less. Similarly, fungal LiPs have relatively low 

Km values around 10-100 µM for H2O2 and for simple aromatic substrates such as 3,4-

dimethoxybenzyl alcohol, but also exhibit low kcat values on the order of 1-10 s−1 (Tien et al. 

1986). As a result, the kcat/Km ratios for methyl 3,4-dimethoxybenzyl ether cleavage by the 

AaeAPO are somewhat higher than those PceLiP-catalyzed benzyl alcohol oxidations and are 

much higher than those for P450-catalyzed ether oxidations. Data obtained in this work for 

tetrahydrofuran and 1,4-dimethoxybenzene at a saturating H2O2 concentration and using an 

HPLC assay gave slightly different results, but are still in the same range as the results found 

for methyl 3,4-dimethoxybenzyl ether (Table 14). 

4.1.1.5 Oxygen introduced into reaction product derives from the peroxide 

The results presented here and elsewhere show that reactions catalyzed by AaeAPO 

proceeded with incorporation of one oxygen atom from H2O2 into the oxidized product. The 

oxygens found in the phenolic moiety or in the epoxy group after the hydroxylation of 

aromatics (Kinne et al. 2008, Aranda et al. 2008, Kinne et al. 2009b, Kluge et al. 2009), in the 

Figure 46 Reaction sequence of a ping-pong mechanism. The enzyme constantly bounces back and 
forth between the two states of the enzyme E and E* (like a ping-pong ball). 
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sulfoxide after sulfoxygenation of dibenzothiophene (Aranda et al. 2008), in the N-oxides 

after N-oxygenation of pyridine derivatives (Ullrich et al. 2008) and in the carbonyls after the 

cleavage of ethers (Kinne et al. 2009a) by AaeAPO all derive from H2O2.  

The incorporation of an H2O2-derived oxygen into the substrate to yield an oxygenated 

product, was earlier shown to occur in reactions catalyzed by P450 via the peroxide “shunt” 

pathway (Otey et al. 2006), by CfuCPO (Manoj and Hager 2008), by plant seed 

peroxygenases (Partridge and Murphy 2009) and in side reactions of other enzymes such as 

tyrosinase (Valero et al. 2003) and engineered myoglobin (Pfister et al. 2005). In summary, 

H2O2 serves as both oxygen donor and electron acceptor for AaeAPO. One substrate molecule 

is monooxygenated while one H2O2 molecule is reduced to water.  

4.1.1.6 High deuterium isotope effect points to a hydrogen abstraction 

The determination of an deuterium isotope effect has proven to be a powerful tool to help 

understand the intricacies of carbon hydrogen bond cleavage and characterize the mechanism 

of specific chemical reactions (Nelson and Trager 2003). An isotopic substitution will 

significantly modify the reaction rate if the isotopic replacement is in a chemical bond that is 

broken or formed in the rate limiting step of a chemical or enzymatic reaction (Miller et al. 

2009). This change is termed a primary isotope effect (Kohen and Limbach 2006). In general, 

the accuracy of a deuterium isotope effect determination for an enzymatic reaction depends on 

how different the intrinsic isotope effect (kH/kD) is from the observed isotope effect 

[(kH/kD)obs]. The experimental design for estimating the deuterium isotope effect has a large 

influence on this difference. Whereas experiments of an intermolecular design depend on 

complex determinations of rate constants, an experimental setup of the symmetrical 

intramolecular design is comparatively simpler, because it is kinetically independent of all 

steps besides the one that breaks the C-H bond. In practice, a substrate is chosen that is 

susceptible to enzymatic attack at either of two symmetrically equivalent sites. One site 

contains a more strongly carbon-bound deuterium and the other retains its natural complement 

of hydrogen, which is less strongly bound. The [(kH/kD)obs] can be determined from the ratio 

of product resulting from attack at the protio site versus product resulting from attack at the 

deuterio site, for example in mass spectrometric experiments. The determination of 

intramolecular [(kH/kD)obs] will produce values that are closer to the intrinsic values than 

those obtained from an intermolecular experiment (Nelson and Trager 2003). The most 

extensive use of intramolecular isotope effects has been in the study of the P450s, and much 
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of the formal description of the theory has been developed with regard to these enzymes 

(Kohen and Limbach 2006). 

 

 

   
The results of this work showed that AaeAPO exhibited a high intramolecular (kH/kD)obs near 

12. In general, oxidations that occur via hydrogen abstraction exhibit intrinsic deuterium 

isotope values of this magnitude, whereas those that occur via insertion of an oxygen atom 

show much lower isotope effects with (kH/kD)obs ≈ 2 (Yun et al. 2003, Nelson and Trager 

2003). For example, an intramolecular (kH/kD)obs of 11 for benzylic hydroxylation was 

measured from the relative amounts of hydrogen and deuterium in 1-HO-1,3-diphenylpropane 

formed from 1,1-D2-1,3-diphenylpropane by rat microsomes (Hjelmeland et al. 1976, Ortiz de 

Montellano 2009). Accordingly, the results reported here for ether cleavage by AaeAPO 

suggest a mechanism involving abstraction of an ether beta-hydrogen followed by oxygen 

rebound (Figure 47) 

4.1.1.7 AaeAPO active site fails to accommodate polymers 

Some apparent size limitations were noted on ether substrates for AaeAPO. For example, 

although the enzyme cleave 4-nitroanisole to 4-nitrophenol, it failed to cleave a 4-nitrophenyl-

terminated PEG. The gel permeation chromatography method that was used to assess 

cleavage provides a sensitive assay for random endo-scissions of the polyoxyethylene ethers 

in PEG (Kerem et al. 1999), yet no shift was observed in the molecular weight distribution of 

the polymer after enzymatic treatment. Moreover, no evidence was found for exo-cleavage of 

the model compound, which would have released 4-nitrophenol if it had occurred. Although 

AaeAPO was able to cleave diethylene glycol, it was unable to oxide hexaethylene glycol 

(n=6) or larger PEG polymers (n=45). The first X-ray structures of AaeAPO confirm this 

Figure 47 The (kH/kD)obs value for the AaeAPO-catalyzed O-demethylation of 1,4-dimethoxybenzene
determined from an experiment of intramolecular design. The ratio of the rate constants kH
and kD can be directly calculated from the signal intensities of the corresponding ions in the
mass spectra. 
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picture, showing that the distance between AaeAPO-bound octaethylene glycol (n=8) and the 

heme iron is around 12 Å (1.2 nm), whereas that for the AaeAPO substrate 4-

(hydroxymethyl)imidazole is only 2.25 Å (0.23 nm) (Figure 48). The hypothetical critical 

distance of the substrate from the heme iron for the suggested AaeAPO-catalyzed hydrogen 

abstraction can be estimated by considering the length of the Fe-O-H species assumed to 

results after the initial hydrogen abstraction. This length is roughly the sum of the naturally 

occurring H-O bond length (1.0 Å in liquid water at 25° C and for intermolecular bonds up to 

1.8 Å) and that of the Fe-O bond (around 1.7 Å) (Harris and Loew 1998). This sum gives a 

critical distance from the substrate to the iron of approx 2.5-3.5 Å, which suggests hat no 

bond in octaethylene glycol can approach closely enough to interact directly with the oxygen 

of the oxy-ferryl iron species of AaeAPO. 

 

  

 
In addition, the work reported here shows that, the peroxygenase released n-propanal 

efficiently from 1,4-di-n-propoxybenzene, but released only traces of n-butanal from 1,4-di-n-

butoxybenzene. Moreover, AaeAPO apparently did not cleave lignin ether structures in a 

synthetic dehydrogenative polymer of coniferyl alcohol nor in milled wood, as shown by 

negative results of analyses for aldehydes or other soluble fragments. These results, like those 

obtained with polyethylene glycols, suggest that the active site of AaeAPO is unlikely to 

accommodate macromolecular ethers such as lignin or polyoxyethylene surfactants.  

4.1.2 The hypothetical reaction cycle 

In summary the data show that AaeAPO exhibits: (a) spectrophotometric features of classic 

heme-thiolate enzymes, (b) a wide catalytic spectrum encompassing that of P450s and 

Figure 48 Octaethylene glycol molecule (left) and 4-(hydroxymethyl)imidazole (right) bound to the 
resting AaeAPO at pH 7.0 (Piontek 2009).  
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peroxidases, (c) a stoichiometry identifying the catalyzed monooxygenations as two-electron 

oxidations, (e) reaction kinetics that are consistent with a ping-pong reaction mechanism, (f) 

incorporation of H2O2-derived oxygen into the oxidized product, and (g) a high intramolecular 

deuterium isotope effect suggesting abstraction of a substrate hydrogen by the enzyme. These 

results support a mechanism similar to that envisaged for the peroxygenase activity of P450 

(Ortiz de Montellano and de Voss 2005, Guengerich 2001).  

 

 

 
Figure 49 illustrates the hypothetical reaction cycle of AaeAPO-catalyzed monooxygenation, 

based on results obtained from the mechanistic studies. The cycle is suggested to start with an 

AaeAPO low-spin six-coordinate iron in the ferric state [(1), heme(FeIII-H2O)] with water as 

the sixth ligand. According to the suggested ping pong mechanism, the co-substrate H2O2 

binds to the resting enzyme to form an extremely short-lived iron-(III)-peroxide complex [(2), 

heme(FeIII-O-OH)] (“Compound 0” of P450), that is heterolytically cleaved between the 

oxygen atoms by a two-electron transfer from the heme. As a result, a water molecule is 

expelled and an oxy-ferryl radical cation complex of the heme [(3), heme(FeIV=O)•+] 

(“Compound I” of peroxidases) emerges and can react with the substrate. The oxygen transfer 

proceeds within this short-lived enzyme-substrate complex [(4), R-H…heme(FeIV=O)•+], 

which then dissociates with release of the oxygenated reaction product and the native enzyme. 

Figure 49 The hypothetical catalytic cycle of AaeAPO. (1) native (hydro)ferric enzyme, (2) iron(III)-
peroxide complex (Compound 0), (3) Compound I and (4) putative transition state of a 
protonated Compound I/II-substrate complex. 
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As described for P450s, a large observed deuterium isotope effect for AaeAPO-catalyzed 

ether cleavage suggests that a ferryl-oxygen abstracts a hydrogen from the substrate, 

producing a carbon-centered substrate radical, which in turn recombines with the equivalent 

of a hydroxyl radical (oxygen rebound) coordinated to the iron atom (Ortiz de Montellano 

2009). The existence of an oxygen rebound is supported by the result that the oxygen that is 

incorporated into R-H originated from the peroxide. The rates of oxygen rebound for the 

[FeIV-OH + •RC] radical pair have been found to occur in the range of 1010-1011 s−1 for 

bacterial P450s with average radical lifetimes of in the range 0.3-250 picoseconds (Rachel et 

al. 2006). These radicals are trapped at the active site of P450, undergoing rapid oxygen 

rebound from the oxy-ferryl moiety in a typical “cage reaction”. In contrast to P450s, heme 

peroxidases have been shown to form highly reactive oxy-ferryl intermediates (compound I). 

However, the initial reaction products of peroxidases are predominantly radicals, which do 

not undergo oxygen rebound but rather exit the active site (“escape” reaction). The reason for 

the different reactivity of P450s and peroxidases is the different protein environment of their 

heme centers. Unlike P450s, the majority of heme peroxidases bear a neutral histidine residue 

as the fifth ligand. Histidine is thus a weak electron donating ligand in contrast to the anionic 

thiolate-ligand of P450s. This property of peroxidases may cause a shift of radical character 

from the iron bound oxygen to the ligand-π-system during electrophilic attack by the enzyme, 

resulting in electron abstraction followed by oxygen release as water rather than oxygen 

rebound (Kaim 2005). This proposal is supported by the fact that peroxidases like CfuCPO, 

bearing a cysteine as the fifth ligand, are able to catalyze the “cage” type of reaction yielding 

oxygenated products (Manoj and Hager 2008). From this point of view, the results observed 

indicate that the AaeAPO mechanism resembles the peroxide “shunt” mechanism of P450. 

However, AaeAPO also exhibits peroxidase activity, which yields coupling and 

polymerization products from phenolic substrates. These results suggest that AaeAPO is able 

to perform peroxidases like oxidations. In such a reaction mechanism, it is likely that a 

hydrogen atom is abstracted as described above but the oxygen is not rebounded to the 

substrate. Instead one radical is released from (4) with formation of an oxy-ferryl heme 

[heme(FeIV=O)] (intermediate (4), Figure 8), which than reacts with the second substrate 

molecule, resulting in the formation of a second radical and the native ferric enzyme. The 

H2O2-derived oxygen at the active site is then released as water (i.e., two one-electron 

oxidation steps occur).  

The question arises as to whether AaeAPO is able to catalyze single one-electron oxidations 

that occur remotely from the oxy-ferryl iron, as suggested to occur on binding sites at the 
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surface of peroxidases such as LiPs (Camarero et al. 1999), VPs (Tinoco et al. 2007) and 

CfuCPO (Kuhnel et al. 2006, Manoj and Hager 2008). One indication that supports such a 

long-range one-electron transfer reaction is the observation that AaeAPO oxidizes ABTS to 

the ABTS•+ radical with an unusually low Km (37 µM) under acidic conditions (Ullrich et al. 

2004). Moreover, AaeAPO-catalyzed halogenation reactions may proceed via a long-range 

mediated oxidation as suggested for CfuCPO, which has a binding site on its surface for 

halides (Manoj and Hager 2008). On the other hand, AaeAPO failed to oxidize polymers such 

as DHP, which has been suggested to bind to the surface of LiP and become oxidized via one-

electron transfer (Johjima et al. 1999).  

 

 

 
It is thus likely that AaeAPO substrates have to enter the binding pocket to become oxidized 

at the heme site (Figure 50).Recent results have shown that the AaeAPO pocket is able to 

accommodate relatively large non-polymeric molecules such as pyrene and perylene (Aranda 

et al. 2009) as well as pisatin. Furthermore, AaeAPO catalyzes oxidation of compounds with 

high redox potentials such as anisole, toluene and nitrobenzene, which are not oxidized by 

heme peroxidases. These results suggest a direct interaction of the substrate with the active 

site of AaeAPO. From this point of view, it is likely that the channel to the heme pocket is 

open to solvent. Preliminary results show that hydrophobic phenylalanine residues are located 

in this channel, which may explain the high affinity of AaeAPO for inactivated aromatic and 

aliphatic structures.  

Figure 50 A simplified model of the active site (heme) of a peroxygenase compared to a classic 
peroxidase. 
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The proposed working models for AaeAPO obviously need refinement, especially regarding 

the structure of the oxidized heme. Attempts to observe oxidized intermediates after titration 

of the enzyme with H2O2 have been unsuccessful because they result in bleaching of the 

heme, and further progress will probably require a rapid transient-state kinetics approach. The 

sequence of substrate binding to the peroxygenase also remains to be established, and 

additional experiments with molecular clock and deuterated substrates would be advisable to 

check whether they yield data consistent with the radical rebound mechanism that has been 

proposed (Ortiz de Montellano and de Voss 2005).  

4.1.3 AaeAPO an enzyme of a new sub-sub class? 

The recent discovery and purification of diverse peroxygenases from fungi such as 

Coprinellus radians, Coprinopsis verticillata, other Agrocybe sp. and recently Marasmius sp. 

suggests that a novel superfamily of fungal oxidoreductases (EC 1.x.x.x) has been found 

(Pecyna et al. 2009, Anh et al. 2007). As discussed previously, peroxygenases in general have 

no EC-number yet, but could form a separate sub-subclass (EC 1.11.2.x in addition to 

peroxidases 1.11.1.x, see Figure 7) within the group of enzymes that use peroxides as electron 

acceptors (EC 1.11.x.x). However, the highest sequence and structural similarities found so 

far for AaeAPO are with CfuCPO (Figure 7).  

4.1.4 Ether cleavage 

The data presented here show that AaeAPO cleaved diverse aromatic and aliphatic ethers. 

According to the reaction mechanism described above, the enzyme heme is oxidized by H2O2 

to give an iron species that carries one of the peroxide oxygens and can be depicted as 

heme(FeIV=O)•+ (Figure 49). This intermediate then abstracts a hydrogen located beta to the 

ether oxygen of I, which is followed by rebound of an •OH equivalent to produce a hemiacetal 

(or hemiketal when R2 and R3 is not hydrogen) I’ that subsequently hydrolyzes into the 

corresponding alcohols II and carbonyls III (Figure 51). 

 

 

 
Figure 51 Reaction mechanism of AaeAPO-catalyzed cleavage of ethers.
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In reactions with an alkyl aryl ether (R1=aromatic ring), a phenol is released instead of an 

alcohol (R1=aliphatic carbon). For instance, 4-nitrophenol and formaldehyde were formed 

during the AaeAPO-catalyzed ether cleavage of 4-nitroanisole whereas diethylether yielded 

ethanol and acetaldehyde. When R2 and R3 are alkyl or aryl residues, a ketone is released 

from a hemiketal intermediate instead of an aldehyde (R2 or R3= H). For example, diisopropyl 

ether yielded acetone. In the case of a methyl benzyl ether (R1=CH3, R2=H, R3=aromatic 

ring), methanol and benzyl aldehyde were released. Cyclic ethers split into hydroxy aldehydes 

e.g., tetrahydrofuran yields 4-hydroxybutanal. At least one C-H bond located beta to the ether 

oxygen appears necessary for the reaction to proceed. For example in this work diphenyl 

ethers, were not cleaved by AaeAPO. Thus AaeAPO-catalyzed ether cleavage may be 

considered a consequence of carbon hydroxylation.   

Substrate pH Km (µM) kcat (s
−1) kcat / Km (s

−1 M−1) 
Thioanisole 6.8 25 444 1.8 × 107 
ABTS 4.5 37 283 7.7 × 106 
3,4-Dimethoxybenzyl methyl ether 467 351 7.5 × 105 
Naphthalene 320 166 5.2 × 105 
2,6-Dimethoxyphenol 298 108 3.6 × 105 
H2O2  1313 367 2.8 × 105 
Benzyl alcohol 1001 269 2.7 × 105 
3,4-Dimethoxybenzene 987 214 2.2 × 105 
Veratryl alcohol 2637 85 3.6 × 104 
Tetrahydrofuran 3226 96 2.9 × 104 
Pyridine 

7 
 

69 0.21 3.0 × 103 
 
The comparison of kinetic constants in Table 14 illustrates that the values for ether cleavage 

are in the same range as those for other AaeAPO-catalyzed oxidations. This is an indication 

that ethers may be among the physiological substrates of AaeAPO. 

The biochemical cleavage of an ether bond is a remarkable feature. The high dissociation 

energies of ether bonds (360 kJ mol−1) and the relatively low yields of assimilable carbon 

energy generated may underlie the scarcity of ether cleaving enzymes found in organisms 

(Kim and Engesser 2004, White et al. 1996). The majority of ether cleavage systems 

apparently convert the substrate to a hemiacetal structure, which then fragments to break the 

erstwhile ether linkage, probably via a nonenzymatic step. However, no enzyme has been 

Table 14 Kinetic constants of ether cleavage by AaeAPO in comparison to data obtained for other 
AaeAPO substrates (Ullrich et al. 2004, Kluge et al. 2007, Ullrich et al. 2008). 
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specifically observed to catalyze hemiacetal production, presumably because these structures 

are so unstable (White et al. 1996).  

Intracellular heme containing monooxygenases such as P450s have been reported to O-

dealkylate alkyl-aryl ethers by various mechanisms (Urano 1996). For anisole one possibility 

is a hydrogen abstraction to give a phenoxylmethyl radical followed by rapid oxygen rebound 

that results in hydroxylation of the alpha-carbon followed by breakdown to a phenol and the 

corresponding aldehyde (Brodie et al. 1958, Foster et al. 1974, Miwa et al. 1984, Harada et al. 

1984). Alternatively, ipso-substitution on the aromatic ring could yield a 

hydroxycyclohexadienyl radical, which is then converted into a phenol via a phenoxyl radical 

with release of methanol (Urano 1996). 

The results presented here clearly show that ring carbons of alkyl aryl ethers are not attacked 

by AaeAPO, as this reaction would release the alkyl group as an alcohol rather than aldehyde, 

and would also result in incorporation of labeled oxygen from the peroxide into the phenolic 

product. The results presented here agree with those found for many P450s, which oxidized 

only those ethers that contain a vicinal C-H bond (Ortiz de Montellano and de Voss 2005).  

Additional enzymes have been shown to cleave ethers. Recently it was suggested that a 

flavin-containing monooxygenase from Rhodococcus is involved in the cleavage of bis(1-

chloro-2-propyl) ether (Moreno Horn et al. 2003). Moreover, dioxygenases, which are able to 

introduce both oxygens from O2 into an ether substrate, have been shown to be involved in 

the cleavage of diaryl ethers (Schmidt et al. 1992). Peroxidases such as LiP and SbP have also 

been shown to catalyze the cleavage of alkyl aryl ethers nonselectively by abstracting 

electrons from aromatic rings, which than undergo spontaneous scission reactions (Mester et 

al. 2001, Tien 1987, Joshi and Gold 1996, McEldoon et al. 1995, Kirk et al. 1986). However, 

these reactions are restricted by the redox potential of the peroxidases. For instance, HrP has 

been shown to be unable to oxidize 1,4-dimethoxybenzene (Kersten et al. 1990). Even the 

synthetic heme-based minicatalyst microperoxidase 8 (MP8), which catalyzes peroxidase-type 

one-electron oxidations (Wang et al. 1991, Boersma et al. 2000) as well as P450-type of 

oxygen transfer reactions, is unable to oxidize alkyl aryl ethers with ionization potentials 

higher than 8.4 eV (Veeger 2002, Osman et al. 1996). 

There are additional oxidative and reductive pathways described for ether cleavage. Besides 

oxygenation, the list includes dehydrogenation, hydroxyl group transfers, hydrolysis, 

reduction, nucleophilic substitution and dismutation. For some of these reactions, there is 

compelling evidence to support proposed pathways (e.g., monooxygenations in aerobic 

degradation of methyl aryl ethers, hydroxyl shifts mechanisms in the anaerobic degradation of 
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PEGs, and methyl transfers to tetrahydrofolate in anaerobic degradation of methyl aryl 

ethers), whereas for other pathways the evidence is more fragmentary (White et al. 1996). 

However, only three ether cleavage enzymes are accredited with a formal listing, namely 

isochorismate pyruvate lyase (EC 3.3.2.1), carboxymethyloxysuccinate lyase (EC 4.2.99.12) 

and 4-methoxybenzoate monooxygenase (EC 1.14.99.15). 

4.1.4.1 Cleavage of arylglycerol beta-aryl ethers  

AaeAPO cleaved non-phenolic arylglycerol beta-aryl ethers (beta-O-4-linked ethers) via 

selective demethylation of the para-methoxyl group to give the corresponding aldehydes and 

phenolic dimers, which then underwent further oxidations by AaeAPO, yielding monomers 

and polymerization products. Figure 52 illustrates the hypothetical reaction mechanism. 

AaeAPO dealkylates the non-phenolic arylglycerol beta-aryl ether I, which yields the 

phenolic lignin model compound II after release of the corresponding aldehyde by the 

reaction mechanism described above. In the absence of a radical scavenger, compound II 

underwent further oxidation to yield a monomeric hydroxylated species VIII and polymeric 

reaction products. This reaction is inhibited in the presence of a radical scavenger such as 

ascorbic acid, which suggests that AaeAPO oxidizes the phenolic moiety to form a phenoxyl 

radical that can be reduced by ascorbic acid. 

 As described above, compound III, bearing an additional methoxyl moiety, served as a 

suitable substrate to establish the reaction mechanism for AaeAPO-catalyzed oxidation of the 

phenolic arylglycerol beta-aryl ethers. Once a phenolic moiety is formed in the arylglycerol 

beta-aryl ether, AaeAPO abstracts an electron from the phenolic lignin model III, yielding the 

cyclohexadienyl radical III’, which is subsequently oxidized by AaeAPO to give the 

corresponding cation III’’. 
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Loss of an alpha-proton then results in the formation of an uncharged quinone methide 

intermediate that rearranges to yield the phenolic ketone IV. In support of this mechanism, no 

labelled oxygen from molecular oxygen or H2
18O was incorporated into IV. Moreover, ketone 

formation from the non-phenolic substrate I was not observed, which indicates that AaeAPO 

needs a phenolic moiety to cleave the arylglycerol beta-aryl ether. Alternatively, the cation 

intermediate III’’ may be attacked by water, yielding a hydroxy-substituted cyclohexadienone 

Figure 52 Hypothetical reaction mechanism of AaeAPO-catalyzed cleavage of arylglycerol beta-aryl 
ethers adapted and modifies according to (Tuor et al. 1992).  
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intermediate, which undergoes alkyl-phenyl bond cleavage to yield the hydroquinone V and 

the phenoxyl-substituted propanal VI. Under these reaction conditions, AaeAPO oxidizes the 

hydroquinone V to the benzoquinone VII and the phenoxyl-substituted propanal VI to a 

phenoxyl-substituted propionic acid VIII. As predicted by this pathway, one atom of 18O 

from H2
18O was incorporated into the benzoquinone VII. No incorporation of 18O from H2

18O 

was observed during the formation of the phenoxyl-substituted propionic acid VIII, but 

incorporation from H2
18O2 occurred. The released radical intermediates III’ and 

benzoquinone finally undergo further oxidation to form polymeric reaction products. The 

oxidation mechanism of II is identical to that proposed previously for the C-alpha oxidation 

of phenolic arylglycerol beta-aryl ethers by MnP (Tuor et al. 1992). The structure of reaction 

product VIII is proposed on the basis of the data, which show that, a) oxygen incorporation 

was detected when the oxygen originated from H2
18O2, b) this compound accumulated and 

was not polymerized, c) this reaction product was released when either compound I and III 

were incubated, which indicates a common reaction mechanism.  

4.1.5 Aromatic hydroxylation  

The results show that AaeAPO catalyzes the selective hydroxylation of aromatic rings to give 

phenolic reaction products. This is consistent with previous results, showing that AaeAPO 

catalyze the hydroxylation of aromatic rings via formation of epoxide intermediates (Kluge et 

al. 2009). 

 

 

 
Therefore, it is likely that the hydroxylation of aromatics I involves the oxidation of one of 

the π-bonds, rather that the direct insertion of the oxygen into one of the aromatic C-H bonds. 

However, this has not been investigated, as the unstable epoxide intermediates I’ expected 

from the oxidation readily undergo heterolytic cleavage of one of the epoxide C-O bonds. 

This cleavage is followed by a migration of a hydride from the carbon retaining the oxygen in 

the adjacent carbocation to give a ketone intermediate [“NIH-shift” shown for P450 (Ortiz de 

Figure 53 Hypothetical reaction mechanism of AaeAPO-catalyzed hydroxylation of aromatics. 
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Montellano and de Voss 2005)]. Tautomerisation of this ketone yields a phenolic product II. 

The results of AaeAPO-catalyzed hydroxylation are consistent with this mechanism and the 

one described above, showing that one oxygen found in the hydroxylated aromatic product 

originates from H2
18O2 and therefore from the suggested oxy-ferryl species [Figure 49, 

heme(FeIV=O)•+].  

A remarkable feature of AaeAPO is the hydroxylation of inactivated nitrobenzene, which 

yielded 4-nitrophenol. The in vivo para-hydroxylation of nitrobenzene via P450s has been 

found in animal liver microsomes (Wisniewska-Knypl et al. 1975) and in a plant subcellular 

microsomal fraction (Varazashvili et al. 2001). Nitrobenzene is a poor substrate for AaeAPO, 

yielding reaction products only after hours of incubation with syringe pump-mediated H2O2 

supply. The slow reaction is perhaps a consequence of the high activation energy of this 

substrate. The energy needed for the oxidation of the para-position of nitrobenzene with a 

porphyrin model was calculated on the basis of density functional theory, yielding values of 

81 kJ mol−1 in the doublet and of 78 kJ mol−1 in the quartet spin state (Rydberg et al. 2008). 

This assumption is consistent with the results obtained for AaeAPO-catalyzed hydroxylation 

of diclofenac, which is a better substrate for AaeAPO as its activation energy for the 4-

position has been calculated to be lower (around 70 kJ mol−1). Once 4-nitrophenol is formed, 

AaeAPO can hydroxylate it further to give 4-nitrocatechol. This reaction has been used as an 

in vitro marker of human P450s (Tassaneeyakul et al. 1993).   

4.1.6 Benzylic oxygenation 

The results reported here show that AaeAPO converted toluenes to benzoic acids via 

sequential two-electron oxidations, and that the intermediate benzyl alcohols and 

benzaldehydes were released from the enzyme active site. In addition to side chain oxidation, 

AaeAPO also catalyzes the oxygenation of the aromatic ring of toluene (but not of 4-

nitrotoluene) leading to mixtures of para- and ortho-cresol and their oxidation products 

(Ullrich and Hofrichter 2005). As reported earlier, these reactions may compete with side 

chain oxidation. In the present study, where the focus has been on side chain oxidations, ring 

oxygenation of toluene was ignored. 

The 18O-labeling experiments establish that the oxygens introduced during oxidations 

originate from H2O2. The results support a mechanism similar to that envisaged for the 

peroxygenase activity of P450s (Ortiz de Montellano and de Voss 2005, Guengerich 2001) 

and for ether cleavage catalyzed by AaeAPO (Kinne et al. 2009a). In such a mechanism the 

enzyme heme is oxidized by H2O2 to give a ferryl oxygen intermediate (Hanzlik and Ling 
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1990) that carries one of the peroxide oxygens and can be depicted formally as (FeO)3+. The 

latter (very probably a Compound I-type intermediate) abstracts a hydrogen from the benzylic 

carbon of to give an enzyme-bound benzylic radical, after which rebound of an •OH 

equivalent occurs to introduce a new hydroxyl group on the same carbon (Figure 54). 

 

 
 

 

According to this model, oxygen incorporation from H2O2 should be quantitative when a 

toluene (I) is oxidized to a benzyl alcohol (II), and the data agree with this picture. When the 

substrate is a benzyl alcohol instead, the enzyme-bound intermediate will be an α-

hydroxybenzylic radical and the resulting initial product will be a gem-diol (II’) in 

equilibrium with the benzaldehyde (III). Consequently, some of the oxygens introduced from 

H2O2 will be lost via non-stereospecific exchange with water, again in accord with the results. 

Finally, when the substrate is a benzaldehyde, the enzyme-bound intermediate will be an α-

oxobenzylic radical, oxygen incorporation from H2O2 will be quantitative, and the resulting 

product will be the benzoic acid (IV), once more in agreement with the data. In theory, this 

last oxidation could proceed via the gem-triol, but this intermediate can be ruled out because it 

was found that no exchange of incorporated oxygen occurred during the oxidation of either 

benzaldehyde (Figure 40). 

The sequential AaeAPO-catalyzed oxidations that have been described here are also typical of 

P450s (Scheller et al. 1998, Teramoto et al. 2004), but the latter enzymes are intracellular, 

whereas AaeAPO is secreted into the surrounding environment by the fungal hyphae. Some 

other oxidative fungal enzymes such as LiPs and CfuCPO also have an extracellular location, 

but are more limited than AaeAPO in the variety of compounds they can utilize as electron 

donors. For example, PceLiP does not oxidize benzyl alcohol, and neither of these 

peroxidases is able to oxidize 4-nitrotoluene (Scheller et al. 1998, Miller et al. 1995, Russ et 

al. 2002).  

Figure 54 Reaction sequence of the benzylic oxidation catalyzed by AaeAPO.
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4.1.7 Further oxidation reaction catalyzed by AaeAPO 

The discussion in this chapter is based on preliminary results obtained from observations of 

side reactions that occurred during mechanistic investigations. Mechanistic studies were not 

performed and therefore reaction mechanisms proposed are tentative. 

4.1.7.1 Oxidation of the phenolic moiety 

The results illustrate that AaeAPO forms quinones, coupling- and polymerization products 

during the oxidation of the phenolic moieties. Para-benzoquinone, biphenyl-4,4'-diol and 

polymers are the major reaction products of the AaeAPO-catalyzed oxidation of phenol. 

When a radical scavenger is added to the reaction mixture, hydroquinone is the dominant 

reaction product.  

 

 

 
The quinones add oxygen from H2O as shown above (compound VII see Figure 52). 
Moreover, para-benzoquinone is released during the AaeAPO-catalyzed reaction of para-

aryloxy phenols such as 4-methoxyphenol or 4-ethoxyphenol in the absence of ascorbic acid. 

The AaeAPO-catalyzed oxidation of 4-nitrophenol yields 4-nitrocatechol as the initial 

Figure 55 Hypothetical reaction mechanisms for the phenol oxidation catalyzed by AaeAPO. The 
released radicals may migrate from the active site (or from the surface LRET-amino acid)
and undergo autocatalytic reactions such as polymerization. 
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reaction product, which indicates that the nitro-moiety is not eliminated by AaeAPO. By 

contrast, liver microsome-located P450s have been shown to catalyze the elimination of the 

nitro group of 4-nitrophenol (Ortiz de Montellano and de Voss 2005).  

In summary the results indicate that AaeAPO is involved in the formation of phenoxyl 

radicals II and quinones VI from phenols I (Figure 55), which can be reduced by ascorbic 

acid (Valero et al. 2003), but otherwise undergo coupling and polymerization reactions. These 

reaction products are also present in reactions catalyzed by peroxidases (Kaim 2005, Dunford 

1999). According to this mechanism the oxy-ferryl species of AaeAPO, formally depicted as 

[Fe=O]3+, abstracts an hydrogen from the phenol to give [Fe---OH]3+ and a free phenoxyl 

radical with formation of water. This reaction mechanism (double one-electron oxidation) is 

similar to that envisaged for heme peroxidases (Figure 8) with the difference that the oxygen 

rebound is not restricted for AaeAPO. Results from difference binding spectra of AaeAPO 

(Figure 14) indicate a direct binding of phenol at the active site of AaeAPO, indicating an 

oxy-ferryl mediated hydrogen abstraction of the phenolic group. 

An electron may also be abstracted via LRET by an amino acid (for example the sandwiched 

phe233) located on the surface of AaeAPO (single one-electron oxidation). The two 

mesomeric forms of the phenoxyl radical can disproportionate to a cyclodienone cation III 

and a phenol molecule I. A hydroxyl from water than adds to III to form the unstable 

hydroxycyclodienone IV, which then rearrange to hydroquinone V or para-benzoquinone VI. 

AaeAPO may than oxidize hydroquinone V by the same mechanism to give para-

benzoquinone VI. The stoichiometry of such an AaeAPO-catalyzed radical generation is:  

 
2 Ring-OH + H2O2 → 2 Ring-O• +2 H2O 

 
On the other hand, the formation of dihydroxy aromatics and para- benzoquinone rather than 

the formation of coupling products has been proposed for P450-catalyzed reactions of phenols 

(Ortiz de Montellano and de Voss 2005). In this mechanism, direct aromatic hydroxylation of 

the carbon para-located to the phenolic group would yield hydroquinone V. The question 

arises if this hydroxylation proceeds via epoxide formation as discussed before, or if the 

phenoxy radical undergo oxygen rebound (Figure 55). This last mechanism, named ipso-

recombination, has been proposed for P450s, which form para-benzoquinone VI from para-

substituted phenols with release of the para substituent (Ortiz de Montellano and de Voss 

2005). Previous results suggest that AaeAPO does not oxygenate the ring carbon via an ipso-

substitution mechanism. Moreover, it has been recently shown that P450s are involved in 
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oxidative coupling of phenols (Grobe et al. 2009) and this reaction was suggested to occur via 

single electron transfer to give phenoxyl radicals or via formation of an arene-oxide 

intermediate (Woithe et al. 2007). However, the detailed reaction mechanism remains 

obscure.  

The major question that comes up is if the phenoxy radical is completely released from the 

active site of AaeAPO (“escape” reaction also suggested to proceed via long range electron 

transfer) or if oxygen rebound can occur (“cage” reaction). Recent preliminary results indicate 

that AaeAPO may act with both activities on phenols. A hybrid behavior of enzymes bearing 

activities of both peroxidases and P450s is a common phenomenon. For example, synthetic 

catalysts like MP8, have been shown to catalyze the oxidation of phenols with formation of 

both coupling products and hydroquinone (Osman et al. 1996). More research is needed to 

understand how AaeAPO acts on the phenols. 

4.1.7.2 Dehalogenation 

AaeAPO catalyze the H2O2-depended dechlorination of aliphatic and benzylic substrates with 

formation of aldehydes. This catalytic property of AaeAPO is similar to the oxidative 

heteroatom elimination catalyzed by P450s (Ortiz de Montellano 2005). For example, it has 

been suggested that the in vitro cleavage and dehalogenation of 2,2-dichlorodiethyl ether and 

2,2′-dichlorodiisopropyl ether is catalyzed by monooxygenases from Xanthobacter sp. and 

Rhodococcus sp. (McClay et al. 2007, Moreno Horn et al. 2003). The dehalogenation of 

aliphatic compounds by P450s might proceed by one or two electron reductive pathways or as 

proposed for the conversion of dihalomethanes by oxidative hydroxylation followed by the 

loss of a halogen as a result of nonenzymatic collapse of an unstable intermediate (Rietjens et 

al. 1997, Ulrik et al. 2003, Sono 1996). The results indicate that the alpha-carbon next to the 

chloro moiety is oxygenated by AaeAPO to give a gem chloro alcohol, which then rapidly 

hydrolyzes to give HCl and the corresponding aldehyde (two-electron oxidation).  

4.1.7.3 N-Dealkylation 

AaeAPO catalyzes the N-dealkylation of N-methylaniline to aniline. This catalytic property of 

AaeAPO is similar to reactions of P450s and peroxidases (Dunford 1999, Ortiz de Montellano 

and de Voss 2005). The demethylation of N,N-dimethylaniline was described for CfuCPO 

(Kedderis 1980), for HrP which demethylated various N-substituted aromatic amines (Van der 

Zee et al. 1989) and for MP8 (Boersma et al. 2000). In general, two reaction mechanisms are 

proposed for P450 catalyzed N-dealkylations (Li et al. 2009): one is a formal hydroxylation of 
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a C-H bond on the carbon adjacent to the heteroatom (Shaik et al. 2005), the other is a one-

electron oxidation of the heteroatom itself (Ortiz de Montellano and De Voss 2002). AaeAPO 

was shown to catalyze heteroatom oxygenations such as N-oxygenation reactions (Ullrich et 

al. 2008) and heteroatom dealkylations such as O-demethylation reactions (Kinne et al. 

2009a). The precise mechanism behind AaeAPO-catalyzed N-dealkylations remains unclear, 

but future investigation should focus on the detection of aldehydes. The results further 

indicate that AaeAPO is able to hydroxylate the amino group of anisole to give N-

hydroxyanisole. The N-hydroxylation reaction has been shown for P450 (Sono 1996).  

4.1.7.4 Halogenation 

AaeAPO brominates and chlorinates anisol. AaeAPO as well as CraAPO and CveAPO have 

been shown previously to brominate phenol at acidic pH, but could not efficiently chlorinate it 

(only traces of 2-chlorophenol were found) (Ullrich et al. 2004, Anh et al. 2007). To date, 

more than 3800 natural halogenated metabolites have been isolated from plants, fungi, 

lichens, bacteria, insects, some higher animals and even humans (Gribble 2003). Besides the 

production of organohalogens by marine organisms (algae, worms, bacteria), terrestrial fungi 

(mushrooms) in particular have been identified as potent producers of halogenated 

compounds (van Pée and Zehner 2003). Halogenation reactions can also be catalyzed by other 

peroxidases such as CfuCPO, LiP and MnP (Farhangrazi et al. 1992, Hager et al. 1966, Sheng 

and Gold 1997), and thus the halogenating activites of these enzymes including AaeAPO may 

be connected with the presence of various organohalogens ubiquitously found among 

basidiomycetous fungi (Verhagen et al. 1996). The haloperoxidase activity of AaeAPO 

resembles that of CraAPO and CveAPO, which also preferred bromide to chloride during 

phenol halogenation (Anh et al. 2007). This finding differs from the behavior of classical 

CfuCPO and vanadium haloperoxidases. However, as for all haloperoxidases, AaeAPO-

catalyzed halogenations lack substrate specificity and regioselectivity, presumably because 

free hypohalous acids are the proximal halogenating species (Littlechild 1999, Manoj and 

Hager 2008). 

4.2 Physiological role of AaeAPO 

AaeAPO-catalyzed reactions have the following impacts on the reactants: (a) increase in the 

hydrophilicity and reactivity via oxygen introduction or hydrogen abstraction with consequent 

formation of unstable intermediates, (b) fragmentation caused by dealkylation and heteroatom 

release, (c) polymerization initiated by phenol oxidation and (d) reduction of hydroperoxides 
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to alcohols and, in the case of hydrogen peroxide, to water. AaeAPO- catalyzed 

hydroxylations/ dealkylations or heteroatom oxygenations (peroxygenase activity) are 

followed by the oxidation of the generated phenolic moieties (peroxidase activity) to give free 

radicals, and thence coupling products (Figure 56).  

 

 

 
As such, AaeAPO not only combines diverse enzyme activities (etherase, peroxidase, 

peroxygenase, haloperoxidase) but also acts as a substrate donator for phenol-oxidizing 

enzymes such as laccases and peroxidases.   

These observations indicate a likely role for AaeAPO and other fungal peroxygenases in the 

extracellular breakdown of natural and anthropogenic low molecular weight compounds 

(Figure 57). Some of these reactions are probably fortuitous, as are many of the extracellular 

xenobiotic oxidations carried out by lignocellulolytic fungi (Tortella et al. 2005). In other 

cases, the catalyzed reactions may have a physiological function, for example in the 

biodegradation of low molecular lignin fragments, or in the detoxification of fungicidal 

compounds derived from plants or microorganisms via hydroxylation or demethylation and 

subsequent polymerization (Delserone et al. 1999). Moreover, the results indicate that 

AaeAPO may be involved in humification due to its H2O2-dependent polymerization activity. 

It is pertinent that many lignocellulolytic fungi produce the necessary extracellular H2O2 

(Leonowicz et al. 1999), and that this oxidant is also deposited in soils from rainwater (Kok 

1980). 

A. aegerita, the black poplar mushroom colonize the surface and subsurface root tissue of 

dead or enfeebled hardwoods (e.g., poplar, willow, and aspen stumps) as well as the 

surrounding litter and soil, and grows on mulch-like materials (Stamets and Chilton 1983). 

This environment includes dead trunks, stumps, leaves, needles, twigs, branches, roots, and 

the remains of insects, bacteria, fungi, and animals. From a chemical point of view, this 

habitat consists primarily of lignocellulose and older humic fractions derived from it, but also 

contains a wide variety of other chemical components. 

Figure 56 Suggested physiological reaction sequence of AaeAPO during bioactivation of aromatics



DISCUSSION 

 94 

 
 

 
These components include: (1) cellulose, (2) hemicellulose, (3) lignin, (4) water-soluble 

sugars, amino acids, and aliphatic acids, (5) ether- and alcohol-soluble constituents, including 

fats, oils, waxes, resins, and many pigments, and (6) proteins (Satchell 1976). Moreover, 

additional natural products are included within this heterogenic matrix, e.g., lignans, phenolic 

ethers, flavonoids, isoflavones, terpenes, alkaloids, tannins, polyacetylenes and oxylipins. 

Hence, AaeAPO-catalyzed reactions may be bio-physiochemically related to these special 

habitats, which are characterized by high amounts of aromatic compounds and lignocellulose 

fragments that can be utilized as carbon source. These specific features of the habitats, in 

particular the high pH that does not enable “classic ligninolytic peroxidases” (LiPs, MnPs, 

Figure 57 The physiological role of AaeAPO in the cleavage of ethers. 
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VPs) to be active (they work only between pH 2 and 5), support the assumption that the 

production of extracellular peroxygenases is characteristic for agaric and alkaliphilic fungi. In 

this context, it is interesting to note that A. aegerita does not produce these “classic 

ligninolytic peroxidases”. It may be that in more alkaline environments, fungi have developed 

alternative strategies to transform aromatic and heterocylic substances, for example by using 

extracellular peroxygenases. 

Provision of nutrients or compounds protective against microbial attack is a major function of 

fungal extracellular enzymes. Aromatic compounds are widely distributed in the habitats of 

the litter decaying fungi that secrete AaeAPO and other peroxygenases (Ullrich and 

Hofrichter 2007). In particular, polymeric lignin is the major repository of aromatic structures 

derived from higher plants. However, the results presented here show that AaeAPO is not able 

to attack polymeric structures, which indicates that the enzyme may not have an essential role 

in lignin depolymerization. This observation is consistent with in vivo experiments that 

indicate Agrocybe aegerita is only a moderate delignifier of wood (Isikhuemhen et al. 2009). 

The depolymerization of lignin, an oxidative process predominantly achieved by aerobic 

fungi (Hammel and Cullen 2008), leads to the production of numerous oligomeric and 

monomeric aromatics including alkyl aryl ethers that are potential substrates for fungal ether 

cleavage systems (White et al. 1996). Moreover the lot of secondary plant metabolites 

carrying the methoxyl moiety. As described in the preceding sections, dealkylation of alkyl 

aryl ethers may occur via peroxygenases in agaric fungi. It is likely that the evolution of these 

catalytic activities for scission of alkyl aryl ethers was a response to exposure to these natural 

compounds throughout evolutionary time. 

Another important physiological function, which corresponds to the P450-like substrate 

spectrum of AaeAPO, is detoxification. The oxidation of fungicidal compounds outside the 

cell is an efficient mechanism fungi use to modify their environment. Natural fungicidal 

substances derive from plants (phytoalexins or phytoanticipins) or microorganisms 

(mycotoxins and antibiotics). An initial pathway of oxidative toxin biotransformation is the 

introduction of a hydroxyl group via hydroxylation or demethylation, which are typical phase 

I reactions (Sonia et al. 2009). The biochemical goal of this reaction is to increase the polarity 

of the organic toxicant, thereby enabling its further metabolism (Varazashvili et al. 2001). The 

methoxyl moiety is widely distributed in biochemicals synthesized by plants and 

microorganisms (Hamill et al. 1957), where it protects a phenolic or alcoholic moiety and thus 

modulates metabolic activity. 
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For example, pisatin from pea plants is an extensively investigated methoxylated phytoalexin 

that interacts with parasitic fungi (Bednarek and Osbourn 2009). It is now known that 

selective demethylation of the methoxyl moiety catalyzed by a fungal P450 system decreases 

the toxicity of pisatin and thus enables the fungi to grow on the plant leaves (George and 

VanEtten 2001). As shown here, AaeAPO very rapidly demethylates pisatin via its “etherase” 

activity. Although A. aegerita is not a phytoparasitic fungus, it has been shown that AaeAPO-

like genes are found in plant pathogenic fungi such as corn smut (Ustilago maydis) and 

heterokonts such as potato blight (Phytophthera infastans) (Pecyna et al. 2009), which may 

indicate an early evolutionary origin for APOs. Another important fact is that A. aegerita 

exhibits its highest AaeAPO activity, when grown on soybean medium (Ullrich et al. 2004). It 

is known that soybean, a leguminous plant, produces phytoalexins such as glyceollin, which 

are structurally related to pisatin (Zimmermann et al. 2009) and may act as enzyme inducers. 

The natural environment of A. aegerita consists of a heterogeneous matrix containing 

different species of toxic phytoalexins and antibiotic phytoanticipins (preinfectional 

compounds), which come into contact with the mycelium. For this reason, plant litter shows 

fungicidal activity (Harrison 1971, Vane et al. 2006). Diverse fungicidal compounds have 

been isolated from sapwood, bark and leaves of woody plants and identified over the past 

decades (Gottstein and Gross 1992). For instance, the pinosylvin 3,5-dimethoxystilbene, 

which is found in leaves of spruce and pines (Celimene et al. 1999), is rapidly oxidized by 

AaeAPO. Methoxylated phytoalexins such as derivatives of the antifungal lignan 

syringaresinol and its dimethyl ether, as well as the sapwood alkaloid glaucine, are found in 

yellow poplar (Liriodendron tulipifera) (Kemp and Burden 1986). Poplar (Populus spec) 

wood contains diverse secondary plant metabolites, predominantly phenols, phenolic 

glycosides, flavonoids and tannins, which also show fungicidal activities.  

Microorganisms also produce diverse fungicidal compounds to survive competition with other 

organisms. For example, it has been shown that soradins, a natural class of antifungal agents 

that inhibit fungal protein biosynthesis, are produced by Podospora pleiospora in its natural 

substrate (dung) at sufficiently high doses to produce antibiosis against yeasts but not against 

filamentous fungi (Weber et al. 2005, Vicente et al. 2009). AaeAPO may have a role in the 

detoxification of such fungicidal compounds.  

AaeAPO is also able to cleave 2-chloro-1,4-dimethoxybenzene, which is produced de novo by 

several white rot fungi, where it is utilized as an catalytic cofactor for oxidation reactions 

catalyzed by LiPs (Teunissen and Field 1998). Therefore, AaeAPO may additionally be 
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involved in the degradation of redox mediators used by other fungal extracellular enzymes or 

redox systems.  

4.3 Potential applications of AaeAPO-catalyzed reactions 

AaeAPO exhibits several potentially useful properties: (a) it exhibits high specific activity, 

catalytic efficiency and (in some cases) selectivity; (b) it catalyzes reactions using 

inexpensive peroxides and does not require expensive cofactors; (c) it acts independently of 

other enzymes and proteins such as flavin reductases or ferredoxins; (d) it is extracellular and 

thus may be cost-effective to produce in bulk; and (e) it is stable and water-soluble due to its 

high degree of glycosylation. Thus, possibilities for synthetic applications of AaeAPO are 

found in the following scientific areas: (a) regio- and enantioselective oxidations of bulk and 

fine chemicals, (b) production of reference metabolites and reactive intermediates of drugs, 

(c) development of AaeAPO-functionalized biosensors, (d) bioremediation and (e) 

biomimetics. 

Selective hydroxylations of aromatic compounds are among the most challenging reactions in 

synthetic chemistry and have gained steadily increasing attention during recent years because 

hydroxylated aromatic precursors are used extensively in the chemical and pharmaceutical 

industries (Ullrich and Hofrichter 2007). For example, (R)-2-(4-hydroxyphenoxy)propionic 

acid [(R)-HPOPA] is an intermediate in the synthesis of enantiomerically pure 

aryloxyphenoxypropionic acid-type herbicides, in which the crop protection activity normally 

derives from one enantiomer (Siegel et al. 1998). Although chemical syntheses of (R)-

HPOPA from hydroquinone and an (S)-2-halopropionic acid are available, problems with the 

removal of byproducts prevent the cost-effective use of this approach (Cleugh 2007, Cooper 

et al. 1992). Instead, (R)-HPOPA is currently prepared from (R)-2-phenoxypropionic [(R)-

POPA] with whole cells of the ascomycete Beauveria bassiana, which produces 

regioselective oxidases that catalyze this hydroxylation (Dingler et al. 1996, Ladner et al. 

1999). The company BASF currently produces about 1000 tons per year of (R)-HPOPA in 

this way (Schmid et al. 2002, Liese et al. 2006, van Beilen et al. 2003). The required 

feedstock, (R)-POPA, is synthesized from (S)-2-chloropropionic acid isobutylester and phenol 

(Liese et al. 2006).  

A similar but simpler approach is to use purified microbial enzymes to hydroxylate POPA in 

one step. One possibility would be to use intracellular monooxygenases such as P450s 

(Urlacher and Eiben 2006, van Beilen et al. 2003), but current applications of these enzymes 
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are restricted to whole-cell biotransformations because P450s are not highly stable and their 

intracellular location makes them hard to produce in quantity (Urlacher et al. 2004, Eiben et 

al. 2006). Alternatively, modified hemoproteins such as MPs (MP8) might be used to catalyze 

aromatic hydroxylations by a P450-like oxygen transfer mechanism, but more research is 

needed to improve the performance of these catalysts (Veeger 2002, Caputi et al. 2005, Prieto 

et al. 2006, Dorovska-Taran et al. 1998, Dallacosta et al. 2003, Osman et al. 1996). 

The results reported here show that AaeAPO, besides its high regioselectivity of 

hydroxylation (98%), exhibits significant enantioselectivity towards phenoxypropionic acid, 

with the industrially more important R-enantiomer reacting more rapidly. This property of 

AaeAPO could be exploited to improve the yield of R-HPOPA from the POPA feedstock 

currently used, which although enriched in R-POPA is not enantiopure (Liese et al. 2006, 

Schmid and Urlacher 2007). Further work is needed to ascertain how AaeAPO recognizes the 

asymmetric center in POPA, but it is surmised that a structural interaction between the 

enzyme’s active site and the carboxylic acid moiety of the substrate may be important.  

Another example of a promising application for AaeAPO is its activity towards drugs with 

consequent formation of naturally occurring drug metabolites. For example, 5-

hydroxypropranolol, a human metabolite of the beta-blocker propranolol (1-naphthalen-1-

yloxy-3-(propan-2-ylamino)propan-2-ol), is of pharmacological interest as it is frequently 

used in metabolic studies and has been demonstrated to be equipotent to propranolol as a 

beta-receptor antagonist (Greenslade and Newquist 1978). Another important human drug 

metabolite is 4’-hydroxydiclofenac (4’-OHD), a major metabolite of the anti-inflammatory 

drug diclofenac (2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid) in humans (Webster et 

al. 1998).  

Table 15 illustrates the AaeAPO-catalyzed reaction on propranolol relative to that of an 

engineered P450, which was optimized for the selective hydroxylation of propranolol (Kinne 

et al. 2009b).  

Enzyme in 

reaction (µM) 

Conversion of propranolol 

to 5-OHP (%) 

Reaction time 

(min) 

Products 

formed 

AaeAPO1 (0.6) 13.6 2 1 

CytP4502 (5.0) 0.5 180 4 
       1H2O2 concentration was 5 mM. 
       2H2O2 concentration was 1 mM. Data are for mutant D6H10 (Otey et al. 2006). 
       3Conversion of diclofenac to 4’-OHD under these reaction conditions was 30%. 

Table 15 Conversion of propranolol (5 mM) to 5-OHP by AaeAPO and P450.3
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The desired human drug metabolite 5-OHP is a highly valuable reaction product because its 

four-step chemical synthesis from 1,5-naphthalenediol shows low overall yields of less than 

5% and formation of byproducts (Oatis et al. 1981). AaeAPO appears to be the better choice 

as a biocatalyst because it is easier to produce, is more efficient, is more stable to H2O2, and in 

the case of propranolol exhibits higher regioselectivity.The failure of the reactions to proceed 

to completion was probably not a consequence of enzyme inactivation, because reactions 

conducted with more AaeAPO did not give significantly higher yields. It appears more likely 

that the phenolic products prevented further oxidation of the parent compounds because they 

also are AaeAPO substrates. Under the reaction conditions tested, these phenols probably 

consumed some of the H2O2 by undergoing continuous, competitive AaeAPO-catalyzed 

oxidation to product phenoxy radicals, which in turn were continuously re-reduced to phenols 

by the excess ascorbate that was included. This conclusion is supported by the observation 

that propranolol and phenoxypropionic acid were rapidly polymerized when the reactions 

were conducted in the absence of ascorbate. However, although AaeAPO regioselectively 

hydroxylate other precursors as well it has some limitations. For example, it was observed 

that, although AaeAPO efficiently hydroxylates acetanilide to paracetamol (yields up to 80%) 

it very poorly adds the second 3’-hydroxyl needed to produce the human drug metabolite 3’-

hydroxyacetaminophen. 

Another potential application is that AaeAPO catalyze the selective cleavage of diverse ethers 

with formation of phenols, alcohols, and aldehydes. The protection of a reactive hydroxyl 

moiety via alkylation is a frequently used method in synthetic chemistry and selective 

removal of the alkyl protecting groups is not always chemically straightforward. In these 

cases, AaeAPO might be utilized for the removal of an alkyl group, thus liberating the desired 

hydroxyl group.  

4.4 Key findings 

(1) The AaeAPO exhibited a UV-Vis-spectral behavior similar to that found for heme-

thiolate enzymes such as CfuCPO and P450s, but was clearly distinguishable from 

histidine-containing peroxidases such as heme HrP.  

 
(2) AaeAPO cleaved diverse aliphatic and aromatic ethers, including, environmentally 

significant compounds such as tetrahydrofuran and 1,4-dioxane, as well as, the 

phytoalexin pisatin and the pharmaceutical naproxen. 
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(3) The stoichiometry of AaeAPO-catalyzed tetrahydrofuran cleavage showed that the 

reaction was a two-electron oxidation that generated one aldehyde group and one 

alcohol group, yielding the ring-opened product 4-hydroxybutanal. 

 
(4) Steady-state bisubstrate kinetics of AaeAPO-catalyzed methyl 3,4-dimethoxybenzyl 

ether cleavage, which yielded 3,4-dimethoxybenzaldehyde, gave parallel double 

reciprocal plots suggestive of a ping-pong mechanism (Km(peroxide), 1.99 ± 0.25 mM; 

Km(ether), 1.43 ± 0.23 mM; kcat, 720 ± 87 s−1). 

 
(5) The AaeAPO-catalyzed cleavage of methyl 4-nitrobenzyl ether, hydroxylation of 

aromatics such as diclofenac and nitrophenol and the oxygenation of benzylic 

compounds resulted in incorporation of an H2
18O2-derived 18O into the reaction 

products, which identifies these reactions as oxygenation. 

 
(6) The demethylation of 1-methoxy-4-trideuteromethoxybenzene by AaeAPO showed 

an observed intramolecular deuterium isotope effect [(kH/kD)obs] of 11.9 ± 0.4, 

which points to an H-abstraction oxygen rebound mechanism. 

 
(7) AaeAPO catalyzed the selective demethylation of dimeric lignin model compounds 

and initiated their autocatalytic cleavage but also oxidized phenolic dimers with 

consequent polymerization.  

 
(8) AaeAPO catalyzed the regio- and enantioselective monohydroxylation of diverse 

aromatic compounds such as pharmaceuticals and herbicide precursors. Some of 

these reactions may be useful in the field of synthetic chemistry. 

  
(9) AaeAPO catalyzed an oxygenation cascade that converted toluene and 4-

nitrotoluene into benzoic acid derivatives via its peroxygenase activity. 

 

(10) AaeAPO oxidized phenols with formation of free phenoxy radicals, which 

underwent coupling and polymerization reactions. 

 

(11) AaeAPO catalyzed N-dealkylation of secondary amines such as N-methylaniline, as 

well as the dechlorination of some benzylic and aliphatic substrates. 
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(12) AaeAPO-catalyzed reactions may have a physiological function, for example in the 

biodegradation of low molecular lignin fragments, or in the detoxification of 

fungicidal compounds derived from plants or microorganisms via hydroxylation or 

demethylation and subsequent polymerization. 

  
The most important finding of this work is that AaeAPO is able to catalyze the cleavage 

of diverse ethers via a hydrogen abstraction and oxygen rebound mechanism. 

4.5 Outlook 

Future mechanistic investigations should focus on the oxidized intermediate states of 

AaeAPO. Further progress will probably require a rapid transient-state kinetics approach. The 

sequence of substrate binding to the peroxygenase also remains to be established, and 

additional experiments with molecular clock substrates would be advisable to check whether 

they yield data consistent with the radical rebound mechanism that has been proposed in this 

work. The peroxidase activity of AaeAPO should be investigated and the question answered 

as to whether there is a LRET or whether intermediates such as phenoxy radicals can be 

released from the active site.  

A shown by this work, the oxygenation activity of AaeAPO may be useful for diverse 

applications. The most interesting question, however, remains unanswered: What is the true 

physiological function of AaeAPO? 
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6 Appendix 

 

 

 

Appx. 1 GC-MS spectra of the suggested reaction product 3-chloro-4-methoxyphenol obtained from
cleavage of 2-chloro-1,4-dimethoxybenzene by AaeAPO. 

Appx. 2 HPLC elution profiles showing suggested products obtained from the reaction of AaeAPO 
with pisatin. Insets of respective product mass spectra and a HPLC elution profile of 
formaldehyde-2,4-dinitrophenylhydrazone are shown. 
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Appx. 3 HPLC elution profiles showing different reaction products obtained from the reaction of 
AaeAPO with 3,5-dimethoxystilbene. 

Appx. 4 HPLC elution profiles showing different 2,4-dinitrophenylhydrazones from the reaction of  

AaeAPO with diethylene glycol. 
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