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Abstract

A Markov chain is introduced to the major stepshef process of learning a subject matter by
a group of students in the classroom, in orderbt@io a mathematical representation of the
above process. A classroom experiment for learmiathematics is also presented illustrating
the applicability of our results in practice.

Introduction

There are very many theories and models developath psychologists and education
researchers for the description of the mechanidrieaming. Nowadays it is widely accepted
that any instance of learning involves the useladaaly existing knowledge. Voss (1987)
developed an argument that learning consists afessive problem — solving activities, in
which the input information is represented of érigtknowledge, with the solution occurring
when the input is appropriately interpreted.

The whole process involves the following steRepresentatiorof the stimulus input, which

is relied upon the individual's ability to use cents of his (her) memory to find information,
which will facilitate a solution developmentiterpretation of the input data, through which
the new knowledge is obtainedeneralization of the new knowledge to a variety of
situations, andategorizationof the generalized knowledge, so that the individnexomes
able to relate the new information to his (her) Wlealge structures known as schemata, or
scripts, or frames.

The process of learning a subject matter in the cksroom

In order to describe the process of learning aesilopatter in the classroom one must keep in
mind that, as it frequently happens, a learner n@ybe able to pass successfully through all
the steps of the learning process in the time abhil into the classroom. Therefore it is
convenient, for purely technical reasons, to inelirdthis case one more step in the sketch of
the process described in the previous sectiorstépeoffailure to reach categorization.

We are going to construct a ‘flow-diagram’ reprasenthe whole process. For this, let us
denote by § i=1,2,....,5, the steps of representation, inttgiion, generalization,
categorization, and failure to reach categorizatespectively. The starting state is always S
From Sthe learner proceeds te. Facing difficulties there he (she) may returisfto search
for more information that will facilitate the infaetation procedure. Then he (she) must go
back to $to continue the process. FromtBe learner is expected to proceed jousless if

he (she) is unable to interpret the input datanduthe learning process in the classroom. In
this case he (she) proceeds directly40a8d the process finishes there for him (her)nF&

the learner, if he (she) has difficulties during tfeneralization procedure, may return 10 S
for a better understanding of the subject. The(she) comes back tg,Svherefrom he (she)
proceeds either to,9r to Sand in both cases the process finishes there.

According to the above description the flow-diagraimthe process of learning a subject
matter in the classroom by a group of studentsasgthown in Figure 1.
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Figure 1: Flow-diagram of the learning process inle classroom
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The stochastic (Markov) model

Roughly speaking Warkov chainis a stochastic process that moves in a sequdmpieases
through a set of states and has “no memory”. Theama that the probability of entering a
certain state in a certain phase, although it tsnecessarily independent of previous phases,
depends at most on the state occupied in the preypbase. This is known as thtarkov
property.

When its set of states is a finite set, then walk@bout dinite Markov chain. For special
facts on such type of chains we refer freely to Keyn& Snell, (1976).

Here we are going to build a Markov chain model tleg mathematical description of the
process of learning a subject matter in the classrd~or this, assuming that the learning
process has the Markov property, we introduceitefiarkov chain having as states the five
steps of the learning process described in theiqus\wsection. The above assumption is a
simplification (not far away from the truth) madaethe real system in order to transfer from it
to the“assumed real system'This is a standard technique applied during tiathematical
modeling process of a real world problem, whichlbdes the formulation of the problem in a
form ready for mathematical treatment (Voskogld2Q2 section 1).

Denote by p the transition probability from state ® S, for i,j=1,2,3,4,5, then the matrix
A=[ pj] is said to be th&ansition matrix of the chain.

According to the flow-diagram of the learning prsgshown in Figure 1 we find that

S $ 8 S S

S[0 1 0 0 0]
S|Py 0 Py 0 Py
A=S510 p;p 0 py Pss
,/ O 0 0 1 O
S|0 0 0 0 1]

where we obviously have that;pp.stp.c=psotPastpPas=1
Further let us denote hy,@1,92,..... .. the successive phases of the above chainl also
denote by

P=[0:"p"p:"ps"ps"]
the row - matrix giving the probabilities('bfor the chain to be in each of the statgs S
j=1,2,3,4,5 in the phasg, i=1,2,.... , where we obviously have that

)
2P =1
e

The above row-matrix is called th@obability vectorof the chain at phase. From the
transition matrix A and the flow-diagram of Figutewe obtain the tree of correspondence
among the several phases of the chain and itssthtavn in Figure 2.
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Figure 2: Tree of correspondence among states andig@ses of the Markov chain

From the above tree becomes evident that[R 000 0], P=[0 1 00 0], and 2[p21 0 p3 0
p2s]. Further it is well known that

P..=PRA, i=0,1,2,.....
Therefore we find that
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P;=PA=[0 putpoaPs2 O R3Pss PosPsstPas] (1),
P=PA=....... , and so on.
Observe now that, when the chain reaches eithier Sfar S;, it is impossible to leave them,
because the learning process finishes there. ler atbrds $and g are absorbing states of
the chain. Further, from Figure 1 it becomes ewuidieat from every state it is possible to go
to an absorbing state (not necessarily in one stéqis we have aabsorbing Markov chain
Applying standard techniques from theory of abswylihains we bring the transition matrix
A to its canonical (or standard) formA* by listing the absorbing states first and thee
make a partition of A* as follows:

S S S S S

S| 1 O | O 0 0 |
S| 0 1 | O 0 0
A* = - - - i -
S| 0 O | O 1 0
S| 0 P | P O Py
S| Pa Ps | 0 py, O]
Symbolically we can write
Il | O
A=|- | —|,
R | Q

where Q is the transition matrix of the non absaglstates and R the transition matrix from
the non absorbing to the absorbing states.
Next we consider theindamental matrixN of the chain, which is given by
N = (|3_Q)—l — adj (l 3 Q) ’
D(l; -Q)
where tdenotes the 3X3 unitary matrix, agdi®) denotes the adjoin matrix gf@, and D(}-
Q) denotes the determinant efQ. A straightforward calculation gives that

1- P32 P23 1 P23
P21 1 P23
P21 P32 Psy 1-Py

1

N= =
1- P3P = Py

Finally we consider the 3X2 matrix
1 p23 p34 p25 + p23 p35
B=NR=1_ 0 Pos — o P23 P34 Pas * Pa23Pas
@- p21) Pas  P3Pos + Pss @- pzl)

We write symbolically B=[j, with i=1,2,3 and j=4,5. It is well known thenét § gives the
probability that, starting at state 8e process is absorbed at statdBus the probability for

a learner to pass successfully through all thestet the learning process in the classroom is
given by

p23 p34

(2).
1-PyPs — Py
The calculation of fy enables the teacher to check the efficiency o{hes) lectures. It also
could be used either as a measure of comparisthe @fficiencies of the lectures of different
teachers, or as a measure of the learning abildfesifferent groups of students. The
following classroom experiment for learning mathéosillustrates the applicability of our
model in practice.

=
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A classroom experiment for learning mathematics

The present experiment took place recently at thad@ate Technological Educational
Institute of Patras (Greece), when | was teaching group of 30 students of the School of
Technological Applications (i.e. to future engir@ethe use of the derivative for the
maximization and minimization of a function. Durinty 2 hours lecture | used the method of
rediscovery (Voskoglou, 1997). Thus, after a shoitoduction to the subject, | left my
students to work alone on their papers. | was ictipg their works, and from time to time |
was giving them some instructions, or hints. Afilee basic theoretical conclusions | gave
them some exercises to solve first, and at the §itegp some problems including applications
to constructions and economics.

During the experiment | found that 4 students wesepletely unable to understand the
subject. Also 10 students faced difficulties befonelerstanding the basic ideas (they looked
back to their notes of my previous lectures and&ked for help). Furthermore 5 students,
although it seemed that they understood the bhsaré¢tical ideas, were unable to apply them
in order to solve the given exercises and probldie.other 21 students solved the exercises,
but 8 of them faced difficulties before they carmmtigh. At the last step 10 students solved
the problems and 11 they didn’t (or solved a sipait of them). Interpreting these data with
respect to the flow-diagram of Figure 1 | was ledthe following conclusions, which are
represented in Figure 3.

Figure 3: Representation of the experiment’s data

e Initially the 30 students proceeded fromt& S, but 14 of them faced
difficulties to interpret the input data. Therefdhey returned to 8o search for more information that
will facilitate the interpretation procedure, whigoen they came back to,SFinally 4 of them reached
directly the absorbing state, ®decause they didn’t manage to interpret the neawdedge.

e The remaining 26 students proceeded{d8t 8 of them faced difficulties to
generalize the new knowledge to a variety of simst and they returned to, Sor a better
understanding of the new information. Then they ednack to &

« Atthe last step 10 students, who solved the esescind problems, completed
successfully the learning process in the classraaththerefore they reached the absorbing state S
The other 16 students, i.e. 5 students who didahage to solve the exercises and problems, and 11
who solved the exercises, but not the problemshezhthe absorbing state S
Therefore, since we had a total of 52 ‘arrivals’39 14 ‘departures’ from Sto §, 34

‘departures’ from Sto S, and 4 ‘departures’ from,30 S, it follows that QFE, ngzﬁ

52 52

and 95=5i2. In the same way one finds tha,gzp?%, |o34=E , and |@5=E

34 34
Replacing the values of thg¢'gin equalities (1) and (2) of the previous settiee get that

Ps=[0 2—2 0 E g)] and = % . Interpreting these data with respect to our rhaeefind

52 52 52
that the probabilities for a student to be in phasef the process of learning in the classroom
(i.e. 3 phases after its start) at the steps obsgmtation, interpretation, generalization,
categorization, or failure to reach categorizatiom approximately 0, 42,31%, 0, 19,23%
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and 38,46% respectively, while the probabilityptss successfully through all the steps of
the process is approximately 33,33%.

Remarks and further examples
Most real world problems concerning applicationdimife Markov chains can be solved by
distinguishing between two types of such chains atbsorbing (e.g. the case of our model in
the present paper) and the ergodic ones (Voskogf; section 3). We recall that a
Markov chain is said to be amgodic chain if it is possible to go between any two stated, n
necessarily in one step.

In Voskoglou (1996) an ergodic chain is introdubmdthe study of the analogical problem-
solving process in the classroom, while in Voskaglod Perdikaris (1991) the problem-
solving process (in general) is described throbghinitroduction of an absorbing Markov
chain to the main steps of the process.

In Voskoglou (1994) an absorbing Markov chaimisaduced to the major steps through
which one would proceed in order to effect the gtoida real system (modelling process). An
alternative form of the above model is introduae®oskoglou (2007) for the description of
the mathematical modelling process in the classrdoiiis case it is assumed that after the
completion of the solution process of each proldemew problem is given from the teacher
to the class and therefore the process is repagtid. Thus the resulting Markov chain is an
ergodic one.

In Voskoglou (2000) an absorbing Markov chain itsdduced to the main steps of the
decision making process performed in order to chdles best among the existing solutions
of a given problem, and examples are presentdiistrate the applicability of the model to
“real” decision making situations.

We could mention very many other known applicatiohslarkov chains for the solution of
real world problems in almost every sector of thenhn activity, but this is rather out of the
scope of the present paper.

Final conclusions
The theory of Markov chains is a successful contimnaof Linear Algebra and Probability, which
enables one to make forecasts for the evolutioraobus phenomena of the real world.

In the present paper we built a Markov model fa tiescription of the process of learning a subject
matter by a group of students in the classroonthi;swway we succeeded to calculate the probalsilitie
for a student to be at any of the major steps ef lgarning process in each of its phases in the
classroom, as well as the probability to pass ssfaly through all the steps of the learning psscim
the classroom. Our results are illustrated by ast@om experiment for learning mathematics.
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