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Abstract 
A Markov chain is introduced to the major steps of the process of learning a subject matter by 
a group of students in the classroom, in order to obtain a mathematical representation of the 
above process. A classroom experiment for learning mathematics is also presented illustrating 
the applicability of our results in practice. 
Introduction 
There are very many theories and models developed from psychologists and education 
researchers for the description of the mechanisms of learning. Nowadays it is widely accepted 
that any instance of learning involves the use of already existing knowledge.  Voss (1987) 
developed an argument that learning consists of successive problem – solving activities, in 
which the input information is represented of existing knowledge, with the solution occurring 
when the input is appropriately interpreted.  
The whole process involves the following steps: Representation of the stimulus input, which 
is relied upon the individual’s ability to use contents of his (her) memory to find information, 
which will facilitate a solution development; interpretation of the input data, through which 
the new knowledge is obtained; generalization of the new knowledge to a variety of 
situations, and categorization of the generalized knowledge, so that the individual becomes 
able to relate the new information to his (her) knowledge structures known as schemata, or 
scripts, or frames. 
The process of learning a subject matter in the classroom 
In order to describe the process of learning a subject matter in the classroom one must keep in 
mind that, as it frequently happens, a learner may not be able to pass successfully through all 
the steps of the learning process in the time available into the classroom. Therefore it is 
convenient, for purely technical reasons, to include in this case one more step in the sketch of 
the process described in the previous section, the step of failure to reach categorization. 
We are going to construct a ‘flow-diagram’ representing the whole process. For this, let us 
denote by Si, i=1,2,….,5,  the steps of representation, interpretation, generalization, 
categorization, and failure to reach categorization respectively. The starting state is always S1. 
From S1 the learner proceeds to S2. Facing difficulties there he (she) may return to S1 to search 
for more information that will facilitate the interpretation procedure. Then he (she) must go 
back to S2 to continue the process. From S2 the learner is expected to proceed to S3, unless if 
he (she) is unable to interpret the input data during the learning process in the classroom. In 
this case he (she) proceeds directly to S5, and the process finishes there for him (her). From S3 

the learner, if he (she) has difficulties during the generalization procedure, may return to S2 

for a better understanding of the subject. Then he (she) comes back to S3, wherefrom he (she) 
proceeds either to S4 or to S5 and in both cases the process finishes there. 
According to the above description the flow-diagram of the process of learning a subject 
matter in the classroom by a group of students is that shown in Figure 1.    

 
Figure 1: Flow-diagram of the learning process in the classroom 
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The stochastic (Markov) model 
Roughly speaking a Markov chain is a stochastic process that moves in a sequence of phases 
through a set of states and has “no memory”. This means that the probability of entering a 
certain state in a certain phase, although it is not necessarily independent of previous phases, 
depends at most on the state occupied in the previous phase. This is known as the Markov 
property.  
When its set of states is a finite set, then we speak about a finite Markov chain. For special 
facts on such type of chains we refer freely to Kemeny & Snell, (1976).  
Here we are going to build a Markov chain model for the mathematical description of the 
process of learning a subject matter in the classroom. For this, assuming that the learning 
process has the Markov property, we introduce a finite Markov chain having as states the five 
steps of the learning process described in the previous section. The above assumption is a 
simplification (not far away from the truth) made to the real system in order to transfer from it 
to the “assumed real system”. This is a standard technique applied during the mathematical 
modeling process of a real world problem, which enables the formulation of the problem in a 
form ready for mathematical treatment (Voskoglou, 2007; section 1). 
Denote by pij the transition probability from state Si to Sj, for i,j=1,2,3,4,5, then the matrix 
A=[ pij] is said to be the transition matrix of the chain. 
According to the flow-diagram of the learning process shown in Figure 1 we find that 
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where we obviously have that p21+p23+p25=p32+p34+p35=1  
Further let us denote by φ0,φ1,φ2,….. .. the successive phases of the above chain , and also 
denote by 

Pi=[p1
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(i)p4

(i)p5
(i)] 

the row - matrix giving the probabilities pj
(i) for the chain to be in each of the states Sj, 

j=1,2,3,4,5  in the phase φi, i=1,2,.... , where we obviously have that 
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The above row-matrix is called the probability vector of the chain at phase φi. From the 
transition matrix A and the flow-diagram of Figure 1 we obtain the tree of correspondence 
among the several phases of the chain and its states shown in Figure 2. 

 
Figure 2: Tree of correspondence among states and phases of the Markov chain 
 
From the above tree becomes evident that P0 = [1 0 0 0 0], P1 = [0 1 0 0 0], and P2=[p21 0 p23 0 
p25]. Further it is well known that 

Pi+1 = PiA,    i=0,1,2,…..   . 
Therefore we find that  
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P3 = P2A = [0  p21+p23p32  0  p23p34  p23p35+p25 ]  (1), 
P4=P3A=……. , and so on. 
Observe now that, when the chain reaches either state S4, or S5, it is impossible to leave them, 
because the learning process finishes there. In other words S4 and S5 are absorbing states of 
the chain. Further, from Figure 1 it becomes evident that from every state it is possible to go 
to an absorbing state (not necessarily in one step). Thus we have an absorbing Markov chain. 
Applying standard techniques from theory of absorbing chains we bring the transition matrix 
A to its canonical (or standard) form A* by listing the absorbing states first and then we 
make a partition of A* as follows:             
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Symbolically we can write 
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where Q is the transition matrix of the non absorbing states and R the transition matrix from 
the non absorbing to the absorbing states.  
Next we consider the fundamental matrix N of the chain, which is given by 

N = (I3-Q)-1 = 
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where I3 denotes the 3X3 unitary matrix, adj(I3-Q) denotes the adjoin matrix of I3-Q, and D(I3-
Q) denotes the determinant of I3-Q. A straightforward calculation gives that 
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Finally we consider the 3X2 matrix  
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We write symbolically  B=[bij], with i=1,2,3 and j=4,5.  It is well known then that bij gives the 
probability that, starting at state Si, the process is absorbed at state Sj. Thus the probability for 
a learner to pass successfully through all the states of the learning process in the classroom is 
given by 

b14= 
213223

3423

1 ppp

pp

−−
  (2). 

The calculation of b14 enables the teacher to check the efficiency of his (her) lectures. It also 
could be used either as a measure of comparison of the efficiencies of the lectures of different 
teachers, or as a measure of the learning abilities of different groups of students. The 
following classroom experiment for learning mathematics illustrates the applicability of our 
model in practice. 
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A classroom experiment for learning mathematics  
The present experiment took place recently at the Graduate Technological Educational 
Institute of Patras (Greece), when I was teaching to a group of 30 students of the School of 
Technological Applications (i.e. to future engineers) the use of the derivative for the 
maximization and minimization of a function. During my 2 hours lecture I used the method of 
rediscovery (Voskoglou, 1997). Thus, after a short introduction to the subject, I left my 
students to work alone on their papers. I was inspecting their works, and from time to time I 
was giving them some instructions, or hints. After the basic theoretical conclusions I gave 
them some exercises to solve first, and at the final step some problems including applications 
to constructions and economics. 
During the experiment I found that 4 students were completely unable to understand the 
subject. Also 10 students faced difficulties before understanding the basic ideas (they looked 
back to their notes of my previous lectures and/or asked for help). Furthermore 5 students, 
although it seemed that they understood the basic theoretical ideas, were unable to apply them 
in order to solve the given exercises and problems. The other 21 students solved the exercises, 
but 8 of them faced difficulties before they came through. At the last step 10 students solved 
the problems and 11 they didn’t (or solved a small part of them). Interpreting these data with 
respect to the flow-diagram of Figure 1 I was led to the following conclusions, which are 
represented in Figure 3.  

 
Figure 3: Representation of the experiment’s data 

• Initially the 30 students proceeded from S1 to S2, but 14 of them faced  
difficulties to interpret the input data. Therefore they returned to S1 to search for more information that 
will facilitate the interpretation procedure, wherefrom they came back to S2. Finally 4 of them reached 
directly the absorbing state S5, because they didn’t manage to interpret the new knowledge.  

• The remaining 26 students proceeded to S3, but 8 of them faced difficulties to  
generalize the new knowledge to a variety of situations, and they returned to S2 for a better 
understanding of the new information. Then they came back to S3. 

• At the last step 10 students, who solved the exercises and problems, completed  
successfully the learning process in the classroom and therefore they reached the absorbing state S4. 
The other 16 students, i.e. 5 students who didn’t manage to solve the exercises and problems, and 11 
who solved the exercises, but not the problems, reached the absorbing state S5. 
Therefore, since we had a total of 52 ‘arrivals’ to S2, 14 ‘departures’ from S2 to S1,  34 

‘departures’ from S2 to S3, and 4 ‘departures’ from S2 to S5, it follows that p21=
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Replacing the values of the pij ’s in equalities (1) and (2) of the previous section we get that 
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 . Interpreting these data with respect to our model we find 

that the probabilities for a student to be in phase φ3 of the process of learning in the classroom 
(i.e. 3 phases after its start) at the steps of representation, interpretation, generalization, 
categorization, or failure to reach categorization are approximately 0,  42,31%,  0,  19,23% 
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and 38,46%  respectively, while the probability to pass successfully through all the steps of 
the process is approximately 33,33%. 
Remarks and further examples 
Most real world problems concerning applications of finite Markov chains can be solved by 
distinguishing between two types of such chains, the absorbing (e.g. the case of our model in 
the present paper) and the ergodic ones (Voskoglou, 2006; section 3). We recall that a 
Markov chain is said to be an ergodic chain, if it is possible to go between any two states, not 
necessarily in one step.  
In Voskoglou (1996) an ergodic chain is introduced for the study of the analogical problem-
solving process in the classroom, while in Voskoglou and Perdikaris (1991) the problem-
solving process (in general) is described through the introduction of an absorbing Markov 
chain to the main steps of the process. 
 In Voskoglou (1994) an absorbing Markov chain is introduced to the major steps through 
which one would proceed in order to effect the study of a real system (modelling process). An 
alternative form of the above model is introduced in Voskoglou (2007) for the description of 
the mathematical modelling process in the classroom. In this case it is assumed that after the 
completion of the solution process of each problem a new problem is given from the teacher 
to the class and therefore the process is repeated again. Thus the resulting Markov chain is an 
ergodic one. 
In Voskoglou (2000) an absorbing Markov chain is introduced to the main steps of the 
decision making process performed in order to choose the best among the existing solutions 
of a given problem, and examples are presented to illustrate the applicability of the model to 
“real” decision making situations. 
We could mention very many other known applications of Markov chains for the solution of 
real world problems in almost every sector of the human activity, but this is rather out of the 
scope of the present paper. 
Final conclusions 
The theory of Markov chains is a successful combination of Linear Algebra and Probability, which 
enables one to make forecasts for the evolution of various phenomena of the real world. 
In the present paper we built a Markov model for the description of the process of learning a subject 
matter by a group of students in the classroom. In this way we succeeded to calculate the probabilities 
for a student to be at any of the major steps of the learning process in each of its phases in the 
classroom, as well as the probability to pass successfully through all the steps of the learning process in 
the classroom. Our results are illustrated by a classroom experiment for learning mathematics.  
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