Using ClassPad-technology in the education of students of electrical engineering (Fourier- and Laplace-Transformation)

Ludwig Paditz, University of Applied Sciences Dresden, Germany paditz@informatik.htw-dresden.de

Abstract

: By the help of several examples the interactive work with the ClassPad330 is considered. The student can solve difficult exercises of practical applications step by step using the symbolic calculation and the graphic possibilities of the calculator. Sometimes several fields of mathematics are combined to solve a problem. Let us consider the ClassPad330 (with the actual operating system OS 03.03) and discuss on some new exercises in analysis, e.g. solving a linear differential equation by the help of the Laplace transformation and using the inverse Laplace transformation or considering the Fourier transformation in discrete time (the Fast Fourier Transformation FFT and the inverse FFT). We use the FFT- and IFFT-function to study periodic signals, if we only have a sequence generated by sampling the time signal. We know several ways to get a solution. The techniques for studying practical applications fall into the following three categories: analytic, graphic and numeric. We can use the Classpad software in the handheld or in the PC (ClassPad emulator version of the handheld).

References:

http://edu.casio.com/products/classpad/cp_v302/
http://edu.casio.com/products/classpad/cp_v302/laplace.html
http://classpad.net/product/Classpad300/cp_manager_03.html
Glyn, James: Advanced Modern Engineering Mathematics, $3^{\text {rd }}$ Edition, 2004 (repr. 2006), ISBN 978-0-13-045425-6
Burg, Klemens; Haf, Herbert; Wille, Friedrich; Meister, Andreas:
Höhere Mathematik für Ingenieure Band III: Gewöhnliche Differentialgleichungen, Distributionen, Integraltransformationen, 5th Edition, 2009, ISBN 978-3-8348-0565-2

Example of solving a linear ODE with initial condition, several ways of solution:

The last input line yields in the CAS software:

In the last line we have with $\mathbf{L p}$ the Laplace transformation of $\mathrm{y}(\mathrm{t})$, sometimes we denote $\mathbf{L p}$ by Y(s). Furthermore we discover the initial conditions $y(0), y^{\prime}(0), y^{\prime \prime}(0)$.
We denote the right hand side of the last equation by $\mathrm{U}(\mathrm{s})$ and solve this equation for $\mathrm{Y}(\mathrm{s})$:

Now we consider the following example: $a=1, b=-3, c=3, d=-1, u(t)=\cos (2 t)^{*} e^{\wedge}(-t)$ and $y(0)=0, y^{\prime}(0)=1 / 32, y^{\prime \prime}(0)=-3 / 16$.

Finally we see the inverse transformation of the several summands.
The direct way of solution consists in using the dSolve-function:

This exercise shows how to work with the CAS to support the learning process of our students. We can see step by step in the handheld what happens to solve a given problem.

Example of computing a FFT of a sequence generated by sampling the time signal:

Now we have to setup the Advanced Format to compute the results in the wished manner:

We use the Advanced Format for FFT with Signal Processing and divide the listf by N or we use the optional Parameter 2 (=Data Analysis) without division the listf by N :

Have a look into the lists (spreadsheet-application)

* File Edit Graph Action									
	A	E	C	D	E	F	G	-	
1	index m	clistict	clistce	\|clistet		clistice \|	errior		
$\underline{2}$	$\underline{\square}$	0.392699	0.392699	0.392699	0.392699	0			
3	1	-0.31831. (j)	\square	0.31831	\square	0.31831			
4	2	-0.159155	-0.322432. ${ }^{3}$)	0.159155	0.322432	0.163277			
5	3	0.0.35368. ${ }^{\text {j }}$)	\square	0.0635368	\square	0.0 .65368			
6	4	\square	-0.167595	\square	0.167595	0.167595			
7	5	-0.012732-(j)	\square	0.012732	\square	0.012732			
8	6	-0.017684	0.039759. (j)	0.017684	0.039759	0.022075			
9	7	6.496e-3-(j)	\square	0.0066496	0	0.006496			
16	8	[\square	\square	\square	\square			
11	9	$-3.93 \mathrm{E}-3 \cdot(\mathrm{j})$	\square	0.001393	\square	0.010393			
12	$1{ }^{1}$	-0.0.06366	-6.017751. ${ }^{\text {a }}$	0. 0.066366	6. 617751	6, 011385			
13	11	2.631E-3.(j)	[0.002631	\square	0.002631			
14	12	-	-0.028755	\square	0.028755	0.028755			
15	13	-1.883E-3. 3 (${ }^{\text {a }}$	\square	0.001883	\square	0.001883			
16	14	-0.0063248	0.612757. ${ }^{\text {(3) }}$	0.0610248	0.612757	0.0169569			
17	15	1.415E-3.(j)	\square	0. 0.61415	\square	0.001415			
18	16	$\underline{0}$	\square	\square	\square	\square			
19	17	-1.101E-3-(j)	\square	0.0.01101	\square	0, 0.01101			
20	18	-0.0161965	-0.012757. ${ }^{\text {a }}$	0.001965	0.012757	0.010792			
21	19	8.82E-4: (j)	- ${ }^{\text {a }}$	0.0066682	0	0.0006862			
22	20	\square	-0.028755	0	0.028755	0.028755			
23	21	-7.22E-4. ${ }^{\text {(}}$)	\square	0.0060722	0	0.0060722			
24	22	-6.6.61315	0.617751.(j)	6. 0.61315	0.017751	0.016436			
25	23	6.62E-4. (3)	\square		\square	6. 01616612			
$2 E$	24	\square	\square	\square	\square	\square			
27	25	-5.09E-4. (j)	[0, 060659	\square	0, 0 006509			
28	26	-0.0.066942	-0.039759.(j)	0.0006942	0.039759	0.038817			
29	27	4.37E-4.(j)	\square	0.0006437	\square	Q, 0 006437			
68	28	\square	-0.167595	0	0.167595	0.167595			
31	29	-3.78E-4. ${ }^{\text {(}}$)	\square	0.0060378	\square	0.0066378			
62	31	-6.016707	0.322432.(3)	0. 0.601767	0.322432	0.321725			
63	31	3.31E-4. (3)	\square	6. 0.601331	\square	6, 0.161631			
34								-	
6;33 5									

Consider graphical representations of the absolute values of coefficients:

Graphical representations of the Fourier polynomial:

