TO TEACH COMBINATORICS, USING SELECTED PROBLEMS

Laurențiu Modan

Abstract

In 1972, professor Grigore Moisil, the most famous Romanian academician for Mathematics, said about Combinatorics, that it is "an opportunity of a renewed gladness", because "each problem in the domain asks for its solving, an expenditure without any economy of the human intelligence". More, the research methods, used in Combinatorics, are different from a problem to the other! This is the explanation for the existence of my actual paper, in which I propose to teach Combinatorics, using selected problems. MS

 classification: 05A05, 97D50.
INTRODUCTION

Combinatorics, a distinct and special branch of Mathematics, appeared as a consequence to solve counting problems. The reasoning, used in it, is less analytic, because this is made in a primordial way, like as in Metalogic.

We explained in [2] and [3], and now we shall reiterate, that a rigorous and educated thinking in Mathematics must begin learning Enumerative Combinatorics and then continuing with Combinatorial Probabilities, because they represent together, the simplest, but the very refined description of the daily life. More, we must not forget that today, by its new branches as: Graph Theory, Matroid Theory, Code Theory etc., Combinatorics is the most dynamic domain in Mathematics, yearly having the biggest number of proposed and solved conjectures.

In the actual Romania, Discrete Mathematics, and therefore Combinatorics, are ignored effectively. So, the precarious education of the students, in this fundamental domain, is reduced only to wield simple algebraic relations, usually known as "formulas" and which never permit them, to use correctly, the arrangements, the combinations, the permutations or the number of the functions defined on finite integer sets.

We remember here (see [2], [7]), that for a given set $S=\left\{x_{1}, x_{2}, \mathrm{~K}, x_{n}\right\}$, with the cardinal $|S|=n$, we have:
i) the permutations are different between themselves, only by the order of the elements, their number being $n!$;
ii) the arrangements of the groups with m elements from n, are different between themselves, by the order and the type of the elements, their number being $A_{n}^{m}, n \geq m$;
iii) the combinations as the number of the subsets in S, having m elements, are different themselves only by the type of the elements, their number being $C_{n}^{m}=\binom{n}{m}, n \geq m$;
iv) the number, of the functions $f: S=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\} \rightarrow T=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{m}\right\}$, is m^{n}.

When we begin to teach Combinatorics, we must insist in front of our students, about the essential role of the words used in the texts of this domain. Only in this way, we realize the achievement of the best knowledge in Mathematics!

For our study in teaching Combinatorics, the start point was relating to every student, even if in the high-school course, who might wield without no difficulty, all the notions of this domain. To arrive to our aim, I used a very popular Romanian Collection Book for Algebra (see [1]), which in the last 30 years, is the most recommended to the students in the high-school course. Although its exercises and problems are chosen to train the students in any branch of Algebra, I noticed astonishingly, that for Combinatorics, there are a lot of problems, bad enounced or bad solved ...

RESULTS

At the 10-th chapter of [1], in Problem 25, we found the same error as in 1981 edition (appeared at „Didactică şi Pedagogică" Printing House). The text of the quoted problem is the next: "For a game, 3 boys and 5 girls are organized in 2 teams, heaving 4 persons each. In how many manners are organized these teams ? Find the number of the situations, if in each team with 4 persons, we must have only a boy".

We notice for the solution, that 2 teams heaving 4 persons each, will use the subsets with 4 elements, from a set with cardinal 8. So, the first team is chosen in C_{8}^{4} ways and the second in C_{4}^{4} ways. It follows, that for our 2 teams hawing 4 persons each, there are $C_{8}^{4} \cdot C_{4}^{4}=70$ possibilities.

Normally, the second part of the problem (1) is a nonsense! Indeed, if in each team there is only 1 boy, for the first team we need 1 boy and 3 girls, and for the second we have 1 girl less, respecting the given conditions! From here, we state that for the second part of (1), the correct enunciation must be:
"In how many manners are organized 2 teams having 4 persons each, if in any of
The first team, containing 3 girls and 1 boy, will be chosen in $C_{5}^{3} \cdot C_{3}^{1}=30$ manners and the second team, hawing 2 girls and 2 boys, will be chosen in $C_{2}^{2} \cdot C_{2}^{2}=1$ ways. Finally, we decide that the solution of (2) is given by the product $\left(C_{5}^{3} \cdot C_{3}^{1}\right)\left(C_{2}^{2} \cdot C_{2}^{2}\right)=30$.

In [4], I proved as a generalization of (2), that $2 n-1$ boys and $2 n+1$ girls can form in $(4 n)!/((2 n)!)^{2}$ possibilities, 2 teams having each, $2 n$ persons. If we impose that in each team to be at least 1 boy, the possibilities are given by:

$$
\begin{equation*}
\sum_{k=1}^{n-1} C_{2 n-1}^{k} C_{2 n+1}^{2 n-k}=\left(C_{4 n}^{2 n} / 2\right)-(2 n+1) \tag{3}
\end{equation*}
$$

a sum which asks a strong work to compute it!
We shall go on, our incursion in teaching Combinatorics, correcting the solution of Problem 7 of the 10 -th chapter from [1], in which the number m^{n}, of the functions $f: S \rightarrow T$, is badly used! The text of this quoted problem is:
"Find the cardinal of the set containing 5 digit numbers which could appear using the even digits from the set $\{0,2,4,6,8\}$."
The solution of (4) is based on the following two cardinals:

$$
\begin{align*}
& \mid\left\{g / g:\left\{d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right\} \rightarrow\{0,2,4,6,8\} \mid=5^{5}\right. \tag{5}\\
& \mid\left\{h / h:\left\{d_{2}, d_{3}, d_{4}, d_{5}\right\} \rightarrow\{0,2,4,6,8\} \mid=5^{4}\right.
\end{align*}
$$

where $d_{1}, d_{2}, d_{3}, d_{4}, d_{5}$ are digits and where, for the functions h, we must exclude the situations which begin by $d_{1}=0$. Now, the number asked in (4), is $5^{5}-5^{4}=4 \cdot 5^{4}=2500$.

I wanted to correct the error for the solution of (4), appeared in [1], because through this manner, I understand to sustain one of the first counting principle appeared in Mathematics and having a very strong importance in Algebra, Combinatorics and Discrete Probabilities. Emphasizing the great utility of this counting principle which must remain well stamped upon the mind of every person interested in Mathematics, I proposed in [5], as a good training, the following generalization of (4):
"i) Find the cardinal $E(n), n \in \mathrm{~N}^{*}$, of the numbers with n digits, formed only with the even digits.
ii) Find the cardinal $O(n), n \in \mathrm{~N}^{*}$, of the numbers with n digits, formed only with the odd digits.
iii) Find $n \in \mathrm{~N}^{*}$, so that $E(n)+O(n)$ would be a perfect square.
iv) For the cardinal $N(n), n \in \mathrm{~N}^{*}$, of the number with n digits, formed with all digits from $\{0,1, \mathrm{~K}, 9\}$, find $(N(n), O(n)+E(n))$.
v) Find $n \in \mathrm{~N}^{*}$, so that $\frac{N(n)}{O(n)-E(n)} \equiv 0(\bmod 144)$."

For the interested reader, we note here, the answers of (6):

$$
\begin{align*}
& E(n)=4 \cdot 5^{n-1}, O(n)=5^{n}, E(n)+O(n) \text { is a perfect square if } n=2 k+1, k \in \mathrm{~N} \\
& (N(n), E(n)+O(n))=2^{n-1}, \frac{N(n)}{O(n)-N(n)} \equiv 0 \quad(\bmod 144) \quad \text { only if } n=4 k+1 \tag{7}\\
& k \in \mathrm{~N}
\end{align*}
$$

In the end of this proposed way to teach Combinatorics using different problems, I come with another example (see [6]) relating to the number of the functions $f: S \rightarrow T$:

$$
\text { "i) Find the set } A=\left\{n \in \mathrm{~N}^{*} / \frac{n}{n-2001} \in \mathrm{~N}\right\} \text {. }
$$

ii) Find the number of the functions, $f: B \rightarrow B$ where :

$$
\begin{equation*}
B=\left\{n \in \mathrm{~N} / \frac{n^{2001}}{n-2001} \in \mathrm{~N}\right\} . " \tag{8}
\end{equation*}
$$

The solution of (8) is based on:
(9) $A=\{1972,1978,1998,2000,2002,2004,2024,2030,4002\}$,
and on the tact that for B, after the division, we must impose the conditions:

$$
\begin{align*}
& \frac{2001^{2001}}{n-2001}=\frac{3^{2001} \cdot 23^{2001} \cdot 29^{2001}}{n-2001} \in N \Leftrightarrow n-2001=3^{\alpha} \cdot 23^{\beta} \cdot 29^{\delta} \Leftrightarrow \tag{10}\\
& \Leftrightarrow \alpha, \beta, \gamma \in\{0,1, K, 2001\} \Leftrightarrow|B|=2002^{3} .
\end{align*}
$$

It occurs that the number, of the functions $f: B \rightarrow B$, is : $2002^{3 \cdot 2002^{3}}$
We invite the interested reader to see [2], for other properties and problems about the surjective or injective functions defined on discrete and finite sets.

CONCLUSIONS

Each notion in Combinatorics must be taught by the intermediate of a well chosen problem, exactly as I tried accomplishing in the anterior paragraph. This is the unique way in which we can incite the curiosity of the students, either in the high-school course, or in the university course, all for a difficult domain, which is very different from the others in Mathematics. Finally, I underline that immediately, after the moment when a good understanding was established in the mind of our students, for these new notions, which must be well fixed, we also apply for ... selected problems in Combinatorics ..
[1] Brandiburu M., Joița D. Năstăsescu C., Niță C.
[2] Modan L.
[3] Modan L.
[4] Modan L.
[5] Modan L.
[6] Modan L.
[7] Rogai E.

REFERENCES

Exercises and Problems for Algebra (in Romanian), "Rotech Pro" Printing House, Bucharest 1999;
Some Remarks Counting Functions, Octogon, Math. Magazine, v. 15 (2007), nr.1, Braşov, pag. 262-265;

Accuracy of the Mathematic Language Used in Combinatorics (in Romanian), Recreații Mat., v. 10 (2008), nr.1, Iaşi, pg. 42-43;
About a Combinatorics Difficult Sum (to appear);
Problem 123, Rev. Esc. de la OIM, v. 5 (2006), nr.23, Valladolid; Problem 16, Rev. Esc. de la OIM, v. 1 (2002), nr.4, Valladolid; Tables and Mathematics Formulas (in Romanian), "Tehnică" Printing House, Bucharest, 1984.

Prof. univ. dr. Laurențiu Modan, Department of Mathematics, Faculty of Computer Science, Bucharest
modan_laurent@yahoo.fr

