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Abstract
Cryptography fascinates people of all generatiomd & increasingly presented as an example for the
relevance and application of the mathematical seienindeed, many principles of modern cryptogragaiy
be described at a secondary school level. In thigtext, the mathematical background is often only
sparingly shown. In the worst case, giving mathé&msathis character of a tool reduces the applicagb
mathematical insights to the message "cryptogragamgains math”. This paper examines the questido as
what else cryptography can offer to mathematicsaiion. Using the RSA cryptosystem and relatedesgnt
specific mathematical competencies are highlighiedl complement standard teaching, can be taught wi
cryptography as an example, and extend and deeyyem&thematical concepts.

Introduction

Cryptography fascinates. Concepts such as secespionage, code cracking are often associated
immediately (and not only among students). Hertez ntotivation to work on this topic is high.

Modern cryptographic methods in particular are daselarge parts on elementary number theory aed ar
therefore accessible to secondary school stud&usiesponding publications may be found both in
mathematical as well as in computer science edutditierature (e.g., [1], [2]). An implementationtd
teaching practice in Germany is currently founddprainantly in computing rather than in mathematics
classes. This has effects on the nature and extéiné mathematical foundations presented. Thasa tdke

a back seat in favor of the (partial) implementatid individual algorithms. Similar approaches feaching
specific mathematical content by means of cryptolgyahat go beyond the pure cryptographic algorgtom
protocols are rare and are often only implicit eamtd (typical [3], exception [4]). In this way,sestial
mathematical potential remains unused.

To show which contributions cryptography can makesehool, the paper first introduces cryptography-
related, general educational objectives which aaadsociated primarily with media competency andato
necessarily require mathematical expertise. Theempapll then discuss the added value of considering
cryptography within mathematics. The main focusois the encounter with unsolved problems in
mathematics, on the experience of mathematics hging science as well as on cryptography as an
application of mathematics. These consideratiofisoeilinked exemplarily to the RSA cryptosystend ais
mathematical background. Finally, the paper outlihew this approach to cryptology deepens and dsten
known key mathematical concepts.

Why cryptography in school ?
Due to the increase in electronic data traffic,pbography is of practical relevance to everyonee-itb
through online banking, e-mails, electronic heal#inds, electronic passports or the protection o$qel
data. Within these applications, cryptography nmuy ensures the secrecy of data exchanged butpatso
vides reliable means for the authentication of camication participants and for the verificationtbé in-
tegrity of data. Hence, as an element of media ebemgy, students should acquire basic knowledgden
use of cryptographic applications.
General learning objectives in this regard are:

raising awareness in relation to data securityeesfly the knowledge that data exchanged on ttegriet can in

principle be monitored and is thus insecure;

derived from this, the insight into the necessitgiacryption and the ability to perform and verdfigcryption;

the knowledge that and how the identity of commatién participants may be verified;

Integration of cryptography into the school curhicu differs among the German federal states asreffit
standards exist in each state. Nevertheless, rfaihese contents are mandatory for all studentsrygsog-
raphy in mathematics is only an elective subjetjuAior secondary level, these elective subjestugually
found in years 9 or 10 and predominantly featungliestions from classical cryptography (historisgin-
metrical ciphers like Caesar and Vigenére ciphfrsenior secondary level, cryptographic conteralisost
exclusively taught in computer science. The gumdsihere range from non-binding references to cgypt
phy up to teaching units containing essential fpples of modern cryptographic algorithms. Excepdiane
the so-called “Seminarkurse”, which can be takeelestive courses in the Abitur (mandatory in Bévaiut
voluntary in other federal states). The schoolaipesuch courses according to their capacity ifjestdbthat
are in demand. The content of these courses matidsen rather freely compared to standard counsihei
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subject. The author of this paper taught such esu@ semesters, 3 hours per week) in cryptograpiy
number theory in 2007/2008.

Why cryptography in mathematics?

To give students an authentic image of the mathHemats a science, it is necessary to show current
developments in scientific maths [5]. In this semsgptology is a lucky coincidence [6, p. ix] as many of its
modern techniques and algorithms can be fully empth and require little mathematical background
(predominantly elementary number theory) in ordebé¢ understood. In the following, the examplehsf t
RSA cryptosystem and some closely related subpretsused to demonstrate how to extend the image of
mathematics acquired in secondary school education.

a. Unsolved praoblemsin mathematics
The contents of school mathematics do not extegdrzethe scientific knowledge of the 18th centwith
the exception of probability theory and some foitred. The contents of the classical branches bbsic
(mathematics, arithmetic, algebra, calculus andrgey) may be found under the broader terms ariticsie
and geometry as early as 1905 and have been iidasmed out and worked on since then [7]. Herthe,
opportunity of having the students face unsolvadngific problems hardly exists within the scopetioé
standard mathematics curriculum. This fact hasra peactical reason: Most of the open scientifiesfions
within the aforesaid branches are difficult to ddéser at school level and thus hardly accessibléhto
student. Some open questions within other branches as discrete mathematics, number theory or
numerics are understandable, but the curriculuns awa offer chances of a natural encounter witthsuc
issues. Therefore, it is advisable to take advantdighis when teaching cryptography.
Unsolved problems in number theory include, fomepke:

(1) Is there an infinite number of prime twins?

(2) Is there always a prime betweagrund fi+1)??

(3) Is there an efficient way to find the primetfars of large numbers?
The first two questions are easy to grasp and @resaible by experimentation. They appear in cdrorec
with the distribution of prime numbefrs.
The third question is particularly interesting francryptographic point of view. Consider the fuantE
with E(x) = x*(mod n) wheren ande are natural numbers, ands large. As long as it cannot be answered in
the affirmative, the functioE may be seen as a one-way function, i.e. a funaotibith is practically
impossible to inver. Theoretically,the inversion is solvable, because of the congrier x°(modn) — for
example by testing ak with x = 1, 2, ..., §-1). In practice, there is no efficient approachhis problem for
large modulin. The computation ok from e and n is equivalent to the knowledge of the prime factor
decomposition ofh ([8], p. 141). Ifn is chosen as a product of large, secret primesfuhction cannot
efficiently be inverted without this additional armation. This fact is used in the constructiorthef RSA
cryptosystem (see below).
The inability to solve (3) in this case represerdadlaw but is essential to the security of thection E used
in the RSA cryptosystefhThis gives the students the opportunity to deepeir understanding of integers
in the context of cryptography and lets them exg®e that mathematical science is still incompldizli-
tionally, the utilization of lack of knowledge sums a sparsely used approach in students' sckpetience.

b. Mathematics asa living science.
Cryptography has been used for several thousang (&4, p. 105). A significant problem had alwaysen
the key exchanggThe solution to this problem was found approxifya8 years ago — namely by use of

! This text does not distinguish between cryptogyemid cryptology. Formally, cryptology is often ds&s an umbrella term which
encompasses cryptography (science of designing@plind cryptanalysis (art of breaking cipher ayst).

2 Questions on the existence and quantity of largegs arise for example when choosing suitable fiatin the calculation of the
function E described below. An estimate can be determindtdrclassroom with the use of the prime countingefion i, wherert
(n) denotes the number of prime numbers umtand its approximation bw/lIn(n). To get an additional impression of the
distribution of primes, the theorem on arbitratdng prime gaps is available.

3 The one-way property of a function arises frexperienceTo date there is no one-way function for whigbraof of this property

is known, i.e. the proof of the non-existence ofaalytical inversion.

4 Similar considerations apply to other functions, there is no general approach for calculatireydiscrete logarithm for large
modulin, which is exploited for cryptographic applicatidiiffie-Hellman key agreement, EIGamal) ([8] p.3)5

5 Until 30 years ago, information was encrypted lyaecording to the following principle. A messadeis encoded by an invertible
functionE and a secret key into a cipher tex€ = E(M). The recipient decodes/decrypts the messagetmétinverse functiol so
thatD(C) = M. The parameteK for the construction dE andD must be transmitted via a secure channel (persoimatidvance, by
a courier, etc.). Secure data exchange betweemngstis (e.g. online shop and customer) over an imsszommunication channel
(internet) is not possible in this way.
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mathematical knowledge that was already severalieahyears old. Why so late?

The rise of computers and with it the new applaai of cryptography were crucial for this developtne
The predominant historic use of cryptography hashltbe exchange of military secrets between twbegzar

In contrast, the use of computers increased incp#at the exchange of sensitive data over multiypa
communication networks. New tasks that had to Heedowere the authentication of communication
participants and the verification of the integiifytransmitted data.

In 1976 Diffie and Hellman published the idea opuablic key algorithm which overcame the old key
exchange problem [10]. An algorithm that implemetits idea was published by Rivest, Shamir and
Adleman in 1978 [11] and is known as the RSA crgpstem. It is mainly based on Euler’s theotewhich
allows the generation of the kelfs = e for encryption an&p = d for decryption. From the knowledge of
one of the keys one cannot derive the other, theeéf: can be transmitted via a public channel (hence the
name: public key algorithm). The key exchange mwbhas thus been solved.

Crucial to the effective application of the RSA miysystem was its simple computational implemeorati
Encryption and decryption (exponentiation with exgotse andd modulon) as well as the key construction
(determination ofe and d) can easily be performed by square & multiply be textended Euclidean
algorithm.

The computer is thus tool and at the same tim@ctleasion for the application of classical numbeotlg in
cryptography. This makes cryptography and the R§ftosystem a suitable example for pointing out the
development in scientific mathematics triggeredtihe use of computers. This very direct link between
application and mathematics is also an importasitvidaich can extend students' perception of mattiema
Computational mathematics, in particular numericaithods and discrete mathematics, has increased in
importance in recent decades. A major contributbrthe computer consists in shifting problems from
computability to the development and implementatibsuitable (and in particular efficient) algoritk. On
the other hand, computers introduced new problawsh as the need for data compression (information
theory).

Such developments are typical in the history ofhraatatics. They are often triggered by questionggby
other sciences, technological advances or everalsdevelopments. Physics and its influence desarve
particular mention here, for example for its infige on the development of calculus (mechanicsytiomal
analysis (quantum mechanics) or differential geoynégeneral theory of relativity). This interrelati
appears in teaching practice especially in theeoandf calculus. Demonstrating that such procestss
take place today does, however, require a movenokybe standard curricula. Cryptography offers an
opportunity to do so and can broaden the studeras! of mathematics as a living science that i sti
developing.

c. Cryptography is applied mathematics

More to the point, modern cryptographic algorithmsd especially the RSA algorithm, are based og ver
old mathematics: mostly basic number theory, adirari mathematics long known for its beauty rathan
practical use. Essential elements like modulahaugtic, the Euclidean algorithm (at least 4th cgn&C)

or Euler’s theorem (8century) were already valuable instruments witmiathematics before their joint
practical applicability for the RSA algorithm was recognizadd became accessible through the use of
computers. The application of mathematics in traseccan be seen as an interdisciplinary transfer of
mathematical knowledge to contexts other than throgénich the insights were obtained.

The question arises as to which role the presentatif this transfer could or should have in the
implementation of teaching. Number theory is, astén Germany, not part of the curriculum. Iltsibasre
generally only provided in connection with cryptaghy — usually simplified and isolated from the
mathematical context. The depth of this presemaleo depends on the temporal extent of the tegaiit

and the weighting of cross-disciplinary relatioasd primarily aims at providing an understandinghuf
cryptographic principles. This cannot be consideredpplication of existing knowledge. In the warase,
mathematics is reduced to an auxiliary science lwipermits the implementation of ingenious ideas
seemingly by chance. What remains is cryptograplgythe insight “everything has maths inside”.

That said, an extensive education in number thandygroup theory at school is not feasible. Howether
value of the mathematical content used should b&ensatopic beyond its cryptographic use. Otherwise,

% Euler’'s theorem was first proven by Euler in tiatext of modular arithmetic and later generalizefinite groups G): Let gcdé,

n) = 1, thera®™ = 1 (modn), whereg is the Euler phi-function. |.éi(n) gives the number of nonnegative integers whiehpaime
to n. In the casa = pq the theorem can be simplified & Y@ = 1 (modn). It follows a®Y@Y*1 = 3 (mod n) for nonnegative
integersk. Hence, fored = k(p-1)(g-1)+1 the functiorE with E(x) = X° (modn) presents a one-way function. This function caly on
be inverted (decrypted) with the knowledge of eitther p andg usingD with D(x) =x% (modn).
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there is a risk that the problem solving appeabitrary. Number theory should thus be connectedh wit
contexts beyond cryptography to illustrate its wislignificance and use. Links to known curriculaaterial
but also to overarching contents are useful herarriples:

- modular arithmetic: (i) Subsequent justificationtbé divisibility tests for 3 and 9 known from earlyears at
school; (ii) Generalization of the proof technidueown from differentiating between the cases "evetodd" for
various m07dulh; (iif) Outlook / consolidation: 4/nZ)* as one of several groups on which one-way fumsican
be defined,

- Euclidean algorithm: (i) Comparison of the effeetiess of determining the gcd by comparing the pffaeors
(known in connection with the introduction of fraxcts) with that of the Euclidean algorithm; (ii) ok / con-
solidation: computation of multiplicative inverses(Z/nZ).

- Euler’s theorem: Outlook / consolidation: ordeigodup elements.

Conclusion

Cryptography is suited to exposing the studentsn®olved questions in mathematical science in @neatic context
(a). At the same time, it is an example that cagntiee common student perception that mathemdativalvledge is a
fixed structure and only has to be extended (stebd, mathematics appears as a science whichywgaderates new
branches and is engaged in a constant exchangdeas iwith practical applications. These in turrsearfrom
applications of knowledge already gathered andimterlinked with them in multiple ways (c). This artially
transferable to the classroom as cryptography isnuependent of conventional classes but extendsdaepens the
pre-existing knowledge and perceptions of mathassafihis concerns in particular the key mathemhtioacept8 of
numberandalgorithm and, depending on the implementation in the atesar the concepts déinctional relationship
anddata analysis and probability

Key conceptumber The knowledge of natural numbers is deepened.othasion for this are questions of
key construction for the RSA algorithm and its s#guThese lead to primes, their distribution, npei
number tests and the problem of the factorizatioraddition, familiar divisibility tests are provemith the
help of modular arithmetic and are thus legitimizetiospectively. In particular, this presents ppartunity

to highlight elementary unsolved problems in matatcs.

Key conceptalgorithm The question of the key generation leads to theliiean algorithm, which the students can
discover themselves. This and the square & multdprithm illustrate the advantages of algorithmioblem solving;
guestions about the efficiency of algorithms wilisa almost by themselves. The importance of coerpuse for the
application of these and other algorithms can beneoted with the history of cryptography. This casts with the
normal use of algorithms in secondary school, widchsually limited to solving systems of equati@nsin the wider
sense, to the processing of calculus problems écsketching).

Key conceptfunctional relationship The concept of the one-way function required igptography augments the
invertible (if only by limiting their domain) funicin types already known. Furthermore, if the tapicovered in depth,
students get to use the functignandm from number theory as two functions without closggression.

Key conceptlata analysis and probabilitghe internal link to probability theory within riieematics originates, among
others, from the need for suitably large primestfar key construction in RSA. The comparison of phebabilistic
prime number test (Miller-Rabin test [8], p. 128)the classic test for divisibility of all primesaller than the square
root of a candidate is of interest in this context. Another opportuntty dig deeper concerns the construction of
(pseudo-) random numbers used in conjunction vighsecurity of the RSA algorithm.

The author investigates as part of her thesis h@se ideas may be implemented in practical teacAingexample of
the content and related key concepts for a prddtigglementation may be found in the appendix. €rample refers
to the first semester of a two-semester Seminaikursathematics at senior secondary level.

Bibliography

[1] WITTEN, H. and 8HULZ, R.-H.: RSA & Co. in der Schule. Moderne Kryptadkgalte Mathematik, raffinierte
Protokolle. Neue Folge — Teil 1: RSA fir Einsteiderg In 23, No. 140 (2006), 45-54.

[2] GALLENBACHER, J.:Abenteuer InformatikSpektrum Akademischer Verlag, Heidelberg 2008.

[3] MEYER, J.: Einblick in die Kryptographie. ISTRON — Materialien fir einen  realitatsbezogenenterricht

" A similar consolidation is recommended to exparerthat the property of being a one-way funct®maét bound toZ/nZ) and
exponentiation. For example, cryptographic techesgwhich base their one-way property on the difffjcaf inverting the discrete
logarithm within g/nZ) may be realized on elliptic curves - e.g. Diffiellman Key Exchange ([8] p. 153).

8 The notion of the key concept (Leitidee) is usecehin the same sense as in the framework curricitu senior secondary level
mathematics in Berlin ([12], Kap.2). It combines thmathematical competencies to be acquired in scim@lcompetency areas.
There is a distinction between process-related edemgy areas (reasoning and proof, problem solvimageling, representation,
use of procedures and tools, communication and evatipn) and key mathematical concepts (functionalationship,
approximation, geometry, data analysis and proigbiheasurement, algorithms). The key concept 'Imerthis, in contrast to the
corresponding curriculum for the first 10 yearssofiooling, no longer listed as no specific contanextensions of numbers or the
concept of numbers is included.

326



Bd. 6, 151-157. Franzbecker, Hildesheim 2000.

[4] EPKENHANS, M.: Die Kryptologie im Mathematikunterricht alddengeber fir Facharbeitsthemen.

math.didact25, No. 1 (2002), 17-36.

[5] LovAsz, L.: Trends in mathematics, and how they change edurcativited talk, GDM 2008, Budapest

[6] BEUTELSPACHER A.: Kryptologie Teubner, Wiesbaden 2009.

[71 Meraner Lehrplan fir Mathematik (1905). In kefilein: Vortrage Gber den mathemati- schen Unterricht an

den héheren SchulefTeil 1, S. 208-220). Teubner, Leipzig 1907.

[8] BUCHMANN, J.:Einfihrung in die KryptografieSpringer, Berlin 2007.

[9] BAUER, F. L.: Entzifferte Geheimnisse: Methoden und Maximen dgptislogie Springer Berlin, 2000.

[10] DIFFiE, W. and HLLMAN, M.: New Directions in Cryptographyrans. IEEE Inform. Theory IT-22, 6

(1976), 644-654.

[11] RivesT, R.L., S$HAMIR, A. and ALEMAN, L.: A method for obtaining digital signatures apdblic-key
cryptosystemsComm. A.C.M21 (1978), 120-126.

[12] SENATSVERWALTUNG FUR JUGEND, BILDUNG UND SPORT Rahmenlehrplan fiir die gymnasiale Oberstufe
Mathematik Berlin 2007.

[13] ReEMMERT, R. and UWLRICH, P.:Elementare Zahlentheori8irkhauser, Basel 2008.

Appendix
Unsolved problems in mathematics
Mathematics as a living scien
Content Keyh (Focus: alaorithn J
m::icz—l Cryptography is applie
PO mathematics
Classical cryptography T
- History and basic expressions
- Key exchange problem X
Number theory
Divisibility N
- Gcd, Euclidean algorithm (EA) N/A X X
- Bézout's lemmdincl. proof) /extended EA A X X
- Numeral system in different bases N
Primes
- Proof: infinity prime numbers N
- Sieve of Eratosthenes N/A
- Distribution of primes, Prime number theoremtbwout |[N/F/A  x X
proof) N
- Fundamental theorem of arithmetics X
Modular arithmetics
- Calculation rules N
- Exercise: proof of divisibility tests of 3 and 9 N X
- Fermat's little theorem (incl. proof) N X
- Fast exponentiation: square & multiply algorithm N/A X X
M oder n cryptography
Principles of public-key cryptography F X
- RSA — principle (experimentation with CAS) N/F X X
- RSA - key generation (extended EA)LA A X
- RSA — proof of correctness N X
- RSA - for authentication N/F X
- Primality tests N/A/DR X
- Chinese remainder theorem— fast signature N X X
- Attacks on RSA N/DR X
- RSA - on a debit card: weaknesses in the impitatien N
- Factorization: quadratic sieve. N X

Table: Coretopicsfor thefirst semester.

Optional topics prepared and presented by the stesdee shown in italics. This allows both for tlagiety of possible
in-depth topics as well as for personal interestoflents and teachers. On the other hand, itsewa preparation for
writing an extensive assignment at the end of dveisd semester of the Seminarkurs.
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