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Didactic proposals on modelling in mathematics education mostly give priority to models which 
describe, explain as well as partially forecast and provide mathematical solutions to real situations. 
A view of the modelling concept of informatics, which also initiates rapidly generalised delibera-
tions of models, can also make a contribution to the spectrum of models, which are treated in a 
meaningful sense in mathematics lessons so as to expand some interesting aspects. In this paper, 
this is illustrated by means of conceptual design models – and, here, especially of process models – 
using the example of elevator organisation in a multi-storey construction. 

Modelling in Mathematical Education 

During the past two decades, the use of mathematical models has been established for the process-
ing of realistic situations and applications in mathematics lessons, in which step sequences match-
ing the modelling cycle are performed as in Fig. 1 (see [3], p. 200). This cycle has been expanded 
around subjective aspects (see also [2]) during the past few years. 
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 Figure 1: Modelling cycle      Figure 2: Expanded cycle 

As seen in Fig. 2, it is apparent that deliberations, situation representations and mental models of 
subjects (e.g. students), which perform modelling, are only partially conceived in comprehensible 
diagrams. Therefore, solution options taken into consideration within the mathematical models pre-
react to the model structure and have already affected real models and mental situation representa-
tions. An absolute distinction between reality and mathematics is often not feasible. Deliberations 
of the subject are mostly simultaneously characterised by real-world and mathematical aspects. 
Therefore, it can be established that:  
 Modelling cycles themselves are always models as well.  
Modelling cycles related to mathematical lessons reduce modelling processes with the purpose of 
manageability in lesson conception and working out competences. Therefore, two of the major at-
tributes of the models have been mentioned (in addition to the mapping attribute): the reduction and 
the pragmatic attributes ([10], pp. 131ff). 

Model Categories 

The models relevant for discussion in mathematics lessons were subdivided by BLUM  in descriptive 
and normative models ([4], p. 19). HENN refined this subdivision as follows ([5], p. 10): 

• Descriptive models; 

• Explanatory models; 

• Predictive models; 

• Normative models. 

An exact separation of these categories is often not feasible. Predictions, in general, are based on 
descriptions of phenomena or processes. Descriptive models (describing, occasionally also explana-
tory or predictive) form the majority of models discussed in mathematical didactic publications. 
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Normative models ("prescriptive models") have a rarer occurrence, electoral systems and income 
tax rates are often mentioned as examples. 

In this paper, based on an exercise of an elevator system control, models are introduced, which 
could be described as normative, although the customary terms used in informatics - "design 
model" or "process model" - appear to be more suitable in the characterisation. The successive "im-
provement" of a situation, therefore, almost inevitably requires a repeated run of the modelling cy-
cle, which corresponds to a frequently elevated demand. 

Modelling in Informatics 

Informatics is often described as "the science of modelling", as expressed by SCHWILL: “The deliv-
erations .... show that informatics possesses much of a general model structure science” ([8], p. 22). 
About the differences of modelling in mathematics and informatics, he wrote:  

“Originals of mathematical modelling are mostly part of the natural world. … The associated 
situations possess a relatively low description complexity and are based on a few quantifi-
able, continuously variable data (at school) … 

 Informatics primarily models situations which originate in an artificial world (e.g. office 
procedures, traffic, etc.). Therefore, it lacks natural simplicity. In fact, this original can be 
complicated, in which the complexity is essentially due to human arbitrariness and, therefore, 
barely underlies any reductionist rules. Likewise, the originals are, to a large extent,... dis-
crete and their behaviour highly discontinuous.” ([8], p. 23) 

The prospect (of an informatics educator), which is introduced by using this quotation as an expres-
sion of model structures in mathematics lessons, certainly corresponds to the models primarily ap-
plied in lessons, although it characterises no limits of mathematical modelling. In fact, mathematical 
methods are also efficient in describing not only artificial situations or processes, but also in design-
ing or changing and optimising them. 

Model Categories in Informatics 

Models can fundamentally be concrete or theoretical images of entities available or role models for 
entities to be created. This classification corresponds with the difference between descriptive and 
normative model already mentioned. Informatics is concerned with a large variety of models. Ap-
plications (domains), work and technical processes, structures and construction of information sys-
tems or systems with IT elements1 as well as human-computer interaction are modelled. In [11], 
THOMAS classified over one hundred(!) categories and subcategories of models related to informat-
ics. The current paper elaborates more on conceptual models, especially designed for processes. It is 
also inevitable that investigation models (especially analytical models used in this context) will be 
of some significance. 

A General Model Term 

The previous sections have brought to light a variety of different approaches to the term "model", 
that may be confusing. In addition to this, for example, the issue arises as to what extent material 
models (e.g. cubes, cones, etc.) applied in mathematics lessons are related to the modelling concept 
initially drafted in mathematical education. Furthermore, there hardly appears any relationship be-
tween this concept and that of modelling in mathematical logic. A generalised view of the models 
will show such connections. 

Modelling as a relation between the subject, purpose, prototype (“original”) and the model 

According to APOSTEL, a modelling process is identified by a four-digit relation. 

                                                 
1 It is observed that "systems with IT elements" are highly diversified and are not limited to computers or computer 
software in a narrow sense. For example,  traffic control systems or even the elevator systems considered more closely 
in this paper are systems with IT elements  
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“Let R(S,P,M,T) indicate the main variables of the model-
ling relationship. The subject S takes, in view of the pur-
pose P, the entity M as a model for the prototype T.”  

([1], p. 4) 

Here, the prototype (or original) T and the model M may 
be images, perceptions, designs, formalisms, calculations, 
languages or physical systems; they can belong to the same 
or different from these categories. In particular, the proto-
type and the model can exchange their roles. 

Original
T

Purpose
P

Model
M

Subject
S

 
Figure 3: Model structure relation accord-
ing to APOSTEL (SCHWILL: [8], p. 23) 

The model design drafted here also integrates the model conception of mathematical education 
characterised by the cycle in Fig. 1, and the model term of the mathematical logic (especially of 
axiomatics). On one hand, axiomatic systems can be realistic models, which have been obtained 
from the latter by means of idealisation. This perception, for example, can assuredly apply in 
Euclidean geometric axiomatics. On the other hand, an axiomatic system can assume the role of a 
"prototype" and a model can be its implementation or interpretation in a "well-known structure". 
For example, the Poincaré and Klein models in non-Euclidean (Lobachevskian) geometry have 
come into existence like this. Detailed comments to the association between the model designs 
made by Apostel and models in mathematical logic are found in the work by WEBER ([12], pp. 
55ff.). 

Primary Attributes of Models 

In his trend-setting book "Allgemeine Modelltheorie" (General Modelling Theory), STACHOWIAK  
constructed the following three primary attributes of models ([10], pp. 131ff.): 

• The mapping attribute: Models are always models o f  someth ing, namely mappings, repre-
sentations of natural or artificial originals, which themselves can be models in return.  
The originals can pertain to the field of symbols, the world of perception and concepts or 
physical reality. 

• The reduction attribute: Models generally include no t  a l l  attributes of their represented 
originals, but rather only those that ... appear relevant to model creators and/or users. 

• The pragmatic attribute: Models are not only models of something, but also models f o r  
someone; . . .  f o r  a  ce r ta in  pu rpose. 

These attributes also explain the fact that there is a high number of different modelling circuits for 
various purposes (compare e.g. Fig. 1 with [9], p. 29). The mapping attribute also emphasises that 
mappings are possible in different directions and, therefore, as already remarked, originals and 
models can "exchange their roles". Thus, an idealisation or abstraction process always forms the 
basis of the description of  real spatial solid figures present with mathematical terms, such as "cube" 
or "pyramids" and the associated mathematical properties, are within the context of the circuit, as 
according to Fig. 1, Models of real objects. However, concepts or mathematical descriptions may, 
conversely, function as originals; associated models are, thus, real objects of the physical reality. 

Elevators – an Exercise from the Netherlands Mathematics A-lympiad Competition 
A complex modelling exercise and its processing steps by students are presented in the following. 
Both, descriptive mathematical modelling as well as concept modelling, especially process model-
ling of significance in informatics, appear in this case. The exercise has been set for four-member 
student teams of grades 10 to 13 within the scope of the Netherlands Mathematics A-lympiad Com-
petition. Since the exercise actually contains complex modelling requirements, although it is very 
apparently formulated and processed using elementary mathematical means, their approach already 
appears possible and reasonable among younger students. Therefore, it has been set for grades 7 and 
8 students with an interest in mathematics in a student circle. The experiences gained in this trial 
will be reported in the following. 
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Due to reasons of space, the exercise (which assumes the role of two-aspect original) is reproduced 
in the reduced form2 

A multi-storey building with 1200 employees has a ground floor and 1-20 storeys, in which 60 em-
ployees work at a time. There are 6 elevators with a capacity of 20 people. When work commences, 
it leads to chaotic situations and long waiting periods. The management employs a supervisor who 
is assigned the task to let the manpower flow proceed smoothly. The following facts for the elevator 
speed are identified: 
• Time requirement to travel from one stop to another for one storey located at an upper or lower 

level: 8 s 
• From one stop to passing through the next upper or lower storey: 5 s 
• Time between the transitions of two adjacent storeys: 3 s 
• From passing through one storey to one stop in an adjacent storey: 6 s 
• An elevator stops at one storey for an average of 10 s. 
All employees arrive between 8.45 am and 9.00 am (consistent flow). 

Exercise: How long can an elevator last in total in the worst case until it returns to the ground 
floor? Calculate the approximate length of time until all employees will have arrived at the correct 
storey. 
 

In this exercise section, a descriptive model 
shall be constructed with the idealisation, 
that the elevators will stop at each storey.3 
An elevator trip must be described for 
mathematisation (Fig. 4), to which elemen-
tary calculations are connected. 

The result (assuming the improbable worst 
case) is a travelling period of 7 min 15 sec 
per elevator, in which the total transport 
time lasts approximately 71 minutes. 

E

1

2
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Stop period:  10s
Start:               2s
Trip:                3s     8s

Return trip:
   20-storey trip:  60s
+ Start:                  2s
+ Braking:            3s 

Departure:    20 8s  = 160s
Stop period: 21

 · 

 · 10s = 210s
Return:                        65s
                              

   

Deceleration:  3s

 435s

 7:15 min

 
Figure 4 

Although the sheer calculations are highly elementary, many errors (especially due to neglected 
stop and brake periods) appeared in the participating students, who could, however, be mutually 
corrected during discussion, in which a diagram similar to Fig. 4 was developed jointly. A second 
exercise section followed, in which three elevators were of service only for the first to the tenth sto-
reys and three elevators for the eleventh to twentieth storeys and, as a result, already bring about a 
significant improvement of the situation. 

The following exercises are kept more open: 

Consider at least three travelling plans for handling the elevator traffic faster. For each model, bring 
forward arguments that agree with or contradict this. 

Design a concept for the management, in which you present proposals, how human flow can be 
reconducted more rapidly. Support the concept by calculations. 

Decide the extent to which it can accommodate the following circumstances: 

• The employees do not wish to be much concerned and do not wish for complicated rules. But 
they just wish to arrive rapidly. 

                                                 
2The complete exercise can be accessed at http://www.fi.uu.nl/alympiade/en. 
3This probability is extremely low: 

 8
20 103,2

20
!20 −⋅≈ . However, the modelling assumption appears self-evident to the 

students (they were not familiar to probabilities and expected values yet). In my opinion, it is important that it concerns 
the worst case and the situation in general is less dramatic. 
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• The management is located on the 15th storey and would most be appreciative of the preferential 
treatment in your concept. 

The following suggestions have been submitted by the participating students: 
1. The three elevators, which first serve the first to the tenth storeys, are of assistance to the upper 

elevators when they are finished with the lower storeys. 
2. Residents on the upper storeys are asked to change elevator in the tenth storey. Thus, the upper 

elevators require less time. 
3. Each elevator serves only 3-4 storeys. 
4. The three elevators in the lower storeys serve 

more storeys (e.g. 1-11) than the ones in the 
upper storeys. 

Following the discussions, the students preferred 
suggestions 3 and 4. They calculated several ex-
amples, in which the realisation that a systematic 
approach is reasonable was achieved. A term for 
the travelling period of an elevator has been de-
fined, which serves the n to m storeys (Fig. 5): E

n

m
Stop
period:     ( – +1) 10s  m n    · 

Start:                    2s
Trip:                 3sn · 

Return trip:

Trip:   

Start:       2s

Brakes:   3s

m · 3s

Deceleration:       3s

Deceleration: 3s( – )m n   · 

Start:               ( – ) 2sm n   · 

Stop period:       10s

Trip:             3s   ( – )m n   · 

 
Figure 5 

(1) 301521=1)10()8(15353 +−+−+−++++ nmnmnmnm . 

Taking into consideration the number 601)( ⋅+− nm  of employees working on the n to m storeys 
and the capacity of the elevators, the students could calculate the total period for transporting all 
employees in the n to m storeys in case only an elevator travels to these storeys:  
(2) 30)15(211)(3 +−⋅+−⋅ nmnm .  

Various errors also appeared in this case, which, however, could be clarified during the discussion. 
 

By using the term defined, the students 
could yet compare and optimise many dif-
ferent variants by using a spreadsheet soft-
ware (see Tables 1-3). 

2 elevators per storey  
Elevators  from n  to m Time (s)  in min.  
1 and 2 1 7 1701 28 
3 and 4 8 14 2142 35 
5 and 6 15 20 2025 33  

 

 

 
 
Table 1 

 

1 elevator per storey 

Elevator  from n  to m  Time (s) in min. 
1 1 4 1188 19 
2 5 8 1476 24 
3 9 11 1134 18 
4 12 14 1296 21 
5 15 17 1458 24 
6 18 20 1620 27 

Table 2 

1 elevator / storey, preferred management 

Elevator  from n  to m Time (s)  in min.  
1 1 5 1800 30 
2 6 9 1548 26 
3 10 13 1836 31 
4 14 15 810 14 
5 16 18 1512 25 
6 18 20 1620 27  

 
 

 
 
 
 
 
 
Table 3 

The processing of the apparent modelling exercises outlined extended over two 90-minute lessons. 
Designing the most potentially favourable procedures represented an appealing challenge for the 
students.  

Conclusions 
The exercise described combines a series of aspects of mathematical modelling by using approaches 
which are typical for informatics. It has been demonstrated that many model structures in mathe-
matics and informatics may appear in similar manners in different contexts. The deliberations delin-
erated for the elevator control are described as normative model structures, in which, however, the 
categorisation borrowed from informatics essentially appears to be better described as concept (es-
pecially process) modelling. From a mathematical pedagogical viewpoint, terms (1) and (2) are de-
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scriptive mathematical models which satisfy the predictions, whereas they are arranged in an infor-
mation system model classification as (system) investigation models (specifically as deterministic 
analytic models) (cf. [11], p. 55). 

When developing concept models, it is often emphasised that "the best model" does not exist, but 
rather benefits and disadvantages of different models are to be balanced against one another and 
priorities are set. A fairly high extent of openness in the exercise discussed here is the result of this.4 

Concept models can also make a contribution to place more emphasis on the structuring as well as 
reassignment phases. In particular, the frequently postulated repeated run of the modelling cycle 
appears almost inevitable in the exercises to design processes, since optimal solutions in general are 
not found in a single step, but rather arise stepwise when investigating corresponding models and 
different models must be compared with one another.  

In summary, based on the different facets of the exercises considered in this paper, the hypothesis is 
thus formulated that informatics modelling concepts can also enrich the modelling in mathematic 
lessons. 
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