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Introduction

Karl-Heinz Schlote, Martina Schneider

Mathematics and physics have interacted in Western science for a very
long time. Both disciplines have profited from this on-going process in
many ways. To capture the dynamics of this long-lasting interaction
is far from simple since a multitude of aspects has to be taken into
account. Analytically one might distinguish between developments on
different levels of this interrelationship: individual, local, institutional,
disciplinary, global. Of course, the outcome of this interaction, i. e.
theories and concepts, is part of the parcel.

On an individual level, questions about the training of a scientist (who
were his or her teachers? which books were studied? which courses
were attended?), about his or her contacts, collaboration or publications
with other scientists may be asked. This might already reveal networks
operating on a local, regional, national or international level.

On a local level one might also consider connections between different
departments of a university or more generally with local learned societies
that focus on mathematics and/or natural sciences, or with local industry.
Of course, we should also investigate how the two disciplines were
institutionalized and in particular, how mathematical and theoretical
physics were institutionalized. Were there chairs especially designated
to these fields? How and when were they created? Can we identify a
local research group or even a research school with a research program
drawing on mathematics and physics alike? If so, what about the
training of junior researchers? Or do we find individuals who had a
lasting influence on the development? What about the establishment of
institutes for mathematical or theoretical physics? Here we touch upon
questions of professionalization, institutionalization and the genesis and
development of disciplines.
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With regard to the last aspect certain subdisciplines or fields of
knowledge – however difficult they are to distinguish – might attract
special attention like mathematical and theoretical physics. However, as
shown by the articles in the conference proceedings, interaction between
mathematics and physics may also take place, perhaps unexpectedly,
in other parts of the disciplines, like in experimental physics where
experiments might be designed differently to meet the demands of
mathematical-theoretical theory building and in pure mathematics
in which certain developments are stimulated, advanced, or even
triggered by this interplay. We can detect the co-evolution of knowledge,
i. e. parallel, but separate developments in the two fields leading to
similar concepts or theories, but also developments that are temporally
and disciplinarily distinct. Sometimes both fields of knowledge are
re-modelled by this interaction.

If a wider context than that of the two disciplines is considered,
then their interaction can be studied from a philosophical, or rather
epistemological point of view. This can also be done with regard to
the various opinions on this subject held by the working scientists.
Furthermore, the relations with the development of technology and with
industry might be a fruitful perspective. But, of course, other social or
cultural developments might be important for the shaping of knowledge
in the field, e. g. the two World Wars or also a general public fascination
for certain events or gadgets.

Finally, we might look for global dynamics of the interaction between
mathematics and physics. This perspective still seems to be rather
difficult when applied to the 19th and the first half of the 20th century
since a general, global pattern is not clear, apart from the truism that
there exists a growing tendency to mathematize not only physics, but
also other branches of knowledge. The dynamics of the interrelationship
is so diverse, driven by individuals and/or local research groups who
followed often very different ideas, had different aims and used different
methods. Instead of trying to unify these different approaches and
dynamics, the conference proceedings aim at showing the wealth of
forms in which the interrelationship between mathematics and physics
manifested itself on the different levels during the 19th and the first half
of the 20th century.
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The interaction of mathematics and physics is often treated under the
heading “the mathematization of physics”. This mathematization does
not usually consist of the simple, tool-like application of mathematics
(or, to be more precise, of a mathematical theory or concept) to a field
of physical knowledge, but rather in this meeting of mathematics and
physics both fields undergo changes and modifications – varying in scale
– in order to facilitate an input of mathematics into physics. With the
mathematization extending to more and more branches of physics and
with mathematics increasingly becoming the language of physics, these
modifications might become less and less apparent. However, there
were and still are some areas of physics, in which mathematics is not –
maybe not yet, maybe never – of importance for the understanding of
the field.

As numerous studies in the history of science have shown, the
mathematization of physics takes different forms: There are publications
dealing with axiomatization or formalization of existing physical theo-
ries. Quantification might play a central role. The elaboration of existing
physical theories with regard to mathematical rigour, completeness,
exactness and/or consistency is another form of mathematization.
Sometimes physical theories are modified on mathematical grounds.

Apart from the obvious function to deepen the understanding of
physics, mathematization is of particular use for clarifying the structure
of a physical theory as well as its formal problems. Sometimes a
mathematical concise description of phenomena is achieved. In addition
to that, mathematization can contribute to the unification of formerly
disjoint fields of physical knowledge, of some of their concepts or even
of hitherto different phenomena. In some cases, a new theory is created
by mathematization, entailing a new understanding of the phenomena
in question. For some scientists, mathematical features, even such vague
ones as mathematical simplicity or mathematical beauty, might act as a
guide for physical theory-building.

If one studies the mathematical-technical side of this process and
asks what kind of mathematics is ‘applied’, one is also faced with a
great variety. On the one hand, well-established mathematical theories
(one might call them ‘old’ theories) are drawn on to capture physical
phenomena. Often, these mathematical theories or mathematized
physical theories had been applied successfully in other fields of physics
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before, like calculus or mechanics. On the other hand, also new
concepts and new mathematical theories are applied or even created.
Sometimes mathematical structures are rediscovered by physicists. The
mathematical techniques can be found both on a local level, to solve
a specific problem as well as on a more global level that affects larger
parts of a theory.

Various arguments are given by the scientists to legitimize the math-
ematization of parts of physics, if this aspect is addressed at all. Scientists
might refer to experiments, general experience, consistency with former
theories etc. to explain their engagement in mathematization. They
might also refer to philosophy to explain and support their practice or
even build their own epistemological frameworks.

Other important aspects to be investigated are the publication and
reception of attempts to mathematize physics. In which journals were
the articles published? When did the first monographs and textbooks
appear? Do we find joint publications by mathematicians and physicists?
How, when and by whom was a certain approach taken up or discarded?
Did the topics of mathematization reach the interest of the general
public?

However, only looking at the mathematization of physics results
in a distorted picture of the vast panorama of the interrelationship of
mathematics and physics since the impact of physics on mathematical
research is missing. One does not have to go as far as to speak of a
“physicalization of mathematics” (A. Schirrmacher) to acknowledge the
stimulation mathematics gets from the physical sciences. Physics is
not only a source of ideas and inspiration for mathematical research.
A lot of mathematics was created to solve physical problems. In this
process, also physicists have come up with new mathematical entities
and concepts worth studying from a mathematical point of view. They, at
times, even take up tasks primarily ascribed to mathematics, doing truly
mathematical research. Physics may also function to legitimize research
in a certain mathematical area. One might even ask in which way the
dynamics of mathematical research, e. g. the temporary blossoming of a
mathematical field, is related to physical relevance. In general, this side
of the interaction of mathematics and physics has not been studied so
thoroughly as the mathematization of physics – which is also reflected
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in the conference proceedings. In our opinion, however, this process
needs further investigation.

A brief survey of the papers of the conference proceedings will now
be given and some of the dynamics of the interaction between the two
disciplines just mentioned will be pointed out. The first section deals
with the interrelationship between mathematics and physics from a
more general perspective. J. Lützen discusses in what way one could
describe this interrelationship as an application of mathematics to
physics. To capture its features Lützen introduces the following image:
The application of mathematics to physics cannot be compared to the use
of a stone for opening up an oyster, but rather to the use of a screwdriver
on a screw. Just like a screw and a screwdriver, mathematics and physics
can hardly be perceived independently of each other. To underpin this
claim Lützen gives a series of examples: how central parts of Liouville’s
mathematics was inspired by and based on physical problems; how
the development of non-Euclidean geometry can be seen as part of a
physical investigation; how a geometrical form led Heinrich Hertz to the
introduction of the concept of “Massetheilchen” into his mechanics; how
Schwartz’s work on the theory of distributions was inspired by physics.

J. Šebesta takes a different approach to the topic. From the perspective
of a theoretical physicist, he points to the usefulness of mathematics
for physics. He differentiates between two roles of mathematics with
respect to theory-building in physics: mathematics as a tool and its
epistemological role. He illustrates his scheme by sketching numerous
examples ranging from the time of Galileo Galilei and Johannes Kepler
to the 20th century and drawn from diverse physical fields. In doing
so, he points to various shifts in the relationship between mathematics
and physics with respect to the creation of physical theories, e. g. an
increasing distance from the empirical basis or the resort to new, hitherto
unused mathematical concepts and results. He suggests putting this
down to a fundamental asymmetry between empirical and theoretical
cognition.

The local level of the dynamics of the interaction between mathematics
and physics is the focus of the second section, which consists of three
papers, the first two paying special attention to the institutionalization
of theoretical (and mathematical) physics and to the denomination
policy. In the first paper, K.-H. Schlote and M. Schneider compare
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the developments at three German universities (Jena, Halle-Wittenberg,
Leipzig) during the period from 1815 to 1945. During the first half of
the 19th century the philosophical foundation of the interrelationship
was of central importance to Jakob Friedrich Fries in Jena. Later on
questions of optics closely connected to the construction of instruments
dominated the research of physicists in Jena. The later development has
to be seen in the context of the local optical industry (Carl Zeiss, Otto
Schott), since in Jena industry and university were closely linked with
respect to finance and personnel. The development at Halle university
from 1895 onwards illustrates how theoretical and experimental research
were interwoven in the research of theoretical (and also experimental)
physicists. In Leipzig one can witness the early establishment of a strong
tradition in mathematical physics which delayed the institutionalization
of theoretical physics. It was only in the 1920s that Leipzig succeeded in
becoming one of the leading centres of quantum mechanics, atomic and
molecular physics by appointing Peter Debye, Werner Heisenberg and
Friedrich Hund. The mathematician Bartel Leendert van der Waerden
took on the role of their mathematical advisor. Thus, a wealth of
dynamics on various levels could be captured by this research.

In the second paper, K. Reich gives a survey of the development of
theoretical physics at Hamburg university from the time of its foundation
to 1959 when the plan for a particle accelerator (DESY) took shape. She
concentrates on Wilhelm Lenz, who initiated a small research group,
and some of his students and collaborators (Ernst Ising, Wolfgang
Pauli, Werner Theis, Hans Jensen, Erwin David). With respect to
the interrelation of mathematics and physics a couple of features are
mentioned, e. g. the mathematicians’ support (in particular that of
Wilhelm Blaschke) in establishing a professorship for theoretical physics
in 1921, their commitment to lecturing on relativity theory (Erich Hecke,
Blaschke, Emil Artin) and Pauli’s presence in Artin’s lecture course on
hyper-complex systems (algebras). Reich also points out developments
related to the rule of the National Socialists and thus touches upon
influences from the political context.

This thread also plays a prominent role in the third paper – J. Ritter’s
paper on Oswald Veblen, Luther P. Eisenhart and the Princeton School in
the 1920s and early 1930s. Veblen’s activity in military research during
the First World War led not only to a re-orientation of his research to
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differential geometry in order to integrate mathematics and physics in a
new synthesis, but also to a re-organization of his research as a collective
enterprise – both aiming at raising the US, and in particular Princeton,
to a world-class scientific power. Ritter describes how mathematics
and physics are re-modelled in this process by showing their essential
unity and by drawing on lessons from the past to inspire new geometry
and physics. The Princeton scientists who were part of the research
group pursued different strategies of mathematization for different
problems. They offered rigour and completeness to existing theories
(Eisenhart working on Weyl’s and Einstein’s theories), modifying exist-
ing theories on the basis of mathematical demands (Tracy Y. Thomas on
the same topic), and putting forward their own new physical theories
(Veblen/Hoffmann on relativity). After the Second World War this
unity between mathematics and physics for which the Princeton group
strove was lost, ironically due to the work of Princeton geometers of the
post-Veblen period. By focusing on Veblen and showing the links to work
done outside Princeton as well as the contacts with scientists outside
Princeton, by focusing on institutional as well as mathematical-technical
aspects of the interaction of mathematics and physics, Ritter integrates
various perspectives in his study and is able to give a very rich analysis.

The individual element of the interrelations between mathematics and
physics is the focus of the articles of the third section. Each of them is
centred on a prominent scientist whose work and impact is analysed
with regard to those interrelations.

E. Scholz investigates what Weyl’s research tells us about Weyl’s
varying conception of the interrelation between mathematics and physics.
He identifies three forms of applying mathematics to physics in Weyl’s
research: firstly, mathematical contributions with a mainly speculative
and a priori claim of recognition for physics, secondly, the analysis of
concepts regarding the foundation of physics, and thirdly the use of
mathematics in a structural function or rather as the essence of what
Scholz calls “the symbolic construction of reality”. These forms do not
characterize different periods of Weyl’s thought with one following
the other, but rather can be found in varying degrees in Weyl’s work –
thus giving a complex picture of his conception of the interrelationship.
At the same time Scholz’s analysis shows the stimulating impact of
physics on various fields of mathematical research. The general theory
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of relativity, the rising quantum mechanics and unified field theories
caused Hermann Weyl to engage in very different ways in theoretical
physics. Although at times he was in close contact with physicists,
discussing his ideas, he never became the founder of a school or a centre
of research.

The reception of the special theory of relativity in France and the role
of Henri Poincaré within this process in combination with a broader
view on the state of theoretical physics in France at the turn to the
20th century form the core of S. Walter’s contribution. Walter points
to the striking differences in this reception between France, Germany
and some other countries which is manifested by a quantitative analysis
of publications. He then analyses Poincaré’s activities in physics in
the decades around 1900. This qualitative analysis shows not only
Poincaré’s intellectual and institutional dominant position in French
science and his great impact on theoretical physics in France, but also
reveals some of his controversial judgements on the studies of other
physicists, which quickly turned out to be misjudgements. Poincaré
launched his own theory of relativity mainly before 1905 and in 1912
he recognized the philosophical significance of the Einstein-Minkowski
theory of relativity. The Einstein-Minkowski theory first received strong
support from French physicists in their publications in 1911. The change
to this theory is connected with the physicists Paul Langevin, who
became Poincaré’s successor, Jean Perrin and Ernest Maurice Lémeray
as well as with mathematicians like Émile Borel and Élie Cartan, and
thus to a generational change.

With the emergence of relativity and quantum theory in the first half
of the 20th century the interrelationship of mathematics and physics
entered a new phase. The problem of indeterminism was one aspect
that was at the heart of this process in the 1920s. It entered physics
especially in the work of James Clerk Maxwell and Ludwig Boltzmann
on thermodynamics in the 19th century and gave rise to lively discus-
sions especially among German physicists and mathematicians in the
1920s. In this context R. Siegmund-Schultze calls our attention to von
Mises’ contribution to the description of physical processes by applying
probabilistic and statistical methods that was published in 1920 and is
nearly forgotten today. He assesses the impact of von Mises’ contribution
as largely a methodological-philosophical one in the discussion of the
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role of indeterminism in physics which weakened the postulate of
determinism. In this connection, he also re-evaluated von Mises’ role
that P. Forman attributed to him in his well-known work which links the
discussions about indeterminism with social conditions of the “Weimar”
Republic. In his research, Richard von Mises touched upon some topics
that only later became prominent with the further progress in quantum
physics. This, in turn, had also some influence on his research in the
late 1920s which includes his contributions to ergodic theory, the theory
of stochastic processes, the statistical applications in physics, as well as
his changing opinion on the problem of indeterminism. From a more
general point of view, this analysis elucidates the difficulties arising
from the description of complicated physical processes that consist of
the movement of many separate particles.

C. Lehner puts special emphasis on the changes in theoretical physics
which took place in the first third of the 20th century. They led to a
new assessment of theoretical physics. Theoretical physicists became
much more engaged with mathematics than before. Discussing the work
of Pascual Jordan and his visionary program of a unified quantum
field theory, Lehner tries to demonstrate that a new generation of
physicists launched a new idea of theoretical physics. Comparing
Jordan’s approach to the research done by contemporaries like Erwin
Schrödinger, Paul Dirac, and John von Neumann, he gives an impression
of the richness in the theoretical variety that a study of this process offers.
Lehner attempts not so much to sketch some features of the new stage
of theoretical physics as to stress mainly the peculiarities of Jordan’s
situation. Formed by the unique Goettingen atmosphere of the 1920s,
Jordan seems to have regarded mathematics and physics as essentially
not distinct. Jordan went beyond what might be seen as the typical task
of a mathematical physicist, “the precise elaboration of existent physical
theories” and put forward far-reaching ideas about the foundations of
quantum physics. He realized that new paths had to be taken and he
worked on them in quantum field theory in particular. His contributions
to this field were, however, not well received by his contemporaries. He
never reached a solid mathematical ground and abandoned this line of
research in 1929. Lehner points out that, taken from a wider perspective,
the two characteristic features of modern theoretical physics, radical
positivism and fundamental universalism, were at odds in Jordan’s
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research. With regard to the interplay of mathematical and theoretical
physics, the changing roles of visualization and theoretical models
elaborated in this context are also worth mentioning.

Many questions and problems regarding the interrelations between
mathematics and physics that arose in the realm of individual research
activities also emerged in the context of analysing the development of
concepts and theories. These topics are treated from this broader point
of view in the last section. The section partly deals with the same fields
of physics as the papers sketched above.

J. Lacki looks in detail at the foundation of quantum mechanics.
Sketching the historical situation in the mid 1920s, he points to the
four different formalisms that existed in quantum mechanics: wave
mechanics, matrix mechanics, q-numbers, and operator calculus. Each
used different types of mathematical objects and followed a varying
logical order of presentation. He is able to identify a common feature
of the representatives of these four formalisms: mathematicians and
physicists alike lacked both a geometrical intuition and an insight
into the linear structure of their respective issues and problems. The
decisive step taken to change this was initiated by the physicist Fritz
London. Striving for a better understanding of the equivalence of
matrix mechanics and wave mechanics, he studied the analogy between
the transformations of variables which occur in solving the quantum
mechanical problem and the classical canonical transformations of
coordinates. London realized the linearity of the operations, stressed
the importance of the linear structure and referred to the publications
of mathematicians like Salvatore Pincherle and Paul Levy. Today these
publications count as pillars in the early history of functional analysis.
There followed an interesting interplay between quantum mechanics
and functional analysis including the theory of linear spaces that found
its first important outcome in von Neumann’s foundation of quantum
mechanics which was based on the theory of operators in Hilbert space.
In addition to the intensive mutual influences between these fields, it is
noteworthy that the essential impulse towards the structural property
was given by a physicist.

Investigating the construction of the relativistic wave equation of the
electron, H. Kragh gives an interesting instance of the interplay between
mathematics and physics in the late 1920s. At that time the theory of the
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electron that the physicists were searching for had to be compatible with
both the new quantum mechanics and special relativity and, in addition
to that, was also to include the spin of the electron. The solution to this
task was a result of Dirac’s work. His crucial step was the reduction of
the physical problem to a mathematical one. Then Dirac got his results
by “playing around with mathematics” and by disregarding physics.
On the one hand, the introduction of Dirac’s relativistic wave equation
meant that physicists had to leave their path as far as the mathematical
description of the problem was concerned. On the other hand, the objects
introduced by Dirac, like special operators and matrices, stimulated a
lot of new mathematical research on Clifford algebras and operator
theory. Thus, both disciplines profited in this process. Dirac himself
appreciated mathematics as a useful tool for physical research. Later on,
Dirac pointed to the vague concept of mathematical beauty as a strong
motivation for him. Kragh, however, claims that this concept did not
influence Dirac’s way of research on the relativistic wave equation.

One of Dirac’s ideas, the famous delta-function, also forms a starting
point of K.-H. Peters’ article. Peters covers the use of the delta-function
and other generalized functions in quantum mechanics as well as in
quantum field theories later on and the establishment of a mathematical
rigorous theory of these functions. He draws our attention to a new and
unusual point of view, culminating in the hypothesis that mathematical
and phenomenological rigour (mathematische und phänomenologische
Strenge) are closely correlated. According to Peters, phenomenological
rigour is the rule that the mathematical linking of (physical) facts has
to be connected only with the facts themselves and not with any causes
in the back. From this point of view, Peters interprets the process
of the rigorization of mathematical concepts and methods used in a
physical theory as a process that promotes a focusing on real observable
facts. Hence, the installation of mathematical rigour removes imaginary
magnitudes within the physical theory and makes it more realistic – a
total reversal of the common interpretation of the interrelations between
mathematics and physics. Nevertheless, further investigation has to
sharpen the definition of the concept of “phenomenological rigour” and
to test whether this hypothesis holds true in other contexts.

The genesis of concepts as well as their development including their
transition into new physical fields form an important aspect of the
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interrelations between mathematics and physics. A. Borrelli analyses in
detail how the concept of angular momentum emerged in mechanics,
electrodynamics, quantum mechanics, and quantum field theory as well
as its adaptation from mechanics to quantum mechanics. Her analysis
deals with the development in France, Great Britain and Germany in
the period from 17th to the early 20th century. She explains why the
various concepts of angular momentum which differ are nevertheless
perceived as the “same” physical concept. Her research shows that
there existed a close correlation between certain aspects of physical and
mathematical practices. Borrelli does not stop here, but also embeds the
development in wider, philosophical and technological contexts. The
concept of angular momentum is shaped and constantly supported by
ongoing interactions and unresolved tensions between these different
fields. Like other such concepts, it emerged from a co-evolution of
mathematics and physics.

As mentioned above, there exist some fields in physics, like the
theories of electricity, magnetism, heat, or colour, that for a long time
developed on an empirical-experimental basis without any connection
with mathematics. A mathematization of these fields took place only
in a late stage of their development. F. Steinle examines this process
with respect to the genesis of the electromagnetic field theory in the
works of Michael Faraday, William Thomson, and Maxwell. He starts by
giving three common features which can be ascribed to such a process
in general: Firstly, the mathematical analysis starts with a specific
hypothesis about a hidden mechanism at a microscopic level and uses
methods from other physical fields, especially from mechanics. These
methods might have to be modified and adapted to the special case
under investigation. Secondly, experiments are designed, specified and
evaluated on the basis of these mechanical speculations. They serve
either to correct and refine the hypothesis or to improve the data basis
and to determine quantitative trends. Thirdly, the scientists who are
engaged in this process are acquainted both with mathematics and
physics and contribute to empirical as well as to mathematical research.
Steinle then shows that this pattern does not apply to his case. In his
case, the experimental investigations and the forming of qualitative
concepts by Faraday was completely separated from the later proper
mathematization done by Thomson and Maxwell. This mathematization
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included the development of new mathematical concepts and methods
and the difficult process of adjusting Faraday’s more qualitative concepts
to those ones. Although Faraday knew little about mathematics, some
of his concepts were also of a mathematical character – so much so that
Maxwell characterized him later as a “mathematician of very high order”.
Faraday tried to introduce an appropriate system of reference that was
to handle the various dependencies. This system showed similarities
with the geometry of position. Furthermore, Faraday’s experiments did
not have any relation to microphysical speculations and an explorative
character. Steinle then shows how Thomson and Maxwell drew upon
Faraday’s results in their mathematization of electrodynamics, and why
in Maxwell’s view Faraday could be called a mathematician. Steinle’s
study opens up a new view on the relations between mathematics and
experimental physics which introduces new facets of their interaction
and points to the role of experimental physics in theory-building.

To sum up, the papers in the conference proceedings display the many
different ways and circumstances how the two disciplines, mathematics
and physics, and their practitioners come together, how they “meet” and
how many different forms these “meetings” can take. The picture of the
interaction which is drawn here is a multi-facetted one, a kind of mosaic.
In order to understand this interaction more thoroughly, more research
on the dynamics at all levels and in various contexts (philosophical,
technological, social, economical, etc.) is required. This could give us a
useful basis for a comparison with other processes of mathematization
in other disciplines.




