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1 Introduction

In this paper I would like to elucidate the role of mathematics in the
creation of physical theories – both from the historical and epistemo-
logical point of view. First of all let me begin with speaking about the
motivation for this issue.

2 Physical theory as the essence of physical
knowledge

A very interesting problem is discussed very often: what is the ground of
physical knowledge – experiment or theory? Usually, experience is the
starting point only, but it is not the ground of knowledge. Physical
theory is the ground of physical knowledge. Why is that? Firstly,
a historical analysis of knowledge development shows that there is
an asymmetry between empirical and theoretical cognition: namely,
there is not pure empirical cognition, almost always it is accompanied
by theoretical cognition because human beings are thinking beings.
Theoretical cognition very often starts from empiricism, but it becomes
autonomous at a certain stage of its development. Moreover, thanks to
abstractions, formal logic and mathematics, it is able to penetrate reality
far more deeply than empiric cognition and to acquire new findings.
Secondly, theory is not only a system of knowledge but it also provides a
method how to acquire findings, how to systematize and explain it. It is
mathematics and a system of concepts that carry out such a function in
physics. Thirdly, last but not least, only a theoretical form of knowledge
is able to provide the explanation of phenomena and it is known that
explanation is the main objective of any cognition. Therefore, physical
theory is the central point of physical knowledge.

3 The four basic pillars of physical theory

It follows from the analysis of the history of physics that any physical
theory rests on four pillars: physical ideas about the mechanism of
phenomena, adequate mathematical description, philosophical and
methodological bases, and the physical world-view. A short comment
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has to be made: one can say that the philosophical and methodological
base is sometimes explicitly formulated, sometimes it is not evident, but
it is always present. Speaking about the physical world view we have in
mind a professional one – it means a complex of ideas, concepts, models,
laws, methods of cognition etc. which a certain physicist has acquired
during his study and professional work. Every physicist is influenced by
his world view when he chooses the theme of his research, his methods
of investigation, an interpretation of the results, a way to create a theory
etc. We focus hereafter on the mathematical aspect of physical theories,
on the role of mathematics in the development of physics. However,
we touch philosophical and methodological aspects too, because it very
strongly influenced the usage of a concrete mathematical method very
often.

4 Mathematics as a tool for the construction
of a physical theory – a historical survey

The relationship between mathematics and physics in the process of
creating physical theories has been changing. We will demonstrate how
mathematics was used in the creation and development of the main
physical theories.

4.1 Classical mechanics
Classical mechanics originated as a system of physical ideas, concepts
and laws described and explained by geometrical language. Galileo
Galilei insisted that physics should be mathematical. He set up the
mechanics of a terrestrial body’s motion. To describe the most simple
phenomena – free fall, horizontal and inclined throw etc. – he used
Euclidian geometry. Johannes Kepler acted analogically when he set
up celestial mechanics. In addition, he used a method which could be
called geometrical integration.

Isaac Newton summarized, systemized, developed, and set forth
results of previous development of mechanics mathematically. Nev-
ertheless, he did not use his method of fluxions in his main work on
mechanics Principia mathematica1 but he used a geometrical method as

1 Newton 1687
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Galileo did. So one can say, that the relationship between mathematics
and physics in Newton’s theory is more or less discrepant. Firstly, in
the Principia, he used a mathematical procedure: as it was common in
works on geometry he formulated definitions, hereafter axioms and
lastly he solved deductively several mechanical problems. Secondly, he
created a method of fluxions and his setting in the Principia is very close
to the method of infinitesimal quantities. On the other hand he solved all
mechanical problems by a geometrical method – by means of abscissas,
curves, tangents and angles. Why did Newton not use the method of
fluxions in his Principia? In our opinion the most relevant view is the
following: he became a victim of his conviction that what really exists
is veracious only. At that time he could not say that the issues of his
mathematical investigations were real. Because of this reason these
researches were absolutely independent from his mechanical studies.

The next step was made by Leonhard Euler. He reformulated
Newton’s mechanics by means of the language of Leibniz’s differential
and integral calculus; Euler rewrote Newton’s second law of motion
in the form of a second order differential equation. Strictly speaking,
only from this moment onwards Newton’s second law can be called
an equation of motion. Later Euler projected vector lines of forces onto
axes of a cartesian coordinate system and obtained the equations of
motion in the modern form. Therefore, Newton’s second law in analytic
form became a ground for Euler’s mechanics. Thereafter, by means of a
new equation, Euler studied various motions of a free point mass, of a
constrained point mass, of point mass systems etc. A new mathematical
apparatus was used by Euler for the description of the motion of rigid
bodies too. So one can say, that Leonhard Euler built a very strong
foundation of analytical mechanics. Its development was completed by
Joseph Louis Lagrange.

Lagrange formulated the principle of virtual displacements (La-
grange’s principle) which became the ground of statics. Thereafter
he chose a combination of his principle and d’Alembert’s principle
as the ground of dynamics. Starting from these two principles he
derived the general equation of mechanics. In addition, he introduced
generalized coordinates to gain a number of equations equal to the
degree of freedom what is the mathematical requirement. By means of
generalized coordinates he derived the so called Lagrange equations of
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the second kind for a special function later called Lagrange function. He
applied a general equation of mechanics also for solving a problem when
the reaction forces of constraint had to be found out. By means of the
so called Lagrange multipliers one can derive the Lagrange equations
of the first kind from the general equation. All mentioned results were
published by Lagrange in his Analytical mechanics2. We can say that in
this book mathematics and physics are tools of equal value.

William Rowan Hamilton’s works were the next stage in the math-
ematical improvement of classical mechanics. In 1828 Hamilton pub-
lished a paper entitled Theory of systems of rays3. He constructed the
mathematical apparatus of geometrical optics based on the so called
principal function. It was applied to the description of light propagation
regardless of the concrete notion of the nature of light. In 1834 – 35 W. R.
Hamilton extended the theory of optic phenomena also to mechanics in
the essay On a General Method in a Dynamics4 based on the principle of
varying action. The equations of motion derived by him in this paper
are equivalent to Lagrange’s equations. So they represent a culmination
of classical mechanics. Moreover, Hamilton’s canonical equations
transcended the frame of mechanics because they were lawful also in
optics and later in physics generally. Soon Carl Gustav Jacobi formulated
the so called Hamilton-Jacobi equation. This method was applied by
Josiah Willard Gibbs for creating statistical mechanics. Hamilton’s
analogy between optics and mechanics was used in the 1920s by Erwin
Schrödinger then he was developing the wave variant of quantum
mechanics.

4.2 The theory of the electromagnetic field
The constitution of the theory of the electromagnetic field was analogical
in a certain sense to the origin of classical mechanics. Firstly, the
experimental ground was created by Michael Faraday and after that a
theory was formulated by James Clerk Maxwell. Maxwell learned in
detail results and ideas of the great experimenter and he understood that
Faraday’s method of description and interpretation of phenomena is a
mathematical one in spite of the fact that it is not expressed by means of

2 Lagrange 1788
3 Hamilton 1828
4 Hamilton 1834
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mathematics. So he aimed at translating Faraday’s ideas, notions and
results into the language of mathematics.

In the first paper On Faraday’s lines of force (1856)5 Maxwell applied
the mathematical apparatus of hydrodynamics for describing the lines
of force and tubes of force, for describing the electric current and
magnetic phenomena using the analogy with the flow of a hypothetical
non-compressible liquid. In such a way he found out the mathemat-
ical transcription of Faraday’s ideas. In a second paper On physical
lines of force (1861)6 he predicted electromagnetic waves by means of
mathematics. He also proved that the wave velocity is equal to the
velocity of light. Maxwell’s theory was completed in the paper A
dynamical theory of the electromagnetic field (1864)7. Here he defined 20
field quantities (six vectors and two scalars) and formulated 20 equations
using the quaternion calculus of W. R. Hamilton. Later vector calculus
was developed from the quaternion one and Maxwell’s equations were
reformulated by means of vectors thanks to the effort of O. Heaviside,
J. W. Gibbs and H. Hertz, and Maxwell’s equations acquired the modern
form – as four equations for the field vectors E, B.

4.3 The theory of relativity
The special theory of relativity was created in two steps. Firstly, A. Ein-
stein set up a physical variant of the theory in 1905. For our purposes the
second step was very important, a step made by Hermann Minkowski.
In 1908 he introduced a four-dimensional formalism, in which originally
autonomous quantities, such as space and time, momentum and energy,
the intensity of an electric and the induction of a magnetic field were
put together into four-vectors and four-tensors of the second degree.
In such a way the original equations were transformed into equations
between four-dimensional quantities. The behavior of four-vectors
and four-tensors under the Lorentz transformation induced that the
covariance of equations was provided automatically, so the validity of
Einstein’s principle of relativity was also guaranteed automatically. The
position of each body in a certain state was represented by a world-point
– a point in a four-dimensional pseudo-Euclidian space called world, and

5 Maxwell 1856
6 Maxwell 1861
7 Maxwell 1864
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the time evolution of states was represented by a world line – a curve in
such a space.

The development from special to general relativity was very interest-
ing. Shortly after completing the special theory, Einstein established the
physical ground of general theory of relativity in 1907 – 12. Nevertheless,
he did not have at his disposal the mathematical tools to create a
consistent and complete theory of gravity. Therefore he asked his friend
and classmate Marcel Grossmann for help. Grossmann found out that
the non-Euclidian geometry developed by Bolyai, Lobachevsky and
primarily Riemann could become the proper tool for building the new
theory. In a joint paper published in 1913 the laws of physics’ covariance
towards non-linear transformation was postulated, and the formula for
the space-time interval was generalized to be valid also in the case of
body motion in a gravitational field. Einstein and Grossmann derived the
equations of motion of a mass point and the arbitrary mass distribution
affected by gravity. In the new theory a world line became a geodetic
line in non-Euclidian space-time. A mass point moves along geodetics in
a curved four-dimensional pseudo-Riemannian space. In 1915 Einstein
completed the equation of the gravitational field and found the solution
of it.

I would like to present a very interesting and instructive example of
how the mathematical formulation of a theory can be influenced by a
philosophical and methodological assumption. I mean the introduction
of Einstein’s lambda-term. After completing general relativity Einstein
tried to apply it to the description of the Universe. He supposed that
the Universe could be represented by a closed three-dimensional space
(three-dimensional sphere) with finite volume and that the Universe
does not change in time. But such an assumption was in contradiction
with Einstein’s original equation. To provide equivalence between the
stationary model of the Universe and the equation of the gravitational
field Einstein added a new term into the equation, the so called lamb-
da-term. Fortunately, it came to light very soon that Einstein’s model
of the Universe was wrong. The Russian mathematician Alexander
Friedman demonstrated the possibility of a non-stationary universe and
he found out three solutions of Einstein’s equation which represented
three scenarios of the Universe evolution (1922 – 1923). Several years
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later Edwin Hubble discovered that the redshift increased with distance
(1929). This discovery led to the idea of an expansion of the Universe.

4.4 Quantum mechanics
Quantum mechanics originated as a result of the effort to solve several
different problems: black-body radiation, the line form of spectra, the
stability of atoms, the structure of light, and the interaction between
radiation and matter. It took a quarter of a century while physics evolved
from Planck’s quantum hypothesis (1900) to quantum mechanics (1925).

At first Bohr’s model came to existence. According to it, electrons
circulate around the nucleus along circular orbits permitted partly by
Bohr’s postulates and partly by Bohr’s quantum conditions. As it
became clear very soon that such a model is not able to describe more
complicated atoms Arnold Sommerfeld and William Wilson generalized
Bohr’s theory for orbits with arbitrary form. Unfortunately, it was
not sufficient, so Karl Schwarzschild and independently Paul Epstein
suggested using the idea of multiple periodical systems – their motion
was not exactly periodical but it can be decomposed into a complex of
harmonic oscillations with frequencies which are linear combinations of
several basic frequencies.

As it became known that the traditional picture of orbital motion is
not suitable for the description of the behavior of electrons and atoms it
was necessary to search for new characteristics of the micro-objects.
The successful research of Werner Heisenberg was inspired by the
observability principle insisted upon by Ernst Mach and Albert Einstein.
At that time frequencies of spectral lines and corresponding intensities
were observable only. For that reason Heisenberg decided to take as the
ground of the new kinematics angular frequencies ωmn and amplitudes
Amn of radiation absorbed or emitted by an atom transiting from a state
with energy Em to a state with energy En. By means of these quantities he
created a two-component expressions with variables m and n. Fourier’s
series consisted of such terms that Heisenberg considered as the analog
of the classical coordinate x(t). Later he derived an expression for
(x(t))2 = x(t) · x(t). He also created the product x(t) · y(t) and he found
out that such a product is not commutative. As he was interested in the
quantization of the energy of an inharmonic oscillator, this problem was
not so important for him and was ignored by him. The quantity x(t)
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and its derivatives were replaced in the equation for the inharmonic
oscillator by the previously introduced quantities. Lastly Heisenberg
calculated the energy levels of the oscillator.

Later Max Born realized that Heisenberg’s two-component quantities
are matrices. He and Pascual Jordan rewrote Heisenberg’s formula
and equations in the language of matrix calculus. As a result the
non-commutativity of products was explained. The matrix variant of
quantum mechanics was completed in a joint paper by Max Born, Werner
Heisenberg and Pascual Jordan (1926), known as Dreimännerarbeit8 in
the history of physics.

Louis de Broglie used a completely different approach to solve the
same problem (1923 – 24). He started from Einstein’s hypothesis of the
light quantum and he ascribed wave character not only to light but
also to particles with non-zero rest mass. After that Erwin Schrödinger
elaborated wave mechanics based on classical differential equations and
moreover he proved that his wave form of quantum mechanics and
Heisenberg’s matrix variant are equivalent from the mathematical point
of view.

The physical interpretation of quantum mechanics was found out
only when its mathematical apparatus was completed. Max Born
suggested a probabilistic interpretation of the wave function (1925).
In 1927 Werner Heisenberg formulated the uncertainty principle and the
uncertainty relationships for canonically associated quantum mechanical
quantities. At that time Niels Bohr stated the complementarity principle.
In such a way the functioning of the mathematical apparatus of quantum
mechanics was justified. Later Paul A. M. Dirac elaborated the theory of
operators and their representations; thereby the non-relativistic quantum
mechanics was completed.

5 The epistemological role of mathematics
in physics

Now I summarize the presented information on the role of mathematics
in the creation of physical theories and on the changes of this role.

8 Born et al. 1926
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5.1 A new mathematical apparatus

First of all we have to observe one very important circumstance: each
new physical theory was formulated by means of a new mathematical
language. Such language was known in mathematics before but in
physics it was not used. For example, classical mechanics was formulated
by geometric language originally but step by step it was reformulated in
the language of Leibniz’s infinitesimal calculus in the works of Euler and
Lagrange. Lastly, Hamilton used the variation calculus elaborated by
Johann Bernoulli and Jacob Bernoulli two centuries before. James Clerk
Maxwell made use of Hamilton’s quaternions to derive the equations
of the electromagnetic field. Maxwell’s equations were reformulated
by means of vector calculus in the works of Oliver Heaviside, Heinrich
Hertz and Jossiah Willard Gibbs. Statistical methods and abstract
phase space were applied in statistical mechanics. H. Minkowski
reformulated physical ideas of A. Einstein by means of the language
of four-dimensional pseudo-Euclidian space-time, four-vectors and
four-tensors. In general relativity methods of non-Euclidian geometry
were used at first, although J. Bolyai, N. Lobachevski and especially
B. Riemann had elaborated the new geometry in the first half of the
19th century. Matrix calculus, operator theory and the theory of vectors
in Hilbert space were applied in quantum mechanics.

The utilizing of a new mathematical apparatus was not a coincidence
or an autotelic event. It gave the chance to describe and explain many
new phenomena and moreover it allowed to gain new findings which
caused many far-reaching consequences. For example, the methods
of analytical mechanics based on differential and integral calculus
permitted to find the solution for all sorts of mechanical problems. The
description of terrestrial and celestial phenomena was unified. The new
apparatus of the theory of the electromagnetic field enabled J. Clerk
Maxwell to predict electromagnetic waves and to calculate the velocity
of their propagation. He found out that it is identical to the velocity
of light. In such a way the description of electric, magnetic and optic
phenomena was unified. It was the second great unification in the history
of physics. Statistical methods applied in statistical mechanics resulted
in the finding that the laws of physics are probabilistic in principle and
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that deterministic laws are only a special case of statistical laws when
the probability is equal to one.

This aspect was generalized in quantum mechanics because it became
clear that the probabilistic nature of physics is not connected to big sets
of a great number of systems only, but it is valid for any phenomenon
even for the isolated atom. There is only one difference: the reason for
the probabilistic nature of laws. In quantum mechanics it is caused by
the fact that the energy and momentum transferred in the process of
measurement are comparable with the energy and momentum of the
measured micro-object. The matrix calculus used in quantum mechanics
indicated non-commutativety of the canonically associated physical
quantities – momentum and position vector, energy and time. It means in
physical language that the mentioned quantities could not be measured
by means of the same experiment or measuring instrument.

In special relativity the formalism of Minkowski gave the chance to
establish a more evident interrelation between certain physical quantities
(coordinates and time, wave vector and angle frequency, momentum
and energy etc.). It also pointed out that space and time are not separable
because the coordinates and time (multiplied by the velocity of light)
became the components of the same four-vector. Analogically, it was
demonstrated that it does not make sense to consider the electric and
magnetic fields separately, but that there is only an electromagnetic field.
Moreover, in the formulation of Minkowski it became clear that not
only the magnetic field could be considered as a relativistic effect of
an electric field, but it is valid vice versa too, so there is a symmetry
between both fields. In general relativity it emerged that the features of
space are not a priori given, but that they are connected to the density of
mass distributed in space. The prediction of the three variants of how
the Universe could evolve (Friedman’s solutions of Einstein’s equations)
were mentioned by us before.

5.2 The ratio of mathematics and physics in the creation
of physical theories

The ratio of physics and mathematics was not equal in classical me-
chanics. At first, Isaac Newton built a theory which was formulated by
means of geometry and thereafter the new theory was reformulated –
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essentially, from the view of mathematics – in the works of L. Euler, J. L.
Lagrange and W. R. Hamilton. On the other hand a new mathematical
apparatus, namely the quaternion calculus, was used by J. C. Maxwell
from the very beginning. For this reason he completed the theory of
electromagnetic field in such a mathematical form that the modifications
made by O. Heaviside, H. Hertz and J. W. Gibbs were more or less
formal. So mathematics and physics were equal tools for the creation
of the theory. Maybe, the situation in statistical mechanics was the
most complicated one. The single components of the new mathematical
apparatus (for example, thermodynamic potentials and expressions of
thermo-dynamical quantities as derivatives of such potentials, abstract
space and geometrical methods – in thermodynamics, statistical methods
– in kinetic theory of gases, methods of phase space – in statistical
mechanics) were introduced in different fields, in a different time and
by different scholars. All methods were lastly unified and fully used
by J. W. Gibbs in the final variant of the theory. The state of affairs
in special relativity was very close to the development of classical
mechanics – the physical variant of Einstein was reformulated by
Minkowski. In general relativity Einstein built the physical ground
of the theory and therefore he and Grossmann found out the proper
mathematical apparatus and expressed physical ideas by means of the
new mathematics – non-Euclidian geometry. A great change set in
when quantum mechanics was created. One can say that the ratio of
mathematics and physics became inverse. Firstly, the mathematical
apparatus emerged and only after that physicists started to search for a
physical interpretation of the mathematical description and of the results
of mathematical calculations.

The fact that the creation of the formal and mathematical apparatus
of a theory is forerunning the physical interpretation of its formalism,
which is so evident in quantum mechanics, will apparently be a more
and more striking feature of physical theories. This is connected to
the circumstance that the physical cognition is penetrating more and
more inward matter, to little areas and dimensions or contrary – to big
areas and dimensions (in cosmology), to high and higher velocities,
to very high temperatures and pressures. So we can say physics is
moving away from the human common experience and as a result
our findings connected to objects and their characteristics are more
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and more mediated. For this reason also the ratio between empiricism
as a starting point of the theory and the physical theory as such is
more mediated. Why is this the case? Our concepts, notions and ideas
are less and less concrete and they become more and more abstract.
Therefore the graphical notions and concepts connected to them are
failing; they do not yet fulfill a heuristic function so this function is more
and more fulfilled by mathematical methods, mathematical models and
non-graphical notions – various mathematical constructs. In our opinion
it is the evident manifestation of the asymmetry between the empirical
and the theoretical cognition, namely that empiricism does not exist
without a theoretical cognition, whereas the theoretical cognition can
develop autonomously. Physics is catching up with the situation, in
which mathematics has existed for several centuries: today hardly any
mathematician realizes that in the forepast history there was a very close
connection between mathematics and common reality.

We would like to mention another important root of the intensive
mathematisation of physics. For physics it is a characteristic effort
to reach maximal universality, so as much as possible to simplify the
system of knowledge according to the principle insisted by I. Newton
and A. Einstein: to explain as much as possible the physical phenomena
by means of a minimal amount of principles. But . . . to simplify
the system of knowledge means to use more and more complicated
mathematical language. For example, in special relativity mechanics and
electrodynamics were unified from the point of view of covariance of the
fundamental equations of both theories towards Lorentz transformations.
In general relativity the principle of relativity was generalized and it
was valid in non-inertial systems too. However, both processes were
accompanied by essentially more complicated mathematical apparatus.

5.3 The axiomatisation of theories

Gradual axiomatisation of physical theories is a very important feature
of their development – especially from the point of view of the theme
of our contribution. We have in mind, for example, the reformulation
of classical mechanics in Hamiltonian-Lagrangean form, the world of
Minkowski in special relativity, the reformulation of thermodynamics in
the works of Carathéodory and Afanaseva, von Neumann’s mathemati-
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cally correct formulation of quantum mechanics. Generally speaking,
axiomatisation means a theory transformation from a form originally
completed by induction into a deductive form. A theory grounded
on several postulates (principles or axioms), which resulted from an
analysis of experiments (but they were not derived from experiments!)
and which are based on common physical or epistemological laws and
methods, is used as the starting point. Such a theoretical system is
equipped only by the necessary mathematical language. Thereafter the
concepts and mathematical apparatus corresponding to the original
theory are enlarged and revised, the equation of motion is derived (for
example, the equation of motion in classical mechanics, Schrödinger’s
“equation of motion” for the wave function), eventually Lagrange’s
function is constructed and the equation of motion is derived from it.
Lastly, the consequences for special events or causes are deduced. Later
such predictions are verified by experiments, thereby a theory is either
confirmed or refuted. In the last case it is necessary to create a new
theoretical system in order to explain such phenomena.

Axiomatisation could be understood as a manifestation of the follow-
ing fact: physical theories tend to develop into a stage when axiomatic,
deductive, formal logical and mathematical methods and procedures
can be applied fully. The aim is a state of affairs when the logical and
formal apparatus can be as much as possible autonomous and extricated
from the original substantiality and “physicality”. In such a way the
laws of the liberated development of form can be enforced fully and new
findings can be acquired. We meet here once more the manifestation
of the asymmetry between the empirical and theoretical cognition: the
empirical cannot exist without the theoretical but the theoretical is able
to develop itself although it often starts from empirical knowledge.

There are several aspects of axiomatisation: logical, historical and
genetic, heuristic, educational and so to speak erlangenisational. Now
the last one will be discussed in detail.

5.4 “Erlangenisation” of physics

What does erlangenisation mean? We have in mind an effort that is in
analogy with the Erlangen program of the great German mathematician
Felix Klein. In the second half of the 19th century he intended to unify
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all known geometries on the base provided by the formalism of group
theory. Each kind of geometry had to be constructed as a theory of
invariants of some group of transformations. Very interesting and
important expectations became the motivation for the erlangenisation of
physics: such approach could be heuristic. But in what sense? One could
try to construct the formalism of a new theory as various extensions of
the fundamental group of the previous theory. It has to be said that some
results were hopeful, however the original intention was not realized.

I can ask the question: why was this effort not a success? Why is it
not possible to construct new physical theories as extensions of some
transformation group which was specific and essential for the old theory?
In our opinion the failure of such tendencies in physics is no accidental
event. We can illustrate this claim by the following example.

In the lecture entitled Space and time9 and presented at the Congress
of German naturalists in 1908 Hermann Minkowski mourned:

«Bei dieser Sachlage, und da Gc mathematisch verständlicher ist
als G∞ hätte wohl ein Mathematiker in freier Phantasie auf den
Gedanken verfallen können, daß am Ende die Naturerscheinungen
tatsächlich eine Invarianz nicht bei der Gruppe G∞ sondern
vielmehr bei einer Gruppe Gc mit bestimmtem endlichen, nur in
den gewöhnlichen Maßeinheiten äußerst großen c besitzen. Eine
solche Ahnung wäre ein außerordentlicher Triumph der reinen
Mathematik gewesen. Nun, da die Mathematik hier nur mehr
Treppenwitz bekundet bleibt . . . »10

We believe the lack of wit was not the problem. The essence of the issue
lies in more depth. H. Minkowski expressed his idea when it was clear
thanks to Albert Einstein that the velocity of light c is a limit for the
velocity of any signal and that this velocity of light is a parameter of
the new group. So before mathematicians could find out the axiomatic
form of the physical theory (namely special relativity), physicists – in
cooperation with mathematicians – had to establish the physical content
of this theory.

However, the idea that physical content precedes axiomatisation
cannot be, of course, generalized. Under certain circumstances the
development of formal aspects in a theory can precede its content. For

9 Minkowski 1909
10 Minkowski 1909, p. 78
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example, in last decades we noticed that the ratio between physical
hypotheses and mathematical models was changed. Gradually, the
analogy with the formal and mathematical description of phenomena is
accented and the analogy with the physical mechanism of phenomena
is weakened. Moreover, trying to find out a meaningful, useful, and
adequate theory, which could function as a base of all sub-nuclear
physics, physicists are constructing various mathematical constructs
and models. Only thereafter they are seeking a physical interpretation
of them. No wonder that this is a job more for mathematical physicists
or even pure mathematicians than for theoretical physicists. The causes
of that situation were discussed above.

6 Conclusion

The finding of the role of mathematics in the creation of physical theories
resulted from an analysis of the historical development of physics
roughly to the end of the 1930s. It is very probable that an analysis of the
development after the 1930s will bring new and different information.
We intimated something in this presentation but only intuitive insights.
To make serious conclusions a serious analysis has to be made. This is a
task for the future.

This investigation was done in the frame of the grant VEGA 1/0453/09
registered at the Faculty of Mathematics, Physics, and Computer Science,
Comenius University.
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