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Abstract. In this work we asses the benefits of removing bias
in climate forcing data used for hydrological climate change
impact assessment at pan-European scale, with emphasis on
floods. Climate simulations from the HIRHAM5-ECHAM5
model driven by the SRES-A1B emission scenario are cor-
rected for bias using a histogram equalization method. As
target for the bias correction we employ gridded interpolated
observations of precipitation, average, minimum, and max-
imum temperature from the E-OBS data set. Bias removal
transfer functions are derived for the control period 1961–
1990. These are subsequently used to correct the climate
simulations for the control period, and, under the assump-
tion of a stationary error model, for the future time win-
dow 2071–2100. Validation against E-OBS climatology in
the control period shows that the correction method performs
successfully in removing bias in average and extreme statis-
tics relevant for flood simulation over the majority of the
European domain in all seasons. This translates into con-
siderably improved simulations with the hydrological model
of observed average and extreme river discharges at a ma-
jority of 554 validation river stations across Europe. Proba-
bilities of extreme events derived employing extreme value
techniques are also more closely reproduced. Results indi-
cate that projections of future flood hazard in Europe based
on uncorrected climate simulations, both in terms of their
magnitude and recurrence interval, are likely subject to large
errors. Notwithstanding the inherent limitations of the large-
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scale approach used herein, this study strongly advocates the
removal of bias in climate simulations prior to their use in
hydrological impact assessment.

1 Introduction and scope

Europe has experienced heavy floods over the last decades,
which have affected thousands of people and caused millions
of Euros worth of damage. Even though it is yet impossi-
ble to link recent flooding events to global warming, climate
projections indicate that in the future we can expect more
extreme weather events triggering flooding. Managing risks
from extreme flood events will be a crucial component of cli-
mate change adaptation. It is therefore of utmost importance
to develop and implement techniques that enhance the con-
fidence in projecting future trends in flood occurrence and
intensity.

The basis for the definition of potential impacts of global
warming are climate predictions. To date the most advanced
tools to obtain those predictions are coupled Atmosphere-
Ocean General Circulation Models (AOGCMs or in short
GCMs) (Giorgi, 2005). Owing mainly to their coarse hor-
izontal resolution (ca. 100–300 km), however, downscaling
procedures are required to feed small-scale impact mod-
els and to guarantee a correct representation of the hydro-
logic processes at a much finer spatial resolution (Fowler and
Kilsby, 2007). Possible strategies to achieve this include sta-
tistical or dynamical downscaling. The former develops sta-
tistical relationships between large-scale climate information
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and regional variables (Wilby et al., 1999), whereas the lat-
ter considers the application of Regional Climate Models
(RCMs) driven by boundary conditions obtained from GCMs
(Fowler et al., 2007). Advantages and drawbacks of both
downscaling techniques have been widely discussed in lit-
erature (see, e.g.Wilby and Wigley, 1997; Murphy, 1999;
Hellström et al., 2001; Haylock et al., 2006; Schmidli et al.,
2007) and, hence, they will not be repeated here. For ex-
cellent discussions of downscaling techniques with focus on
hydrological applications the reader is referred toWood et al.
(2004) andFowler et al.(2007). In this paper, the dynamical
downscaling approach is employed.

Despite the fact that hydrological components (e.g. sur-
face and subsurface runoff) can be directly obtained from
RCMs at lateral resolutions that agree with meso-scale catch-
ments (e.g. 25× 25 km or 50× 50 km), these components are
hardly ever used to assess the local hydrology. This is mainly
due to the poor representation of the land surface processes,
which results in a poor agreement between the surface runoff
simulated by the RCMs and observations (Giorgi et al., 1994;
Evans, 2003). Instead, the detailed climate information ob-
tained from the coupled GCM-RCM is typically employed
to force off-line hydrological models and, thus, to obtain
more accurate representations of meso- and small-scale hy-
drologic processes. In recent years, several studies have ap-
peared that implement this technique to assess the impacts of
climate change on hydrological extremes, either at the local
(e.g.Middelkoop et al., 2001; Etchevers et al., 2002; Prud-
homme et al., 2003; Kleinn et al., 2005; Wilby et al., 2006;
Steele-Dunne et al., 2008; Thorne, 2011), regional (e.g.Gra-
ham et al., 2007) or continental (e.g.Lehner et al., 2006;
Dankers and Feyen, 2008, 2009) scale.

Notwithstanding RCMs have considerably advanced in re-
producing regional and local climate, they are known to fea-
ture systematic errors (see, e.g.Jacob et al., 2007; Lenderink,
2010; Suklitsch et al., 2010). These biases are likely ex-
plained by model errors caused by imperfections in the cli-
matic model conceptualization, discretization and spatial av-
eraging within cells, and uncertainties conveyed from the
GCM to the RCM (Teutschbein and Seibert, 2010). Particu-
larly, small-scale patterns of precipitation are highly depen-
dent on climate model resolution and parametrization. At the
same time, some RCMs show systematic biases with a clear
tendency to enhance these biases in more extreme cold or
warm conditions (van der Linden and Mitchell, 2009). In a
pan-European context, it has been noticed that climate mod-
els tend to overestimate warm summers in south-eastern Eu-
rope whereas precipitation in winter is too abundant in north-
ern Europe (Jacob et al., 2007; Christensen et al., 2008). It
has also been found that areas with a warm bias during win-
ter generally exhibit a wet bias, whereas areas with a cold
winter bias show a dry bias (Jacob et al., 2007). At the same
time, Kjellström et al.(2010) found a clear tendency toward
a warm bias in northern Europe for daily minimum tempera-
ture. This potentially has a significant impact on the simula-

tion of hydrological processes such as spring-flooding events
driven by snow melting. A tendency to simulate too much
(daily) precipitation by different RCMs, with this tendency
being more pronounced for the upper-end percentiles (i.e. ex-
treme precipitation events), has also been noticed (Kjellström
et al., 2010; Lenderink, 2010). Also a persistent overestima-
tion of the wet day frequency is generally observed (see, e.g.
Leander and Buishand, 2007; Piani et al., 2010b). It should
be highlighted that these biases can in part be explained by
errors in the observational data set employed for comparison
(Lenderink, 2010).

The presence of biases in the forcing data seriously limits
its use in hydrological impact assessments (see, e.g.Wood
et al., 2004) and it can result in unwanted uncertainty regard-
ing projected climate change (van der Linden and Mitchell,
2009). More specifically, RCM outputs not corrected for
biases tend to produce inaccurate probabilities for extreme
events, thus rendering the extreme value analysis less reli-
able (Durman et al., 2001). Hence, some form of prior bias
correction of the forcing data is required if a realistic descrip-
tion of the hydrology is sought. This procedure should aim
at correcting climate simulated by the RCM during a control
period to properly reflect the spatio-temporal patterns of the
observed climate and, subsequently, use the “transfer func-
tion” between climate observations and simulations obtained
for the control period to correct future climate simulations
(Piani et al., 2010a).

In recent literature, the presence of bias in dynamically
downscaled outputs has been amply recognized (see, e.g.
Shabalova et al., 2003; Lenderink et al., 2007; van Pelt et al.,
2009; Hurkmans et al., 2010). As a result, several techniques
to correct potential bias in precipitation and temperature have
been developed. Some use (a) monthly correction factors
based on the ratio between present-day simulated values and
observed values (Durman et al., 2001), (b) linear or non-
linear transformation functions which consider changes in
the mean and the variance of the observed and simulated time
series (Horton et al., 2006; Leander and Buishand, 2007; Le-
ander et al., 2008), (c) probability distribution transfer func-
tions derived from observed and simulated cumulative distri-
bution functions (cdfs), which is also referred to as “quantile
mapping” or “histogram equalization” (Déqúe, 2007; Block
et al., 2009; Piani et al., 2010a,b), and (d) empirical factors to
tailor the RCM outputs considering normalization, tuning of
the standard deviation and calculation of residuals (Engen-
Skaugen, 2007). Themeßl et al.(2011) evaluated an ensem-
ble of seven empirical-statistical methods to correct bias in
daily precipitation of a high-resolution regional climate hind-
cast for the Alpine region. They found that quantile mapping
shows the best performance, particularly at high quantiles,
which is favourable for applications related to extreme pre-
cipitation events such as flooding. For a recent review of bias
correction techniques with focus on hydrological applica-
tions the reader is referred toTeutschbein and Seibert(2010).
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Most of the above bias removal techniques have been ap-
plied at the local catchment scale, where dense networks of
meteorological stations are available to reconstruct recent cli-
mate. With the exception of the regional study ofGraham
et al.(2007), all large-scale hydrological assessments to date
have lacked a consistent bias correction step aimed at ensur-
ing a correct spatio-temporal description of observed present
climatic conditions. We note that there have been applica-
tions of the delta-approach at pan-European scale (see, e.g.
Lehner et al., 2006), where for the control period the hy-
drological model has been forced by observed climate and
for future climate projections the climate signal is added to
current climate, hereby avoiding the need for bias correc-
tion. However,Lehner et al.(2006) used monthly time series
of observed climate at 0.5◦ lat-long resolution (New et al.,
2000) and only accounted for long-term trends and average
changes in seasonal climate, neglecting a potential change in
climate variability and extreme events.

The main reason advocated to skip bias correction in pan-
European impact studies has been the lack of a high-quality
and high-resolution meteorological data set with sufficient
observation length with which to confront climate simula-
tions of present climate. In this regard, the meteorologi-
cal observations data set E-OBS (seeHaylock et al., 2008),
recently developed in the European project ENSEMBLES
(van der Linden and Mitchell, 2009), provides the oppor-
tunity to create fully consistent bias corrected time series
of precipitation and temperatures to force pan-European hy-
drological models. It consists of European land-only daily
high-resolution gridded data for precipitation and minimum,
maximum and mean surface temperature. This data set im-
proves on previous products in its spatial resolution and ex-
tent, time period, number of contributing stations and atten-
tion to finding the most appropriate method for spatial inter-
polation of daily climate observations (Haylock et al., 2008).
Also newly available is the global dataset of observed mete-
orological forcing data (Weedon et al., 2010) of the last 50
yr from the EU project WATCH (http://www.eu-watch.org).
The data are derived from the ERA-40 reanalysis product via
sequential interpolation to 0.5◦ lat-long resolution, elevation
correction and monthly-scale adjustments based on CRU and
GPCC monthly observations combined with new corrections
for varying atmospheric aerosol-loading and separate precip-
itation gauge corrections for rainfall and snowfall.

Based on the recently established pan-European and
global meteorological datasetsPiani et al.(2010a,b) have
proposed a “statistical bias correction” method based on
quantile mapping that corrects daily values of mean, max-
imum, and minimum temperatures and precipitation, with
the latter respecting the original precipitation-to-snow ratio.
This technique works by fitting pre-defined “transfer func-
tions” between climate observations and simulations for a
given control period. A clear advantage of this technique
is the flexibility of the fitting procedure by reaching a trade-
off between robustness and goodness-of-fit of the alternative

“transfer functions”, and the preservation of seasonal statis-
tics even if the bias correction is performed daily. To date,
this technique has not been applied in any pan-European hy-
drological impact assessment.

This work presents an assessment of the benefits of cor-
recting the bias in regional climate simulations for hydro-
logical impact assessments at pan-European scale, with an
emphasis on hydrological extreme events. To this end, we
employ the bias correction method recently developed byPi-
ani et al.(2010b). This method corrects for errors not only
in the mean but also in the shape of the distribution.Dosio
and Paruolo(2011) recently showed that this method is also
capable of correcting the high-end percentiles of the distri-
bution of precipitation for an ensemble of RCMs for Europe.
It is therefore capable to correct for errors in the variability
as well, which is crucial for extreme event analysis. As tar-
get for the bias correction we make use of the E-OBS data set
(Haylock et al., 2008). We correct daily RCM fields of mean,
maximum and minimum temperatures, as well as daily pre-
cipitation. The uncorrected and bias-corrected climate data
are evaluated against observed climate with respect to av-
erage and extreme statistics relevant for flood simulation.
The original and bias-corrected climate data are then used
to force the hydrological model LISFLOOD. This spatially-
distributed model has been developed for operational flood
forecasting at European scale (van der Knijff et al., 2010) and
has recently been applied in pan-European climate change
impact assessments (Dankers and Feyen, 2008, 2009; Feyen
and Dankers, 2009). Employing extreme value analysis tech-
niques, the probability of extreme discharges is estimated
and compared to results derived from long time observed dis-
charge series at 554 stations in Europe.

The remainder of this paper is arranged as follows. Sec-
tion 2 provides details on the data and methodology used in
this work. This includes a description of the observed and cli-
mate data, the bias correction method, the hydrological mod-
elling framework and the extreme value analysis for evaluat-
ing changes in hydrological extremes. We report our results
in Sect.3, provide a more in-depth discussion in Sect.4 and
offer concluding thoughts in Sect.5.

2 Data and methods

2.1 Observed and simulated climate

Climate simulations are assessed on the basis of the high-
resolution gridded E-OBS data set (v3.0) (Haylock et al.,
2008) (publicly available fromhttp://eca.knmi.nl/). The aim
of the E-OBS data set is to represent daily areal values
in alternative grid-boxes (i.e. 0.5◦ and 0.25◦ regular lon-lat
grids, and 0.44◦ and 0.22◦ rotated-pole grids). The data set
covers the same spatial extent as RCMs in ENSEMBLES
for the time period 1950–2006. The station network used
for interpolation in E-OBS comprises ca. 3000 stations for
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precipitation and ca. 1900 stations for temperature, spread
(unevenly) over Europe. A robust three-step process to inter-
polate daily observations was employed; first, interpolation
of monthly precipitation totals and monthly mean tempera-
ture, second, interpolation of daily anomalies for precipita-
tion and temperature and, third, combination of monthly and
daily estimates (Haylock et al., 2008). The E-OBS data set
has been specially designed to represent grid box estimates,
instead of point values. This is essential to enable a direct
comparison with results obtained from RCMs (see, e.g.Chen
and Knutson, 2008).

Daily climate simulations are obtained from the RCM
HIRHAM5 (Christensen et al., 2007) of the Danish Mete-
orological Institute (DMI), driven by the GCM ECHAM5
(Roeckner et al., 2003) of the Max Planck Institute for Mete-
orology (MPI), downloaded from the FP6 project ENSEM-
BLES website (http://ensemblesrt3.dmi.dk/). In the frame-
work of ENSEMBLES, the HIRHAM5-ECHAM5 model
was run for the period 1961–2100 with a lateral resolution
of ca. 25 km (0.22◦ rotated-pole grids) and forced according
to the SRES-A1B scenario of the Intergovernmental Panel
on Climate Change (IPCC) (Nakicenovic and Swart, 2000).
We selected this climate model, on the basis of a prelimi-
nary evaluation of a large number of regional climate simu-
lations from the ENSEMBLES project. In that context, the
HIRHAM5-ECHAM5 model showed to be one of the most
deficient in reproducing present climate conditions in the
period 1961–1990 (defined as control period in this study)
when compared to the E-OBS data set.

2.2 Statistical bias correction

The bias correction method employed in this work falls
within the category “histogram equalization” and it has been
described in detail inPiani et al.(2010a,b). In this technique,
the corrected variable(xcor) is a function of the simulated
(xsim) counterpart given asxcor= f (xsim). The functionf is
defined such that the intensity histograms of both corrected
(xcor) and observed(xobs) variables match. As demonstrated
by Piani et al.(2010a), the functionf (also referred to as
“transfer function”) can be obtained by estimating the cu-
mulative distribution functions (cdfs) ofxobs andxsim and,
subsequently, associating to each value ofxsim the value of
xobs such that cdfsim(xsim) = cdfobs(xobs).

Following Piani et al.(2010b), two functional forms are
used to perform the bias correction of precipitation at the
grid-cell level,

xcor= a+bxsim (1)

xcor= (a+bxsim)×(1−e−(xsim−x0)/τ ), (2)

wherea, b, x0, andτ are parameters of the function to be
fitted. In Eq. (1) (linear case),a corresponds to an additive
correction factor whereasb is a multiplicative factor.Piani

et al.(2010b) suggest that in some regions the transfer func-
tion is well approximated by a linear function at high inten-
sities, but a systematic change of slope occurs at the lowest
intensities. Based on this, they suggest Eq. (2), which rep-
resents an exponential tendency to an asymptote. Here, the
asymptote is given by the linear factor (a +bxsim), whereas
τ defines the rate at which the asymptote is approached and
x0 is the “dry day correction” factor (value of precipitation
below whichxsim is set to zero), defined here as−a/b. In
addition to Eqs. (1) and (2), Piani et al.(2010b) also pro-
posed a logarithmic fit, which however turned out to be less
suitable due to fit errors.

From a global analysis,Piani et al.(2010b) concluded that
any of these two functions may do a good job in correct-
ing climate simulations, usually showing little improvement
when moving from a two-parameter function (Eq.1) to a
four-parameter function (Eq.2). They noted, however, that
where fitting errors were high for Eq. (1), Eq. (2) performed
better. As a consequence, the linear model is generally used
in most cases resorting to the exponential tendency to an
asymptote model (Eq.2) when the performance of the linear
model is unsatisfactory, i.e. a trade-off between robustness
and goodness-of-fit.

To perform the bias correction of precipitation, series of
simulated and observed daily values within a “construction
period” (Y ) of lengthn years are selected for every monthm

and for each grid cell. That is,xm
sim (xm

obs) for monthm (m =

1,...,12) is given by
{
xm

sim(xm
obs) : x ∈ Yi,m ; i = 1,...,n

}
(for

sake of clarity we are ignoring the spatial index). Subse-
quently, Eq. (1) or (2) are fitted usingxm

sim and xm
obs and

monthly correction transfer functions are obtained for each
grid cell. Daily precipitation values are then obtained by
interpolating monthly transfer functions into daily transfer
functions, using as reference points the middle-day of each
month. When the estimated transfer functions for two con-
secutive months are both linear or both exponential-type, the
daily transfer functions are obtained by a linear interpolation
of the parameters of both monthly transfer functions. On the
contrary, when monthly transfer functions are of a different
type, an interpolation scheme is implemented that preserves
the characteristics of both linear and exponential-type trans-
fer functions. For a detailed description of this interpolation
scheme the reader is referred toPiani et al.(2010b).

Following Piani et al.(2010b), only wet days (i.e. days
with more than 1 mm of precipitation) are considered to per-
form the fitting of one of the two proposed transfer func-
tions (Eqs.1 or 2) through ordinary least squares (OLS) or
non-linear least squares (NLS), respectively. If the number
of wet days is less than 20 in the observed record, or if the
mean observed precipitation value is less than 0.01 mmd−1,
then a simple additive correction factor equal to the differ-
ence in the means between simulated and observed series is
applied. In turn, if the number of wet days is greater than
20, and the mean observed precipitation value is greater than
0.01 mmd−1, the linear transfer function (Eq.1) is fitted. The
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exponential-type transfer function (Eq.2) is selected to per-
form the bias correction under two conditions. First, if for
the linear fita > 0, which is interpreted as the corrected pre-
cipitation being always greater or equal than zero (xcor≥ 0),
i.e. ignoring dry days entirely; and, second, when the multi-
plicative factor (slope of Eq.1) is too extreme, with arbitrary
values defined in the rangeb < 0.2 andb > 5.

For temperature, series of observed and simulated daily
(mean, maximum and minimum) temperatures within a
“construction period” for every month are employed to fit
the monthly linear transfer functions.Piani et al.(2010b)
suggest that independently correcting the mean, maximum
and minimum temperature results in large relative errors in
the daily temperature range (Tmax−Tmin) and in the skew-
ness (Tmean−Tmin/Tmax−Tmin) of the corrected series. For
that reason, the fitting of the monthly linear transfer func-
tions is performed on the mean (Tmean), temperature range
(Trg) and temperature skewness (Tsk). Subsequently, daily
transfer functions are obtained by a weighted linear interpo-
lation of the parameters of the contributing monthly linear
transfer functions for each variableTmean, Trg andTsk. Us-
ing the daily transfer functions the corrected mean tempera-
ture(T c

mean) is directly obtained whereas minimum and max-
imum temperatures are obtained from daily corrected val-
ues ofT c

rg and T c
sk as T c

min = T c
mean−T c

rg ×T c
sk and T c

max =

T c
mean+T c

rg×(1−T c
sk), respectively.

Given the availability of observed gridded data for daily
precipitation, average, maximum, and minimum temperature
in the E-OBS data set, the bias correction was performed
for these four forcing variables. As “construction period”
to build the transfer functions we defined the control period
1961–1990, i.e. 30 yr of daily data. We employed two se-
ries for each month (observed values from the E-OBS data
set and simulated values from the HIRHAM5-ECHAM5 cli-
mate model) of ca. 900 values each to build the monthly
transfer functions. The transfer functions obtained in this pe-
riod were then applied to correct control (1961–1990) and fu-
ture (2071–2100) climate simulations from the HIRHAM5-
ECHAM5 model. In a parallel work,Dosio and Paruolo
(2011) validated the transfer functions obtained in the control
period for an independent (validation) period between 1991–
2000 using an ensemble of 11 RCMs over Europe. We note
here the important assumption ofstationarity, which means
that the corresponding form of the transfer function and its
associated parameters are invariant over time. As a result,
the transfer function estimated for present climate conditions
is assumed to remain valid to correct biases in future climate
simulations. As highlighted byChristensen et al.(2008),
however, the stationarity assumption could be violated as bi-
ases can grow under climate change conditions and they de-
pend on the values of the variables to be corrected.

2.3 Hydrological simulation

LISFLOOD is a GIS-based spatially-distributed hydrologi-
cal rainfall-runoff model, which includes a one-dimensional
hydrodynamic channel routing model (van der Knijff et al.,
2010). Driven by meteorological forcing data (precipitation,
temperature, potential evapotranspiration, and evaporation
rates for open water and bare soil surfaces), LISFLOOD cal-
culates a complete water balance at every (daily) time step
and every grid cell defined in the modelled domain. Pro-
cesses simulated for each grid cell include snowmelt, soil
freezing, surface runoff, infiltration into the soil, preferential
flow, redistribution of soil moisture within the soil profile,
drainage of water to the groundwater system, groundwater
storage, and groundwater base flow. Runoff produced for ev-
ery grid cell is routed through the river network using a kine-
matic wave approach. Although this model has been devel-
oped aiming at operational flood forecasting at pan-European
scale, recent applications demonstrate that it is well suited for
assessing the effects of land-use change and climate change
on hydrology (see, e.g.de Roo et al., 2001; Feyen et al.,
2007; Dankers and Feyen, 2008, 2009).

The current pan-European setup of LISFLOOD uses a
5 km grid and spatially variable input parameters and vari-
ables obtained from European databases when available. Soil
properties were obtained from the European Soil Geograph-
ical Database (King et al., 1994) whereas porosity, saturated
hydraulic conductivity and moisture retention properties for
different texture classes were obtained from the HYPRES
database (Wösten et al., 1999). Vegetative properties and
land use cover were obtained from the CORINE2000 data set
(EEA, 2002) while elevation data and river properties were
obtained from the Catchment Information System (Hiederer
and de Roo, 2003). Parameters controlling snowmelt rates,
overland and river flows, infiltration, and residence times
in the soil and subsurface reservoirs have been calibrated
against historical records of river discharge in 258 Euro-
pean catchments and sub-catchments. The calibration pe-
riod varied for different catchments but all spanned at least
4 yr between the period 1995–2002. It may be argued that
the selection of four years is too short for long-term appli-
cations, however, the selection of this period responded to
a trade-off between computational time and the use of reli-
able and recent available information on discharges. Even if
the calibration period is restricted to 4 yr, it must be stressed
that LISFLOOD was calibrated having a particular inter-
est in correctly reproducing the timing and magnitude of
flooding events. The meteorological variables used to force
LISFLOOD during the calibration were obtained from the
Meteorological Archiving and Retrieving System (MARS)
database (Rijks et al., 1998) and interpolated using an inverse
weighted distance method over the 5 km grid. For catch-
ments where discharge measurements were not available
simple regionalization techniques (regional averages) were
applied to obtain the parameters. The algorithm implemented
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for calibration corresponded to the Shuffled Complex Evolu-
tion (SCE) (Duan et al., 1992). A more detailed descrip-
tion of the hydrological processes and parameters included in
LISFLOOD are given byvan der Knijff et al.(2010) whereas
Feyen et al.(2007, 2008) discuss the calibration of LIS-
FLOOD for different European catchments.

To drive the LISFLOOD model, the HIRHAM5-
ECHAM5 daily simulations of temperature, precipitation,
solar and thermal radiation, albedo, dewpoint temperature,
humidity and wind speed were re-gridded to the 5 km grid
used by LISFLOOD employing a nearest neighbour ap-
proach on the basis of the centre points of the 25 km grid cells
of the HIRHAM5-ECHAM5 model. This resulted in forcing
data on a grid fully consistent with the one employed to run
LISFLOOD at pan-European scale. Two sets of forcing data
were generated, one based on uncorrected regional climate
simulations, and another based on the bias corrected fields
of precipitation and temperature (avg, min and max). Daily
information on solar and thermal radiation, albedo, dew-
point temperature, average, maximum and minimum tem-
peratures, humidity and wind speed were used to calculate
reference evapotranspiration employed by LISFLOOD us-
ing the Penman-Monteith model (Allen et al., 1998). Sub-
sequently, fields of precipitation, average temperatures and
Penman-Monteith-based evapotranspiration fields were used
to force LISFLOOD in the control and future period. As a
result, time series of daily discharge for each river pixel in
the modelled domain (depicted in Fig.1) were obtained for
both bias corrected and uncorrected forcing data.

We assessed the benefits of correcting the bias in the cli-
mate simulations for hydrological impact assessments. For
this purpose, the simulated discharges of LISFLOOD in the
control period 1961–1990 were compared to observed dis-
charges at 554 stations throughout Europe (see Fig.1). For
these stations at least 30 yr of daily discharge data were avail-
able with few exceptions of stations with 20 or 25 yr of daily
discharge data in the control period. The distribution of these
stations is somewhat uneven with a high concentration of sta-
tions in central Europe, whereas eastern-Europe shows the
lowest station density. Despite this, these stations can be con-
sidered a good representation of different climatic conditions
and hydrologic regimes with upstream areas contributing to
the discharge between ca. 1000 km2 and ca. 810 000 km2.

2.4 Extreme value analysis and uncertainty assessment

To estimate the probability of extreme discharge levels, a
Gumbel distribution was fitted to the annual maximum dis-
charges using the maximum likelihood estimation (MLE)
method (see, e.g.Beirlant et al., 2004). The Gumbel dis-
tribution is a special case of the Generalized Extreme Value
(GEV) distribution with a shape parameter (ξ ) explicitly set
to 0 (Coles, 2001). Whereas the safest option would be to ac-
cept some degree of uncertainty about the value ofξ (Coles,
2001), by fitting a Gumbel distribution the uncertainty in the

shape parameter is explicitly neglected.Dankers and Feyen
(2008), however, showed on the basis of a likelihood-ratio
test that the use of the three-parameter GEV is not justified
in the majority of the river cells (ca. 85 %) defined in the
same European domain analysed in this work. In addition,
they found no evidence that either the GEV or the Gumbel
distribution produced consistently higher or lower estimates
of return levels.

To obtain the 95 % confidence interval for the return levels
we employed the profile-likelihood method (see, e.g.Coles,
2001; Beirlant et al., 2004). By capturing non-symmetric
behaviour of confidence intervals, especially for return lev-
els associated to long return periods, the profile-likelihood
method is far more robust in assessing uncertainty compared
to traditional approaches as the “Delta method” described in
Coles(2001).

The profile-likelihood method works through
reparametrization of the Gumbel model so that the re-
turn levelzp is one of the model parameters,

µ = zp +σ log(−log(1−p)) (3)

whereµ andσ are the location and scale parameters of the
Gumbel distribution, respectively, and 1/p is the return pe-
riod. To obtain the profile-likelihood for a given return level,
zp is fixed to a value and the corresponding log-likelihood
is maximized with respect toσ . This is repeated for a range
of values ofzp. The profile-likelihood,lp(zp), is built from
the corresponding maximized values of the log-likelihood for
different zp values. Using the deviance function (see, e.g.
Coles, 2001, p. 34), a (1−α) confidence interval for return
level zp can be obtained as follows,

Cα =

{
zp : D(zp) ≤ χ2

1(1−α)
}

(4)

where the deviance function is defined asD(zp) =

2
[
l(ẑp)− lp(zp)

]
, with l(ẑp) being equal to the log-

likelihood evaluated at the ML estimator ofzp.

3 Results

3.1 Comparison of HIRHAM5-ECHAM5 simulations
with meteorological observations

3.1.1 Precipitation

An assessment of precipitation simulated by the HIRHAM5-
ECHAM5 climate model is shown in Fig.2 (plates a, b, c,
and d). These plates show the ratio between the uncorrected
HIRHAM5-ECHAM5 simulations and the E-OBS observa-
tions for the average seasonal (DJF, MAM, JJA and SON)
precipitation in the control period 1961–1990. Seasonal av-
erages show a clear overestimation of precipitation in large
parts of the Iberian Peninsula, Central Europe, Great Britain,
northern Europe and Scandinavia, with values as high as 7–
20 fold the observed precipitation. For the winter season
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Fig. 1. Location of the 554 gauging stations used to assess simulated river discharges. These stations have at least 25 yr of daily data for the
control period 1961–1990.

(Fig. 2a) the HIRHAM5-ECHAM5 model tends to overes-
timate precipitation all across Europe, with some weak un-
derestimation in the Scandinavian mountains, west coast of
Italy, north-west coast of Great Britain and Balkan. A sim-
ilar pattern is observed for the transition seasons (MAM
and SON). In summer season (Fig.2c), on the other hand,
precipitation is overestimated in northern European regions,
whereas too dry conditions are simulated in south-eastern
parts. The summary statistics presented in Table1 show that,
averaged over the European domain, the simulated average
annual precipitation almost doubles the observed precipita-
tion. These results are in agreement with the findings ofvan
Meijgaard et al.(2008) and Kjellström et al.(2010), who
analysed a series of RCMs driven by lateral boundary con-
ditions obtained from ERA40 reanalysis product.

Plates e, f, g, and h of Fig.2 show the ratio between bias
corrected HIRHAM5-ECHAM5 precipitation and observa-
tions. The range of over- and underestimation is reduced,
with differences in seasonal average precipitation of approx-
imately±5 % of the observed precipitation. This is also re-
flected in the average over the European domain of the annual

and seasonal corrected precipitation, which is nearly identi-
cal to that of the observation data set (see Table1). For sum-
mer (JJA) an overestimation of the observed precipitation is
still present in the most southern areas of the Iberian Penin-
sula, whereas a weak underestimation of precipitation can be
observed in the Balkan.

In spite of the excellent performance of the bias cor-
rection, a few grid cells associated to mountain areas
(e.g. Alps, Apennines, Balkan, and Carpathians) still show
a pronounced overestimation up to 3–16 fold the observed
precipitation after bias correction. However, the overestima-
tion in these areas of the uncorrected precipitation amounts to
25–30 fold the observed annual precipitation. The seasonal
analysis indicates that the residual overestimation after the
bias correction mainly occurs in winter season, and to a lesser
extent in the transition seasons. Analysis of the type of fitting
function employed in these grid cells suggests that switching
between the linear and exponential type of fitting during the
winter months (DJF) could significantly alter the interpola-
tion of daily values as they are influenced by the anterior and
posterior (monthly) fitting function. This could potentially
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Fig. 2. Ratio between HIRHAM5-ECHAM5 simulations and observations of seasonal average precipitation for the control period 1961–
1990. First row, uncorrected seasonal precipitation; second row, bias corrected seasonal precipitation.

Table 1. Summary statistics of precipitation (mmd−1) for the control period 1961–1990.

Statistics

Observed Bias corrected Uncorrected

Average annual precipitation 1.9 1.9 3.4
Average annual max precipitation 28.3 30.6 47.8
3-d annual max precipitation 47.6 48.8 78.5
5-d annual max precipitation 59.1 60.0 97.9
7-d annual max precipitation 68.5 69.5 114.4
99th percentile precipitation 23.9 25.5 37.3
Average seasonal precipitation (DJF) 1.8 1.8 3.8
Average seasonal precipitation (MAM) 1.6 1.6 3.2
Average seasonal precipitation (JJA) 2.0 2.0 2.8
Average seasonal precipitation (SON) 2.1 2.1 3.9

modify the monthly statistics. A similar problem has been
recognized byPiani et al.(2010b) in their global analysis.
Aside from model deficiencies, the pronounced overestima-
tion at high altitudes can in part be explained by the fact that
observed precipitation typically underestimates true precipi-
tation, especially in winter, due to poor station network den-

sity (see, e.g.Hofstra et al., 2010; Lenderink, 2010) that does
not allow to fully capture orographic effects on precipitation.
Hence, the bias-corrected precipitation in these areas may
more closely correspond to true precipitation amounts than
the comparison with observed precipitation suggests here.
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Fig. 3. Difference of average annual wet day frequency (precipi-
tation ≥ 1 mmd−1) between(a) uncorrected precipitation and(b)
bias corrected precipitation with respect to the E-OBS data set for
the control period 1961–1990.

The wet day frequency relates to the distribution of pre-
cipitation in time. The comparison presented in Fig.3 shows
a pronounced overestimation of the average annual num-
ber of wet days (daily precipitation≥ 1 mmd−1) in north-
ern and western parts of Europe, as well as in mountain re-
gions, whereas in most of southeastern Europe and parts of
the Scandinavian mountains too few wet days are simulated.
This is conform to what most studies report, namely, that
climate models tend to simulate too many days with weak
precipitation, especially in humid climate zones (see, e.g.Le-
ander and Buishand, 2007; Piani et al., 2010b; Iizumi et al.,
2011). The bias correction drastically reduces the error in the
number of wet days simulated with respect to the E-OBS data
set. This improvement in the distribution of wet days fre-
quency after bias correction is explained by the advantage of
fitting both “a” and “b” parameters in Eq. (1) and (2), which
are related to the dry day correction factor, and by using the
portion of both time series (observed and simulated) that cor-
respond to wet days only to estimate the transfer functions.

At the same time, Fig.3 shows a slight underestimation of
the wet day frequency after bias correction (plate b). From
the analysis of an ensemble of RCMs for Europe,Dosio and
Paruolo(2011) suggested that low-end percentiles of bias
corrected precipitation are subject to large uncertainties due
mainly to the choice of the transfer function (Eq.1 vs. Eq.2)
used to perform the bias correction. In addition, they found
a systematic underestimation of the small values of bias cor-
rected precipitation when compared to the pdf obtained from
the E-OBS data set. As a consequence, the underestima-
tion of the wet days frequency after bias correction is likely
explained by the systematic underestimation of the low-end
percentiles for the bias corrected precipitation observed by
Dosio and Paruolo(2011), which increases the probability

for a given day to be considered as a “dry day” for a constant
x0. In addition, and even if the fitting of “a” and “b” helped
to drastically reduce the excessive number of wet days ob-
served before bias correction, there still exists the possibility
that the number of dry days is slightly overestimated given
that x0 is obtained purely from a fitting process, thus, po-
tentially differing from the actual number of dry days in the
observed precipitation.

Rain-driven flooding can be caused by short-term heavy
rain events (rapid-onset flooding such as pluvial and flash
floods) or prolonged periods of intense rain (slow-onset
flooding such as river or fluvial floods). To evaluate the pos-
sible effect of the bias correction on both types of phenom-
ena we evaluate different precipitation indicators, namely,
the 99th percentile of daily precipitation and the maximum
precipitation amount in 3, 5 and 7 consecutive days. The
comparison for the seasonal 99th percentile of daily precip-
itation (Fig.4 plates a, b, c, d and Table1) shows that daily
extreme precipitation is overestimated in most parts of Eu-
rope, except for southeastern Europe, Italy and southern parts
of the Iberian Peninsula in summer, and some areas in the
Scandinavian mountains mainly in winter. The seasonal 3,
5 and 7-day maximum precipitation (see Fig.5 plates a, b,
c and d for the 5-day maximum precipitation) show a simi-
lar pattern (which corresponds very well to the average pre-
cipitation shown in Fig.2, plates a, b, c and d), although
compared to the 99th percentile of daily precipitation the
underestimation in the Balkan is more pronounced here in
the transition seasons. The general overestimation of the ex-
treme indicators is in line with observations that many RCMs
contained in the ENSEMBLES project simulate too much
(daily) precipitation, a tendency that is more pronounced for
the upper-end percentiles (i.e. extreme precipitation events)
(Kjellström et al., 2010; Lenderink, 2010). The latter, does
not preclude that some RCMs forced by different conditions
may underestimate the high-end percentiles while overesti-
mating the mean precipitation.

The bias correction considerably reduces the error in the
seasonal 99th percentile to within the range±25 % of the
observed value. Similar as for the average precipitation,
in some grid cells associated to mountain areas (e.g. Alps,
Apennines, Balkan, and Carpathians) still a clear tendency
to overestimation can be observed. Also for the 3, 5 and
7-day maximum precipitation, aside from the residual strong
overestimation in the sparse mountainous grid cells, the error
is considerably reduced. However, notwithstanding that the
European-average statistics closely reproduce the observed
statistics (see Table1), the bias correction results in a slight
underestimation of the maximum precipitation amount in 3,
5 and 7 consecutive days across most of Europe. Similarly
to the case of wet days frequency, this is most likely related
to the underestimation of the low-end percentiles of the bias
corrected precipitation (see, e.g.Dosio and Paruolo, 2011),
and a potential overestimation of the number of dry days ob-
tained from the fitting of the transfer functions. The latter, in
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Fig. 4. Ratio between HIRHAM5-ECHAM5 simulations and observations of seasonal 99th percentile for the control period 1961–1990.
First row, uncorrected seasonal precipitation; second row, bias corrected seasonal precipitation.

combination with the fact that observed extremes likely un-
dervalue true extreme precipitation may result in an under-
estimation by the hydrological model of observed extreme
discharges.

3.1.2 Temperature

Figure6 (plates a, b, c and d) shows on a seasonal basis the
difference in 2 m temperature (T2m) between the HIRHAM5-
ECHAM5 simulations and the E-OBS data set. A common
feature, evident in all seasons, is the strong warm bias (up to
4◦C and more) in south-eastern Europe, which extents fur-
ther north and west depending on the season. In winter,T2m
is overestimated nearly all over Europe, except for the British
Isles, along the western Scandinavian coast, in the Alps and
Pyrenees, with a somewhat mixed bias-pattern in the rest of
the Iberian Peninsula. In the other seasons, simulatedT2m
is too low for most of the western half of Europe, including
the Iberian Peninsula, France, Great Britain, the Alps and
western parts of Scandinavia. In summer, and to a lesser

extent in spring, a cold bias up to 3◦C can be observed in
northern Europe. After performing the bias correction of the
HIRHAM5-ECHAM5 temperature simulations, the anoma-
lies in T2m are drastically reduced (see Fig.6 plates e, f, g
and h, and Table2). For all seasons, discrepancies with the
E-OBS data set have become marginally small, with maxi-
mum differences not exceeding 0.5◦C.

A comparison on annual basis of the daily maximum
(Tmax) and minimum (Tmin) temperature is presented in
Fig. 7. As maximum temperatures occur in summer sea-
son, forTmax a similar bias pattern can be observed as for
T2m in summer (see Fig.6c). Figure7a shows forTmax a
warm bias in southeastern Europe with values higher than
1◦C that transitions into an underestimation in the western
and northern half of the continent, where the cold anomaly
ranges between 1◦C and 5◦C compared to the E-OBS data
set. Minimum temperatures, on the other hand, are overesti-
mated all over Europe, especially in the south-east, except
for the Alps, western Pyrenees and western parts of Nor-
way (see Fig.7b). In southeastern Europe, the overestima-
tion of Tmin is much stronger than that ofTmax. Hence, the
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Fig. 5. Ratio between HIRHAM5-ECHAM5 simulations and observations of seasonal 5-days maximum precipitation for the control period
1961–1990. First row, uncorrected seasonal precipitation; second row, bias corrected seasonal precipitation.

Table 2. Summary statistics of (2 m) temperature (◦C) for the control period 1961–1990.

Statistics

Observed Bias corrected Uncorrected

Average daily temperature 6.9 6.9 7.9
Average daily maximum temperature 11.2 11.3 10.6
Average daily minimum temperature 2.8 2.8 5.1
Winter (DJF) average daily maximum temperature 0.9 0.9 1.3
Winter (DJF) average daily minimum temperature −5.8 −5.8 −3.1
Spring (MAM) average daily maximum temperature 10.8 10.8 9.5
Spring (MAM) average daily minimum temperature 1.6 1.6 3.6
Summer (JJA) average daily maximum temperature 21.5 21.5 20.4
Summer (JJA) average daily minimum temperature 11.2 11.2 13.5
Autumn (SON) average daily maximum temperature 11.6 11.7 11.0
Autumn (SON) average daily minimum temperature 3.9 4.0 6.4

simulated diurnal temperature range is too narrow in most re-
gions of Europe for the uncorrected temperatures simulated
by the HIRHAM5-ECHAM5 model. After performing the
bias correction,Tmax andTmin show maximum differences

not exceeding±0.1◦C across Europe. A warm anomaly of
maximum 0.5◦C is observed in the Scandinavian mountains,
Balkan, and central Europe.

www.hydrol-earth-syst-sci.net/15/2599/2011/ Hydrol. Earth Syst. Sci., 15, 2599–2620, 2011



2610 R. Rojas et al.: Hydrological simulation and statistical bias correction

50°40°30°

20°

20°

10°

10°

0°

0°-10°-20°-30°

60° 60°

50° 50°

40° 40°

50°40°30°

20°

20°

10°

10°

0°

0°-10°-20°-30°

60° 60°

50° 50°

40° 40°

50°40°30°

20°

20°

10°

10°

0°

0°-10°-20°-30°

60° 60°

50° 50°

40° 40°

50°40°30°

20°

20°

10°

10°

0°

0°-10°-20°-30°

60° 60°

50° 50°

40° 40°

50°40°30°

20°

20°

10°

10°

0°

0°-10°-20°-30°

60° 60°

50° 50°

40° 40°

50°40°30°

20°

20°

10°

10°

0°

0°-10°-20°-30°

60° 60°

50° 50°

40° 40°

50°40°30°

20°

20°

10°

10°

0°

0°-10°-20°-30°

60° 60°

50° 50°

40° 40°

b

hgfe

dc

50°40°30°

20°

20°

10°

10°

0°

0°-10°-20°-30°

60° 60°

50° 50°

40° 40°

a
mean: 1.48; std: 1.83; min: -4.30; max: 9.03 mean: 0.71; std: 2.44; min: -8.57; max: 8.09mean: 0.43; std: 1.64; min: -5.30; max: 6.19 mean: 0.97; std: 1.70; min: -5.01; max: 6.15

mean: -0.02; std: 0.06; min: -0.22; max: 0.60 mean: 0.05; std: 0.05; min: -0.06; max: 0.25mean: 0.02; std: 0.04; min: -0.96; max: 0.16 mean: -0.04; std: 0.06; min: -0.46; max: 0.26

0.1 0.5 1.0 2.0 3.0 4.0 >5.0-0.1-0.5-1.0<-2.0
diff (°C)

DJF MAM JJA SON

Fig. 6. Difference between HIRHAM5-ECHAM5 simulations and observations of seasonal average daily temperature for the period 1961–
1990. First row, uncorrected seasonal temperature; second row: bias corrected seasonal temperature.

These observations on simulated temperature are in agree-
ment with other studies that report a warm bias in winter
and summer season, especially in southeastern parts of Eu-
rope (Jacob et al., 2007; Christensen et al., 2008), and a
consistent cold bias in the Alpine region (Suklitsch et al.,
2010). A strong underestimation ofTmax over northern Eu-
rope has been observed byNikulin et al. (2011) when exam-
ining an ensemble of RCA3 simulations driven by six differ-
ent GCMs (including ECHAM5), as well as byKjellström
et al. (2007) for 10 different RCMs driven by HadAM3H.
Possible causes for temperature bias include missing pro-
cesses such as a realistic description of dust aerosols or re-
gional feedback processes. Especially in the summer sea-
son, such regional feedback processes include soil moisture
exhaustion or decreasing cloud cover, which can impact the
temperature developments. Also, the capability of RCMs to
simulate the regional climate depends on the realism of the
large-scale circulation that is provided as lateral boundary
conditions, in particular in regions where the large-scale dy-
namic forcing plays an important role compared to local forc-
ing. This is indeed the case over large parts of Europe.van

Ulden and van Oldenborgh(2006) for example have shown
that a warm bias in Central Europe of the order of degrees
was induced by a bias in the large-scale circulation bound-
ary conditions. Also in central Europe,Plavcov́a and Ky-
seĺy (2011) report a substantial underestimation of the diur-
nal temperature range throughout the year in ENSEMBLES
RCM experiments. Besides the deficiencies in the simulation
of atmospheric circulation, particularly too strong advection
and overestimation of westerly flow at the expense of east-
erly flow in most RCMs, they suggest that biases in simu-
lating anticyclonic, cyclonic and straight flow also contribute
to the underestimated diurnal temperature range. Also, al-
though to a lesser extent than for precipitation, inaccuracies
in the observational datasets and interpolation of station data
may explain part of the discrepancies between simulated and
observed temperature (see, e.g.Lorenz and Jacob, 2010).

3.2 Impact of bias correction on the simulation of
hydrological components

Flood generation is a highly non-linear process that de-
pends on factors such as the intensity, volume and timing
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Fig. 7. Differences for daily maximum (Tmax) and minimum (Tmin)
temperature simulated by HIRHAM5-ECHAM5 and the E-OBS
data set for the control period 1961–1990. First row, uncorrected
annual temperature; second row: bias corrected annual temperature.

of precipitation as well as on antecedent conditions of the
river basin (e.g. soil wetness, snow or ice cover). Because
of the small to meso-scale character of these factors, the
correct representation of temperature and precipitation, both
spatially and temporally, are key to enhance the predictive ca-
pacity of the LISFLOOD model. Whereas the link between
extreme (long or intense) precipitation and flooding is obvi-
ous, in this section we detail the effect of the bias correction
on processes that indirectly affect flooding.

Evapotranspiration (ET) regulates the flow of moisture
back into the atmosphere and as such affects the storage ca-
pacity of soils. An overestimation of ET results in lower
stocks of moisture in the soil, hence a larger amount of wa-
ter that can be stored during subsequent wet periods. The
effect of the bias correction on evapotranspiration is shown
in Fig. 8. The run with uncorrected climate data results in
higher ET amounts in northern-central Europe due to higher
temperatures and precipitation during most of the year. In
southeastern Europe, notwithstanding the strong warm bias,
lower ET amounts are simulated, as the underestimation of
precipitation in summer limits the water available for ET
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Fig. 8. Ratio for LISFLOOD evapotranspiration (mmd−1) simula-
tions between uncorrected and bias corrected climate data for the
control period 1961–1990.

(see, e.g. Fig.2c). In Scandinavia, on the other hand, lower
ET amounts are simulated due to the cold bias in the uncor-
rected summer temperature (see, e.g. Fig.6c).

It must be noted that variables such as dewpoint tempera-
ture, solar and thermal radiation that are employed together
with the bias-corrected temperature fields to calculate the
evapotranspiration terms driving LISFLOOD (see, e.g.van
der Knijff et al., 2010) are not corrected for potential bias.
This may violate the energy balance and potentially intro-
duce bias in the subsequent hydrological simulations.

Many snow-dominated regions in Europe are subject to
snowmelt-induced floods that result from rapid melting of the
snowpack, sometimes amplified by rainfall. Ice-jam floods,
related to freeze-up and break-up periods, also frequently
cause winter and spring floods. The accumulation of snow
during cold periods depends on the amount of precipitation,
as well as on the temperature, which determines whether pre-
cipitation falls as rain or snow. A correct simulation of the
(variability in) temperature also affects the possible onset of
snowmelt or ice-jam floods. We show for the actual snow-
pack depths and the days with snow cover the difference
between the simulation driven by uncorrected and bias cor-
rected climate data (Fig.9). From Fig.9 we observe a thicker
snowpack and more days with snow cover mainly in northern
Europe and mountain areas when not correcting for bias in
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Fig. 9. Difference for LISFLOOD hydrological simulations driven
by uncorrected and bias corrected climate data for the control period
1961–1990 for(a) snowpack depth (mm SWE) and(b) days with
snow cover.

the climate simulations. The difference in snowpack in these
areas ranges between 100 and 1000 mm snow water equiva-
lent (SWE), and locally at high altitudes even up to 5000 mm
and more. The more pronounced accumulation of snow and
higher number of days with snow cover in northern Europe is
due mainly to the strong overestimation of precipitation (see
Fig. 2), which outweighs the effect of the warm bias in cold
periods (which potentially reduces the ratio snow to rain). In
central, central-eastern and south-eastern regions, the warm
bias in winter reduces the number of days with snow cover
(see Fig.9b), but the wet bias in winter still results in a higher
maximum snowpack. The considerable increase in snowpack
in mountain ranges such as the Alps and Pyrenees follows
from the wet and cold bias in cold periods.

3.3 Impact of bias correction on the simulation of
hydrological extremes

Figure 10 shows observed versus simulated average dis-
charge and average annual maximum discharge for each of
the 554 validation stations (see Fig.1). In general, the hydro-
logical model driven by the uncorrected climate data largely
overestimates average and extreme river flows (Fig.10plates
a and c). This follows from the strong overestimation of the
average and extreme precipitation in most regions of Europe.
In regions dominated by (spring) snowmelt, the pronounced
over-accumulation of snow in winter with the uncorrected
climate data also likely contributes to the overestimation of
extreme discharges. LISFLOOD simulations forced by the
bias corrected climate data (Fig.10 plates b and d) show a
strong amelioration in reproducing the observed discharge
statistics. Visual inspection and the values for the coefficient
of determination (r2) and model efficiency (EF) show that

the observed flow statistics are reasonably well reproduced
after implementing the bias correction method, with a gen-
eral tendency of better performance for average flows and
with increasing catchment size.

Notwithstanding the overall good agreement between ob-
served and simulated discharge statistics when employing
bias-corrected forcing data, large discrepancies do occur at
a small number of stations (see plates b and d of Fig.10),
where the relative errors can be 1 or 2 orders of mag-
nitude (note the logarithmic scale). Deviations from the
observation-based statistics can be attributed to errors in the
hydrological model, its static input and in the calibration
and regionalization of its parameters. Part of the disagree-
ments can also be linked with man-made modifications of
flow regimes in many catchments in Europe (see, e.g.Dy-
nesius and Nilsson, 1994) that are not accounted for in the
hydrological model. Also, albeit that the E-OBS data set is
currently the best available for Europe, it is known to feature
errors and uncertainties, which are translated to the corrected
forcing fields during the bias correction step. More specifi-
cally, the E-OBS data set compares better to the mean of the
variables than to the extremes, with larger differences for pre-
cipitation than for temperature (Haylock et al., 2008; Hofstra
et al., 2010). This, in combination with the slight underes-
timation of the 3, 5 and 7-day maximum precipitation after
bias correction (see Fig.5) may also explain why for the an-
nual maxima the greater part of the stations falls below the
one-to-one line.

Figure11 shows the results of fitting by MLE a Gumbel
distribution to the annual maximum discharges for the pe-
riod 1961–1990 in 20 selected stations. These stations are a
representative subsample of the 554 validation stations (see
Fig. 1) covering different hydro-morphologic and climato-
logic conditions and catchment size (ranging from 9948 to
80 700 km2). In general, there is a strong overestimation
of the empirical return levels for the annual maxima (black
crosses) when the hydrological model is driven by uncor-
rected forcing data. The latter is more pronounced for higher
return levels. A clear improvement in reproducing the empir-
ical return levels is observed when LISFLOOD is run using
bias corrected forcing data (see blue and red dashed-lines in
Fig. 11). Although for some stations still a marked disagree-
ment exists between the return levels obtained from empiri-
cal plotting positions and the return levels obtained from bias
corrected forcing data, for 50 % of stations the confidence in-
tervals more closely envelop the empirical return levels. This
is also reflected in Table3, which summarizes the 95% confi-
dence intervals obtained for a return period of 100-yr for the
stations shown in Fig.11. The reduction in the confidence in-
tervals reaches up to 70 % compared to the estimations based
on uncorrected forcing data. It is worth mentioning that we
employed a series of 30 annual maxima (1961–1990) to per-
form the Gumbel fitting, thus, any extrapolation beyond 30 yr
could potentially be dominated by large uncertainties. Also,
the confidence intervals only reflect the uncertainty in the
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Table 3. 95 % confidence intervals obtained using the profile-likelihood method for a return period of 100-yr for the gauging stations
depicted in Fig.1 for the control period 1961–1990. Observed column corresponds toQ100 obtained from a Gumbel distribution fitted from
the observations. All values in m3s−1 (values in parentheses show the percentage reduction).

Forcing input data

Stations Country Observed Uncorrected Bias corrected
(Gumbel fitting)

Guadiana, Pulo do Lobo PT 4521 [9598–14 239] [4027–6008] (57.3 %)
Danube, Bratislava SK 7435 [11 356–15 957] [8951–12 973] (12.6 %)
Elbe, Neu-Darchau DE 3038 [7742–11 343] [3373–5109] (51.8 %)
Oder, Hohensaaten-Finow DE 1933 [5058–7394] [2730–4055] (43.3 %)
Maas, Borgharen NL 2105 [5610–7938] [2260–3352] (53.1 %)
Rhine, Lobith NL 9336 [23 190–31 827] [10 105–13 985] (55.1 %)
Thames, Kingston GB 500 [866–1172] [341–490] (51.3 %)
Danube, Ceatal Izmail RO 13 825 [31 519–41 268] [22 430-31 932] (2.5 %)
Nemunas, Smalininkai LT 2963 [7290–10 901] [5678–9260] (0.8 %)
Daugava, Daugavapils LV 3887 [6033–8782] [3156–4842] (38.7 %)
Seine, Poses FR 2296 [8940–12 041] [2598–3798] (61.3 %)
Loire, Montjean FR 5715 [15 116–20 099] [4664–6724] (58.7 %)
Garonne, Agenais FR 5143 [11 612–15 898] [3490–4804] (69.3 %)
Rhone, Beaucaire FR 7142 [15 366–19 898] [4753–6269] (66.6 %)
Ebro, Tarragona SP 3245 [6839–9199] [1687–2400] (69.8 %)
Po, Pontelagoscuro IT 8280 [31 623–45 357] [10 338–14 659] (68.5 %)
Gloma, Langnes NO 2982 [9172–11 838] [3090–4092] (62.4 %)
Kemijoki, Isohaara FI 4222 [11 396–15 591] [3193–4418] (70.8 %)
Duero, Zamora SP 1340 [4323–5778] [841–1275] (70.2 %)
Rhine, Kaub DE 5975 [13 781–18 590] [6782–9358] (46.4 %)
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Fig. 10. Observed versus simulated average discharge(a, b) and average annual maximum discharge(c, d) for each of the 554 stations
depicted in Fig.1 for the control period 1961–1990. Left and right columns show hydrological simulations driven by uncorrected and bias
corrected climate data, respectively.
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Figure 1: Return level plots of simulated discharge levels in the 20 selected gauging stations showed
in Fig. 1, based on a Gumbel distribution fit to the annual maxima for the control period 1961–1990.
Full lines represent hydrological simulations driven by uncorrected forcing data whereas dashed lines
represent the bias corrected counterpart. Also included in the plates are the 95% confidence intervals
(red dashed- and full-lines) derived using the profile-likelihood method. Black crosses represent return
levels obtained from empirical plotting positions of observed annual maximum discharges at the selected
stations.

4

Fig. 11.Return level plots of simulated discharge levels in the 20 selected gauging stations showed in Fig.1, based on a Gumbel distribution
fit to the annual maxima for the control period 1961–1990. Full lines represent hydrological simulations driven by uncorrected forcing data
whereas dashed lines represent the bias corrected counterpart. Also included in the plates are the 95 % confidence intervals (red dashed- and
full-lines) derived using the profile-likelihood method. Black crosses represent return levels obtained from empirical plotting positions of
observed annual maximum discharges at the selected stations.
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Fig. 12. Ratio of discharges for a return period of 100 yr between
hydrologic simulations driven by uncorrected and bias corrected
forcing data for the control period 1961–1990.

extreme value fitting, and other sources of uncertainty from
the hydrological modelling exercise are not accounted for.

In most regions of Europe the empirical return levels are
overestimated when LISFLOOD is driven by uncorrected
forcing data. This can be deducted from the analysis of the 20
stations above in combination with Fig.12, which shows the
ratio of 100-yr return level discharges between runs driven
by the uncorrected and bias corrected forcing data for the
control period. There is, at the same time, a well-defined
area (north of the Carpathian mountains) where the 100-yr
flood discharges based on bias corrected forcing data are
slightly higher (ca. 25 %) than those obtained when using un-
corrected forcing data. In the latter, this region is subject to a
large overestimation of the temperature in all seasons, as well
as to an underestimation of precipitation in summer and rela-
tively moderate overestimations of precipitation in the other
seasons. In the hydrological model, compared to the run with
the bias corrected forcing data, this translates in higher evap-
otranspiration losses during growing season (see Fig.8), less
days with frost and snow cover, reduced snow accumulation
in winter (see Fig.9), and drier soils and depleted groundwa-
ter stocks after summer.

3.4 Future recurrence intervals

The previous sections have shown the benefit of bias removal
for reproducing with the LISFLOOD model observed av-
erage and extreme discharge statistics in the control period
1961–1990. Based on the assumption of a stationary error
model, future climate is corrected using the transfer functions
derived from the control climate. As such, in accordance to
the observations in the control period (Fig.12) but not shown
here, future flood magnitudes based on the uncorrected cli-
mate simulations largely overshoot those based on corrected
climate in most regions of Europe. Hence, although not ver-
ifiable, they very likely provide a more biased estimate of
future flood magnitudes.

Another interesting aspect, however, is the future recur-
rence interval of a given flood level observed in the control
period, which does not depend on the absolute magnitude,
but on the change thereof between the control and future pe-
riod. Here we therefore show what could be the extent of
the errors induced by analysing recurrence intervals based on
hydrological simulations driven by uncorrected forcing data
compared to its bias corrected counterpart.

We first calculated the discharges associated to a 100-yr
flood event for the hydrological simulations driven by un-
corrected and bias corrected climate data. This was done
employing the Gumbel distribution fitted in the control pe-
riod (1961–1990). Future recurrence intervals of a 100-yr
event observed in the control period were then obtained by
translating the respective control period 100-yr discharges
using the Gumbel distribution fitted in the future time slice
(2071–2100). This procedure was repeated for both simula-
tions driven by uncorrected and bias corrected climate data.
Deviations from the control period recurrence interval indi-
cate whether the control period 100-yr event will be more or
less frequent in a future climate. Figure13a shows the future
recurrence intervals of a control period 100-yr event, where
red indicates that a control 100-yr flood will become more
frequent (top scale of legend). In most rivers across Europe
the return interval of what is currently a 100-yr flood may in
the future decrease to 50 yr or less. A notable exception is
the considerable increase in flood recurrence interval (or de-
crease in frequency) in the northeast, where warmer winters
and a shorter snow season will likely reduce the magnitude of
the spring snowmelt peak. Also in some other rivers in cen-
tral and southern Europe an increase in recurrence interval
is found.

Figure13b shows the difference in recurrence interval be-
tween the runs driven by corrected and uncorrected climate
data. River stretches in white show a good agreement in the
change in recurrence interval, red implies that for the simu-
lations driven by bias-corrected forcing data floods are pro-
jected to become more frequent compared to the uncorrected
driven run, and blue the opposite (bottom scale of legend).
Notable is that the simulations driven by uncorrected climate
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Fig. 13. (a)Recurrence interval of a 100-yr event observed in the
control period (1961–1990) for the long-term future (2070–2099),
and(b) difference (yr) for the recurrence interval of a 100-yr event
between hydrological simulations driven by bias corrected and un-
corrected climate data.

data tend to simulate less frequent floods compared to the
simulations driven by corrected data in most of northern Eu-
rope. Analysis of the control and future snowpack maps re-
veals that this is caused by a stronger relative reduction in
snowpack depth between control and future climate when
the climate simulations are not corrected for bias. In the
rest of Europe, except for the British Isles where both runs
project similar changes in recurrence interval, the recurrence
intervals for the uncorrected driven run deviate in both di-
rections from those derived from the bias-corrected driven
run. This suggests that estimated recurrence levels based on
uncorrected forcing data might wrongly indicate future re-
currence intervals of a 100-yr event observed in the control
period.

4 Discussion

Despite the strong improvement after implementing the bias
correction, some discrepancies between observations and
corrected climate simulations of precipitation and tempera-
ture remain. This could be related to inherent limitations of
the bias correction method employed, limitations of the RCM
to properly simulate/capture local orographic effects given
the lateral resolution employed in this work (25× 25 km), or
inadequacies in the observed gridded data set that was used
as target to perform the bias correction of the climate simu-
lations.

Within the first group of limitations we should note that
by only correcting average, maximum and minimum temper-
atures, without considering radiative forcings and dewpoint
temperature, the energy balance may no longer be preserved.
At present, there seems to be no workaround to this prob-

lem as there is no high-quality high-resolution gridded ob-
served data set for these variables to perform the bias correc-
tion. Also, results shown herein suggest that any potential
bias introduced due to the not-closure of the energy balance
does not outweigh the improvement gained by using bias-
corrected temperature and precipitation fields.

As noted byPiani et al.(2010b), interpolation of monthly
transfer functions to obtain daily values of precipitation or
temperature may cause the monthly statistics to not match
the observed statistics as daily values in one month are influ-
enced by the values of preceding and following months. In
our case, with the exception of few grid cells, temperature
and precipitation statistics for the control period 1961–1990
for average conditions are in full agreement with observed
statistics, and even if the bias correction of these variables is
done on a daily basis, seasonal statistics show a good agree-
ment as well. This, however, does not guarantee that explicit
spatio-temporal correlations between different variables, e.g.
temperature and precipitation, will be preserved.

Dosio and Paruolo(2011) argue that correlations are ap-
propriate measures of dependence only for variables follow-
ing multivariate Gaussian or Elliptical distributions and that
a more appropriate measure is given by Copula functions
(see, e.g.Salvadori and De Michele, 2004). The dependence
between precipitation and temperature can be expressed via
copulas, which have the notable property of being invariant
with respect to monotonically increasing transformations of
random variables. In our case, the transfer functions used
for bias correction (linear and exponential) are monotoni-
cally increasing transformations of precipitation and temper-
ature, implying that uncorrected and bias corrected values
have the same Copula function.Dosio and Paruolo(2011)
suggest that based on the Copula function as a proper mea-
sure of dependence among fields, the univariate bias correc-
tion employed in this work preserves the joint prediction of
precipitation and temperature and hence the bias correction
does not alter the dependence structure between precipita-
tion and temperature. We note here, however, that the dis-
cussion on the nature of the relationship between precipita-
tion and temperature and ways of expressing this relation-
ship is still ongoing and is far from settled as highlighted by
Piani et al.(2010b).

Clear limitations of the RCMs relate to the poor descrip-
tion of land surface processes, the poor ability to capture the
modulation of precipitation in areas of complex orography
(Herrera et al., 2010), as well as unresolved/unexplained pro-
cesses conveyed from the GCMs employed to drive the cor-
responding RCMs (Giorgi, 2005).

At the same time, it can be argued that the observed grid-
ded data set (E-OBS) employed to perform the bias correc-
tion may not always properly match true temperature and/or
precipitation due to over-smoothing effects introduced by
insufficient station density for the cell-based interpolation
(see, e.g.Hofstra et al., 2010; Boberg et al., 2010). Thus,
part of the mismatch between the RCM simulations and
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observational dataset might actually not be related to model
errors, but instead to errors in the observed gridded data set
(Lenderink, 2010). In the bias correction, this can potentially
corrupt properly simulated temperature or precipitation in ar-
eas with low station densities. Also, using an alternative ob-
served gridded data set (e.g. CRU TS1.2 seeMitchell et al.,
2004) can lead to different transfer functions. The latter,
however, is expected to have limited influence as alternative
observed data sets often present similar climatology despite
differences in horizontal extent or station density (see, e.g.
Rauscher et al., 2010).

Notwithstanding the considerable improvement in repro-
ducing observed discharge statistics after implementing the
bias correction, some notable discrepancies between simu-
lated and observed average annual maxima are still present
at a number of river stations. Several factors may contribute
to this mismatch. Part of the disagreement can be attributed
to the remaining error in the meteorological forcing fields af-
ter the bias correction.

The disagreement is in part also attributable to not ac-
counting for river regulation in the current LISFLOOD setup.
The main reason is a deplorable lack of relevant data at Eu-
ropean scale, as well as the large uncertainty regarding future
river regulation and land-use changes. As a consequence, re-
sults are likely to underestimate the human influence on high
flows, and, for future climate, rather reflect the impact of cli-
mate change on natural flows.

Errors in the conceptualization and parametrization of the
hydrological model further affect the simulated discharges.
We do not make an attempt to account for hydrological un-
certainty, as it is outside the scope of this study. Several other
studies (e.g.Wilby, 2005) showed, however, that this layer of
uncertainty is generally much lower than the uncertainty of
the climate input to the hydrological model.

The relative contribution of these factors is difficult to
quantify because observed events cannot be compared on an
individual basis with simulations for the control climate, as
it does not reproduce the historical weather.

5 Conclusions

In this work we assessed the benefits of removing bias in cli-
mate forcing data for pan-European hydrological impact as-
sessment, with emphasis on extreme events. Results show
that the bias correction method employed performed very
well in removing bias in average, maximum and minimum
temperatures. Even though daily maximum and minimum
temperatures were corrected for indirectly, and the daily
transfer functions were obtained on a monthly basis, ob-
served annual and seasonal statistics were fully preserved.

For precipitation, the bias correction method was able to
drastically reduce the strong overestimation generally ob-
served across Europe. Only in certain mountain areas, e.g.
Alps, Apennines, and Carpathian, a persistent overestimation

remained, mainly in winter. This is likely due to the alter-
nation between linear and exponential fitting-type functions
during winter months in these areas, which can significantly
alter the interpolation of daily values based on the anterior
and posterior (monthly) fitting functions.

Validation of simulated discharge statistics at 554 gaug-
ing stations showed that LISFLOOD simulations driven by
uncorrected forcing data strongly overestimated average and
extreme discharge statistics at the majority of stations. Sim-
ulations with corrected climate simulations were more con-
sistent with historical discharge records. A strong improve-
ment was observed not only in average discharges but also
in the annual maxima and the probability of flood levels de-
rived by extreme value analysis. For the extremes, however,
we observed a slight tendency to underestimate observed
flow statistics. This can in part be explained by errors in
the E-OBS data set used as target in the bias correction. In
the latter, gridded extreme precipitation may undervalue true
extremes due to under-catch of precipitation, especially in
mountain stations, as well as to the over-smoothing effect in
the grid-based interpolation in areas with low station den-
sity. Despite this, the E-OBS data set is currently the best
available at pan-European scale. In small-scale studies such
problems may be alleviated by using more dense data sets to
reconstruct historical climate.

At a number of stations, the bias-correction could not
(fully) remove the (sometimes considerable) discrepancies
between observed and simulated discharge statistics. This
suggests that they relate to other limitations of the hydrologi-
cal modelling exercise, such as not accounting for river regu-
lation, or errors in the conceptualization and parametrization
of the hydrological model.

In accordance to the results for the control period, future
flood magnitudes for the hydrological simulations driven by
uncorrected climate data largely exceed those based on cor-
rected climate. Although strictly not verifiable, this suggests
that projections of future flood magnitude based on uncor-
rected climate simulations are likely unreliable. Moreover,
results show that the recurrence interval of a 100-yr flood
event observed in the control period, which depends on the
change in flood magnitude rather than on the absolute value
thereof, can substantially vary in both directions from its
corrected-based counterpart.

This research has shown the benefits of bias removal in cli-
mate simulations for hydrological impact assessment at pan-
European scale. Despite the potential limitations in the ap-
proach employed, the considerable improvement in the sim-
ulation of extreme events and their probability of occurrence
in the control period 1961–1990 increases the confidence in
the projections of future flood hazard. Our next steps in-
volve the implementation of this technique to the full ensem-
ble of climate simulations available in the FP6 ENSEMBLES
project, and the hydrological impact assessment using fully
consistent and bias corrected climate simulations for an en-
semble of climate models.
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