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CrossMark
Abstract
A connection between condensed matter physics and basic quantum
mechanics is demonstrated as we use the fundamental 3D particle-in-a-box
model to explain the optical properties of semiconductor nanocrystals, which
are substantially modified due to quantum confinement. We also discuss recent
advances in the imaging and measurement capabilities of transmission electron
microscopy, which have made it possible to directly image single nanocrystals
while simultaneously measuring their characteristic absorption energies. We
introduce the basic theory of nanocrystals and derive a simplified expression to
approximate the optical bandgap energy of an orthorhombic nanocrystal.
CsPbBr; perovskite nanocrystals are used to demonstrate this model due to
their cubic crystal structure, large absorption cross-section, and favourable
dielectric properties, which make them ideal for exploring the applications of
this simple classroom problem. Various orthorhombic shapes are explored,
and the predicted values of the optical bandgap energies using the proposed
model are shown to be in good agreement with the experimentally determined
values.

Supplementary material for this article is available online
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(Some figures may appear in colour only in the online journal)

1. Quantum confinement and nanocrystals

The properties of bound state quantum systems are among the most fundamental aspects of
nature introduced to students in their study of quantum mechanics. When particles are con-
fined to distances comparable to their De Broglie wavelengths, quantum behaviours begin to
manifest. This has interesting consequences such as particles only being able to exist with
discrete energies, where their ground state energy is non-zero and increases as the confine-
ment of the particle becomes more severe. If the particle is confined in all three dimensions
(the so-called ‘particle-in-a-box’), each confinement direction influences the values of the
energy levels. Despite being an idealised system, the particle-in-a-box model has been very
successful to estimate the behaviours of more complex quantum systems. For example, the
basic optical properties of semiconductor quantum dots and nanocrystals (NCs) can be
explained quite accurately by primarily considering the effects of quantum confinement
induced by an infinite potential [1-4], which makes the particle-in-a-box the ideal system for
demonstrating the utility of these fundamental models [1, 5-8]°.

Nanocrystals have been studied for several decades due to their unique properties, and
they are emerging in medical and renewable energy applications as well as high-energy
detection and high-resolution displays such as quantum-dot-LED (Q-LED) TVs [9-14]. For
medical purposes, NCs are being explored as a means to release drugs under tissue and as
markers for imaging. In renewable energy applications, NCs have the potential to modify the
solar spectrum and make use of previously wasted wavelengths of light emitted by the Sun.
These applications are possible because the wavelength of light that can be absorbed and
emitted from NCs depends primarily on the size of the nanocrystal for most materials. The
entire visible spectrum can be emitted from an ensemble of NCs made of a single material
simply by changing the size of the nanocrystals [3, 13]. Utilising the high spatial and energy
resolution of scanning transmission electron microscopy (STEM) techniques, it is possible to
simultaneously measure the dimensions and optical properties of a nanocrystal [4, 15, 16].
We will discuss the fundamentals of these measurement techniques and show that they can be
used to provide valuable insights on the relationship between the size of NCs and their optical
properties, in a transparent and pedagogically useful manner that provides a valuable con-
nection between condensed matter physics and quantum mechanics.

2. Carrier confinement in nanocrystals: theoretical background

There are two ways to model a semiconductor NC [6]: one is to think of a NC as a large
cluster, where atoms are added until a certain sized cluster is achieved. The second is to think
of the NC as a bulk semiconductor that has been reduced in size, such that mobile electrons in
the semiconductor are strongly confined by the edges. The latter approach will be used in this
manuscript. Therefore, we will first review some of the basic principles of bulk semiconductor
materials and then extend our discussion to nanocrystals. A single atom is characterised by its
unique set of discrete energy levels, but when two atoms are placed close together, the
interaction between the electrons and nuclei of the atoms causes the allowed energy levels to
split. As the number of interacting atoms increases, so does the splitting of the allowed energy

5 The validity of using ideal quantum systems to explain real-world phenomena, as well as its pedagogical
importance have been investigated and discussed by other authors [7, 8].
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Figure 1. Comparison of the bandgap energy E, for a bulk semiconductor versus a NC
made from that material. The confinement of the electrons and holes in the NC widens
the bandgap and introduces an atomic energy level structure.

levels. In a solid crystal material, the atoms are arranged in a periodic array known as the
crystal lattice. When millions of atoms come together to form a crystal, the large number of
interactions between the electrons and nuclei lead to a near continuum of allowable energy
levels, called energy bands. Similar to the single atom case, there are both allowed and
forbidden energy bands in a solid, where the range of forbidden energy states situated
between allowed energy bands are known as bandgaps.

The allowed energy bands are filled by electrons that originate from each atom in the
solid, and the highest energy band that is completely filled at absolute zero (0 K) is called the
valence band (VB). The lowest energy band that is not fully (metals) or completely (insu-
lators) unoccupied is called the conduction band (CB). The energy difference between the VB
and CB is called the fundamental bandgap of the material. For metals, the CB is partially
filled even at O K, which is why electrons are able to ‘move freely’ in a metal. In a semi-
conductor, the CB is empty at 0 K, but the bandgap is small enough that the thermal energy
available at room temperature can be sufficient for an electron to reach it.

Another way to move an electron from the VB to the CB is to excite the semiconductor
with a photon that has energy greater than the bandgap, which can then transfer its energy to
the electron (figure 1). The VB can then be thought of as a filled band, but with a positively
charged ‘hole’ left behind. If the excitation provides more energy than the bandgap, the
electron and hole can move inside of the material. Near the bottom of the conduction band for
electrons and the top of the valence band for holes, these particles are described as ‘(nearly)
free particles’ with effective masses (m. and m;"), which account for their interactions with

3
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the crystal lattice [5, 6, 17, 18]. For example, if it is more difficult for an electron in a material
to be accelerated than a free electron, then the effective mass of the electron in the material
will be greater than the electron mass in vacuum.

The electron will eventually return to the valence band, taking the place of a hole and
emitting a photon with an energy equal to the bandgap energy. When a NC is excited, an
electron will also be promoted into the conduction band and will leave behind a hole, except
that the electron and hole will then be spatially confined by the dimensions of the NC and, if
the dimensions are small enough, quantum confinement effects will become significant. Thus,
the electron and hole are ‘particles in a box’, but also interact with the crystal lattice, which
both contribute to their allowed energy values. Typically, NCs are assumed to be spherical
and therefore the confinement is estimated as an infinite spherical potential. The calculation
for the energy eigenvalues of a particle confined to an infinite spherical well of radius (r) is a
standard textbook problem, which yields the expression

723
Es’;l)]here(r) = 2mr’;[ s )

where Y, are the zeros of the Bessel function. This confinement energy is negative for holes
and positive for electrons. Since the electron and the hole occupy the CB and VB,
respectively, the CB will be shifted up in energy, while the VB will be shifted down in
energy. This will widen the bandgap of the material by the combined confinement energy of
the electron and the hole:

2.2 2.2
ﬁ an ﬁ an
Zme*r2 Zm,zkrz

cnolnf, sphere(r) = )
The widening of the bandgap occurs in discrete increments for different values of n and /,
which is illustrated in figure 1. Taking the electron and hole to be in the ground state of the
spherical well potential (n = 1 and / = 0) for both the electron and the hole and adding it to
the bulk crystal bandgap energy, one can estimate the fundamental optical bandgap of the NC
as

2
2r m, my,

h2m? 1 1
EOG(r) = EG,bulk + Econf,sphere(r) = EG,bu]k + - [_* + _*:l 3)

While equation (3) describes the fundamental bandgap, it is clear in figure 1 that there are
other atomic-like levels where the electron and hole are not in their ground states. Inter-band
transitions between these levels can also occur in nanocrystals, leading to emission lines with
higher energies than the bandgap, which is not typically observed in bulk semiconductors.

2.1. The cubic nature of CsPbBrs; perovskite NCs

Halide perovskite NCs currently receive considerable attention as new materials for solar
energy conversion, high-energy detection and display purposes [4, 10-12]. Unlike many NCs
that form spherical nanoclusters, perovskites such as CsPbBr; have a cubic crystal structure
and form NCs with a cubic geometry, which is illustrated in figure 2(a). This cubic structure
can clearly be seen in figure 2(b), which shows STEM images of ensembles of CsPbBr; NCs,
as well as isolated NCs. Due to their cubic geometry, the spherical potential that is normally
assumed to describe quantum confinement is less appropriate when modelling CsPbBr; or
other cubic perovskite NCs. When an electron is promoted into the conduction band in a
cubic NC, the electron and the hole will be spatially confined to an orthorhombic potential.

4
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(a)
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Figure 2. (a) The atomic structure of bulk CsPbBr;. (b) STEM images of CsPbBrz NCs
both in ensembles and isolated.

To account for the cubic geometry, we must consider a particle-in-rectangular potential
with unequal side lengths. The 3D infinite rectangular potential is well-studied in introductory
quantum mechanics, and detailed solutions for the energy eigenvalues are given in several
textbooks [5, 19-22]. Following the same procedure used for the spherical potential men-
tioned above, the orthorhombic confinement energy term, including the contribution from the
electron and the hole, becomes

r? | n2 nl a2 wr? |n2  n2  n2
conf  _ ey e e e
Eonhom = 2mf laz * b? * c? * 2m;; " - ' @

where a, b and c are the lengths of the sides of the rectangular potential. The fundamental
optical bandgap for an orthorhombic NC then takes the form

722 1 1 1
Eog(a, b, ¢) = Egpuk + W . I:? + ﬁ + ;:I, 5)

where p* is the average effective mass of the electron and hole, given as

1 1
,U* = |:—* + —*:| (6)

m, my,

Equation (5) will be used to estimate the optical bandgap of orthorhombic CsPbBr; NCs.
Also, the NCs discussed in this work have ligand-terminated surfaces such that the effect of
surface defects on the energy structure is minimised. These NCs were fabricated using the
same procedure that is described in detail in other reports [4, 11]. In the next section, we will
introduce the fundamentals of STEM and electron energy loss spectroscopy. These
techniques will be used to measure the physical dimensions and optical bandgaps of various
NCs, which will then be compared with values predicted by equation (5).
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3. Measuring the bandgap of a single cubic NC using electron energy loss
spectroscopy

Photoluminescence is commonly used to measure the optical bandgap of bulk semi-
conductors, where a light source is used to excite electrons from the VB into the CB. The light
that is subsequently emitted from the material is then collected using a detector. However, the
size of most NCs prohibits optical techniques since the wavelength of light is nearly two
orders of magnitude larger than the size of the NCs, and thus it is impossible to resolve a NC
spatially with any reasonable certainty. In a similar way, it would not be possible to use
optical excitation to excite a single NC and measure only its absorption properties. It is
possible to use optical excitation sources to probe large ensembles of NCs [11]; however, the
bandgap energy of a single NC in an ensemble was found to be influenced by the surrounding
NCs [4], and thus only an average optical bandgap can be determined using this technique.

In order to image a single NC, a STEM can be used, where a focused beam of high-
energy electrons (~100 KeV) is scanned across the sample. The De Broglie wavelength of a
high-energy electron is very small (~0.004nm) and can therefore be used to resolve
nanoscale objects such as NCs. As electrons move through the sample, they can scatter with
the atoms in the material either elastically or inelastically and are collected by a detector on
the other side. There are two primary detection geometries used in STEM, annular dark field
(ADF) detection and bright-field detection; however, we will only focus on ADF detection in
this work. For ADF detection, a ring-shaped detector with a hole in the middle is used.
Electrons that pass through the sample without significant deflection will not be collected (no
signal), while electrons that are scattered from atoms within the material will be collected by
the ring-shaped detector (signal). As the number of scattered electrons increases, so does the
intensity of the signal. Heavier atoms will deflect more electrons than light atoms; therefore,
the heavier atoms will appear brighter in the image. The resulting contrast between heavy and
light atoms is referred to as Z-contrast and can be used to identify atoms within the lattice.
The thickness of a sample can also be estimated using Z-contrast ADF images, since the
image intensity is related to sample thickness. This is because electrons are more likely to be
scattered if they pass through thicker samples of the same material; thus thicker samples will
appear brighter than thinner samples in the Z-contrast ADF images. Using the relative image
intensity between samples, the thickness of each sample can be estimated [4].

In addition to detecting electrons for imaging purposes, the energy of electrons that are
scattered can be measured by using an electron spectrometer. In an electron spectrometer, a
magnetic field is present and electrons are deflected via the Lorenz force. From these
deflections, the energy of an electron that entered the spectrometer can be determined. If the
electron scatters inelastically from the material, some of the electron’s energy will be lost.
Certain energy losses can be correlated with different ‘events’ that occur within the material.
By measuring the intensity of electrons over a range of energy loss values, structural, optical
and chemical information can be obtained such as lattice vibrational modes, intra- and inter-
band transition energies, plasmon resonances and inner shell ionisation energies. This type of
measurement is called electron energy loss spectroscopy, or EELS. Recent advances in STEM
now allow EELS to be performed with an ultra-high-energy resolution on the order of
10 meV, while simultaneously imaging a single NC with sub-nanometer spatial resolution
[4, 15, 16].

Next, we will explain the basic features of EEL spectra. In a thin sample, most of the
electrons either do not scatter from the material or do so elastically, and therefore there is no
energy loss. These electrons give rise to the zero loss peak, which is set to 0 eV on the x-axis
of an EEL spectra. The zero loss peak of a CsPbBr; nanocrystal is shown in figure 3(a). The

6



Eur. J. Phys. 39 (2018) 055501 B Mitchell et al

T &l T ¥ T T T T ] ¥ T " T T T ' T 4 T ¥ T N T " T ® T

a) Experiment b) As-acquired spectrum
’5 """ Gauss Fit ; = Filtered spectrum
) 8
2 2
c c
S b
o} o}
O (@]
[ c
e e
8 \ 8
| "\ [0 | First derivative

i \. Zero-loss peak NJ\/"""' Valence-loss spectrum
™ leoca-c- |-".’"’I L 1 L ‘I“"."-i ------- | 1 1 1 1 1 1 1 X
-04 -0.3 -0.2 -0.1 00 0.1 0.2 03 04 1 2 3 4 5 6 7 8
Electron Energy Loss (eV) Electron Energy Loss (eV)

Figure 3. (a) Zero loss EEL spectra of a CsPbBr; nanocrystal, which corresponds to
electrons that did not scatter from the nanocrystals, or did so elastically, along with a
Gaussian fit of the data. (b) The low-loss or valence-loss spectra of the same
nanocrystal. The data was smoothed out using a Savitzky—Golay filter, and the first
derivative of the smoothed line was taken. The optical bandgap of the nanocrystal can
be estimated from the energy loss value where the electron counts first begin to
increase, which is indicated by the peak of the first derivative and has a value of
~2.60 eV for this NC.

width of the zero loss peak gives information on the distribution of energies of the electrons in
the beam, which usually exhibits a Gaussian behaviour [23]. By fitting the zero loss peak and
evaluating the full width at half maximum (FWHM), the energy resolution of the measure-
ment can be estimated. In the valence-loss spectrum (figure 3(b)), the tail of the zero loss peak
can be observed on the left. For this NC, an abrupt increase in the electron count is observed
at an energy loss of ~2.60 eV, which is due to an interaction that causes an electron to be
excited across the optical bandgap of the NC. Thus, this energy loss value can be used to
determine the optical bandgap of the material, which is in principle analogous to how
bandgap energies are determined in optical absorption spectroscopy [24, 25]. To more
accurately determine this energy loss value, the as-acquired data can be digitally smoothed
using a Savitzky—Golay filter [26]. The first derivative (the slope of the curve) of the
smoothed function can then be taken. The step-like increase appears as a peak in the first
derivative, which can be fit with a Gaussian curve. The bandgap energy of the NC can then be
estimated from the apex of the fit peak, and the FWHM of the peak can be used to estimate
the experimental error. Thus, based on this EEL spectrum, the optical bandgap of this NC
would be reported as 2.60 £ 0.03 eV. It should be noted that there are several wavy features
for electron loss energies greater than 3.5 eV in figure 3(b). These correspond to electron/hole
excitation higher into the bands, and are also observed in optical absorption measurements
performed on nanocrystals [11]. Information on the equipment and settings used in these
experiments, as well as the synthesis of the nanocrystals, can be found in the supporting
information document is available online at stacks.iop.org/EJP/39/055501 /mmedia.
Figure 4(a) shows the valence-loss or low-loss EEL spectra for three nearly cubic NCs of
various sizes with the corresponding ADF Z-contrast STEM images. The exponential decay
observed for energies lower than 2.3 eV in the EEL spectra is the tail from the zero loss peak
signal, which was not included as it is much stronger than the signal from the absorption edge.
The bandgap energy is identified as the energy when the decay of the zero loss signal ceases
and an abrupt increase in the EELS signal is observed. Due to the size of the nanocrystals,
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Figure 4. (a) Valence-loss EEL spectra for cubic NCs with different side lengths. The
bandgap energy is easier to identify by using the first derivative of the EEL spectral
curves, which is given by the dotted black curves below each spectra. Peaks in the first
derivative near the onset on the absorption indicate the bandgap energy of the NC. (b)
Optical bandgap energy plotted against the side length of cubic NCs. The measured
values are plotted as well as those calculated by assuming a spherical shape
(equation (3)) and an orthorhombic shape (equation (5)).

very few electrons will interact with the NC, and the signal does not increase significantly,
which can make it difficult to identify the energy where the onset of the bandgap absorption
occurs. To make this more evident, the first derivative of the smoothed EELS signal is used.
The first derivative curve is plotted in dotted black lines below the EEL spectra in figure 4(a).
Since the first derivative is sensitive to changes in the slope of the EEL spectral curve, several
bumps may be present in the first derivative curve. Therefore, one must identify where the
decay from the zero loss peak stops, and look for a peak in the first derivative at that point,
which is typically larger than the other peaks that are due to random fluctuations in the signal.
As expected from equation (5), the EELS absorption edge appears at lower energies for
larger NCs. The measured optical bandgaps for several nearly cubic NCs are plotted versus
side length in figure 4(b). The bandgaps estimated using equation (3) (spherical potential) and
equation (5) (cubic potential) are also plotted. In these calculations, the value of the bulk
CsPbBr; bandgap energy was taken as the average of values reported by various groups [4,
10-12, 27]. The effective masses of the electron and the hole were taken to be 0.15 m, and
0.14 m,, respectively, where m, is the mass of a free electron [11, 27]. While the notion of an
effective mass can only be properly defined in an infinite system, these values are commonly
used as approximations when estimating their confinement energy. The error bars for the
measured bandgap values are estimated from the FWHM of the zero loss peak in the EEL
spectra, while the errors in the calculated values are estimated from the standard deviation in
the values of the reported bandgap energies and effective masses [4, 10-12, 27].
Theoretically, the confinement energy for a spherical potential is ~30% higher than a
cubic potential of the same length scale and with all other parameters kept the same.
Experimentally, it is evident that the spherical potential significantly overestimates the con-
finement effect, especially for small NCs, while the cubic potential estimates the measured
optical bandgap reasonably well within uncertainty. In the next section it will be shown that
an orthorhombic potential will prove essential for explaining the behaviour of non-cubic NCs.
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Figure 5. (a) STEM images of NCs with three different shapes: (1) long rod, (2) short
rod, and (3) platelet. The depths are included for each shape as determined using Z-
contrast ADF imaging, as well as their corresponding measured energy bandgaps. (b)
ADF intensity across the long rod and the short rod. The thicknesses of the NCs are
estimated based upon the relative intensities compared to a reference sample [4]. (c)
Plot of the measured energy bandgaps (dark colours) and the bandgaps calculated using
equation (5) (light colours).

4. Bandgap evaluation for non-cubic NCs

Several NCs were found that did not have a near cubic structure, such as the three NCs shown
in figure 5(a), which have a rod-like or platelet geometry. Figure 5(b) shows the ADF
intensity across a long and a short rod. The thicknesses of these NCs are then estimated based
from statistics and upon their relative intensities, as compared to a reference sample [4].
Although the platelet has a rather large area in the x—y plane, its depth was estimated to be
only ~6.5 nm. The short rod was found to have an x—y dimension of 6.8 x 12.4 nm, with a
depth of ~8.5 nm, and the longer rod had an x—y dimension of 33.6 x 10.6 nm, with a depth
of ~13.5 nm. The optical bandgap measured for the platelet and the short rod are quite similar
despite the differences in their respective dimensions. The measured optical bandgaps of the
NCs are plotted with the values obtained from equation (5) in figure 5(c), which are in good
agreement.
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It is clear that using a simple spherical potential to account for the confinement effects in
NC with non-cubic geometries would be a challenge. What would one choose for the radius
of the NC? From figure 3(b), it can be seen that if the radius were set as the largest dimension,
the confinement would be underestimated. On the other hand, if the radius was chosen to be
the smallest dimension, the confinement would be overestimated. In addition, the larger
dimensions are small enough that they still provide a significant degree of confinement. Thus,
the platelet and rod could not be treated as systems with a lower dimension of confinement.
For example, if the platelet were treated as a quantum well with confinement only in one
dimension, the optical bandgap would be underestimated. Thus, the orthorhombic potential is
necessary for estimating the optical bandgap of orthorhombic NCs to a reasonable degree.

Of course, the formulation used in this article is a simplification of the situation. In the
derivation of equations (3) and (5), the electron and hole were assumed to be non-interacting
particles. To account for the interaction between them in a semiconductor, a full two particle
Hamiltonian would have to be solved. Several authors have performed this calculation for a
spherical geometry, and have shown that two correction terms are introduced, which take into
account the Coulomb interaction between the electron and the hole, and the energy arising
from the spatial correlation between the electron and hole [5, 6, 28, 29]6. The magnitude of
these two correction terms is dependent on the dielectric constant of the semiconductor, and
can be ignored when the dielectric constant is large. One of the additional benefits of CsPbBr3;
NCs is that they have a relatively high dielectric constant and therefore these correction terms
are negligible in this system [11]. It should also be noted that spatial confinement is not the
only method used to modify the optical bandgap of halide perovskites, which have the form
CsPb(X);. The bandgap of these materials is also very sensitive to elemental substitutions.
For example, if Br is replaced with other elements such as ClI or I, the bandgap of the bulk
material changes from ~2.34eV (CsPbBr;) to ~3.1eV (CsPbCl;) and ~1.8eV (CsPbl;)
[12]. The optical bandgap of these perovskites can then be fine-tuned using spatial
confinement.

5. Conclusions

Quantum dots and nanocrystals are useful systems for providing a clear illustration of the
quantum confinement effects in practice. The ability to simultaneously measure the physical
dimensions and the bandgap energy of NCs enabled by the recent advances of STEM and
EELS provides a unique means to explore the influence of quantum confinement on the
optical properties of semiconductors. CsPbBr; perovskite NCs serve an ideal system to probe
these effects due to their strong absorption (direct bandgap structure), cubic geometry and
high dielectric constant, which reduces the influence of Columbic and polarisation effects
between the electrons and holes. As a result, the confinement effect can be estimated by using
a simple particle-in-a-box model and can explain the correlation between the size and shape
of the NCs and their optical bandgaps in a transparent way.

6 Equation (3) was not derived for embedded quantum dots or self-assembled quantum dots with a paraboloid shape.
For information on these systems, see [1].
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