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MDP: Minimum Delay Hot-spot Parking
Peng Liu∗, Biao Xu ∗, Guojun Dai∗, Zhen Jiang†‡, and Jie Wu†

∗Institute of Computer Application Technology, Hangzhou Dianzi University
†Dept. of Computer and Information Sciences, Temple University

‡Dept. of Computer Science, West Chester University

Abstract—Hot-spot parking is becoming the Achilles’ heel of
the tourism industry. The more tourists that are attracted to
the scenic site, the more often they will encounter a hassle of
congestion to find a parking place; while those existing facilities
for daily traffic are not supposed to support the excessive volume
outburst. In this paper, we present a new parking guidance
information system (PGI). By taking advantage of the technical
advances of today in wireless communication of vehicular ad-
hoc network, each vehicle will request and obtain a relatively
fair opportunity to park. The competition and the corresponding
allocation on the available slots emerging along the time scale
are considered, in order to ensure that no vehicle enters a state
of starvation. This is the first attempt to solve the spatiotemporal
problem of resource assignment based on our extensive work on
the Hungarian algorithm. The contribution as one part of the
sustainable development of big historic cities is to minimize the
idle driving and waiting, without increasing the parking supply,
which could be costly and unnecessary to build in those urban
areas. Both analytical and experimental results demonstrate the
success of our effort, in terms of the average cruising/waiting
time in each individual parking case and its upper bound. The
data is compared with the best results known to date and shows
a new direction to improve the resource assignment.

Index Terms: Hungarian algorithm, parking guidance informa-
tion system (PGI), traffic performance optimization, vehicular
ad-hoc network (VANET), wireless communication.

I. INTRODUCTION

West Lake was made the UNESCO World Heritage Site in
2011 [16]. It has been the best-known hot-spot over centuries
to attract many tourists. But during the travel season, such
as the Golden Week Holiday, a high parking volume usually
exceeds the capability of existing facilities, incurring the so-
called hot-spot parking problem (e.g., [30]).

The delay in searching and occupying a parking slot might
cause congestion and environmental issues as indicated in
[19]. The time includes the period a vehicle drives towards
the target place according to the reservation. It also includes
the idle driving around the scenic site when the vehicle waits
for the vacant slot to emerge. In our hot-spot parking, such
a delay has a direct impact on municipal reputation and
revenue, while tourism has become one of the world’s fastest
growing industries as well as the major source of earning and
employment for many developing countries.

Unlike the problem of residential parking [1] that can
resort to new construction of parking facilities [25], this is
a resource allocation problem, but in an extremely critical
circumstance where those slots constituted for daily traffic
are required to allocate for the volume outburst (e.g., [35]).
When the slots currently available are not enough to support

all parking demands, the capacity of each place growing along
the time scale must be considered for the vehicle to capture the
future parking opportunity. This introduces the spatiotemporal
resource allocation problem discussed here.

Many existing parking guidance information systems (PGI),
either reservation based (e.g., [19]) or greedy (e.g., [8]), pro-
vide parking guidance by allowing every vehicle to reach the
nearest available slot. However they overlook the competition
of limited slots in the resource-critical scenarios and cannot
provide a fair chance for those runner-ups to reenter the
parking competition. The corresponding slot allocation to the
closest vehicle ignores the fact that many vehicles behind it
are runner-ups from the early parking competitions, which
have cruised for a long time since they lost the parking
opportunities. Due to the distance existing for a runner-up
to approach the next available slot, its priority of parking
reservation will be depleted by any vehicle ahead that newly
joins the competition. Such a depletion will force those runner-
ups back to the idle driving. As often seen in the reality,
when an overwhelming amount of vehicles frequently join the
parking competition from everywhere, one loss usually leads
to a sequence of consecutive losses and even a starvation.

Remark. Considering that the above starvation creates
an endless delay effect, the aforementioned spatiotemporal
resource assignment (dispatching all m vehicles to n places
where m >> n) becomes non-trivial. Existing PGI strategies
(e.g., [8, 12, 19, 21]) or similar assignment-based schemes
for vehicle dispatching (e.g., [5, 18, 23, 24]) are applied on
a sufficient number of targets only. As we will demonstrate
later, the starvation cannot be avoided completely when the
demands exceeds the supply.

In this paper, we present a solution for the PGI system under
its common structure (e.g., [19, 31]). The proposed assignment
of parking slots is derived from the Hungarian Algorithm
[14]. We first consider the extension from the solution for the
traditional quadratic assignment problem (QAP) [32]. Such a
weighted bipartite matching takes both weights on edges and
vertices but does not increase any time complexity as we will
prove it later. Then we present our assignment by utilizing the
capacity growth along the time scale. The corresponding com-
plexity is bounded within a linear-time incremental structure,
in order to achieve a practical system implementation. As the
result, the total time needed for all parking processes (i.e., the
average of an individual case) can be minimized in both the
above assignment solutions. Meanwhile, the worst case can
be bounded within a certain period. Such minimum parking
scheme is denoted by MDP. Its key is to capture the potential
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competition along each vehicle’s trajectory, the corresponding
cruising cost to the next available slot, and then those future
competitions along each possible path in a heuristic manner.

II. METHODOLOGY AND CONTRIBUTION

We studied the unique feature of the hot-spot parking in big
historic cities where any new construction of parking facilities
is usually expensive (e.g., [25]) or unnecessary for the off-
peak traffic (e.g., [13]). The focus was on the scenarios under
critical resource constraint where the endless delay effect
of the starvation problem cannot be avoided completely in
the existing PGI systems or with similar vehicle dispatching
schemes (as explained later in Section 3). Our goal was to
control the cruising/waiting of each parking process within a
certain bound, while the total time for the scheduled vehicles
to stay in traffic can be optimized.

This leaded to the optimization in a spatiotemporal as-
signment MDP (as described in Section 5). The well-known
Hungarian Algorithm for the QAP with the maximum-weight
assignment is the preliminary (as shown in Section 4). Our
solution was derived from the extension of the Hungarian
Algorithm in additional scales, under a linear-time incremental
structure: the first is for allocation with enough vacant slots
and second is based on the prediction of the growth of
parking capacity in the time scale, which can be better suitable
for those extreme cases of slot competitions in our hot-spot
parking. The technical details can be seen in Section 6.

We developed the simulation with the real traffic data
from the road tests. The experimental results (as presented
in Section 7) verified the substantial improvement of our
approach MDP in terms of the elapsed time on both the worst
case and the average case, compared with the results from the
existing PGI services [8, 19]. Thus, the extra cruising time
and volume of traffic caused by the delay in finding a place
to park can be minimized. The corresponding congestion and
environment issues can be mitigated as one part of sustainable
development in the city Hangzhou. At the end of this paper,
Section 8 provides the conclusion and ideas for future research.

III. RELATED WORK AND OUR RESEARCH INCENTIVES

First, our work targets a resource allocation problem. Com-
pared with existing reservation systems for parking, our MDP
faces the challenge of extreme lack of resources when the
existing facilities limited for the off-peak volume are used to
support the high volume during the peak time. It is costly (e.g.
[25]) and unnecessary (e.g., [13]) to directly build new parking
facilities at the level to accommodate the volume outburst.
Such a development can possibly induce more traffic and
worsen the problem [13]. The recent improvement achieved
on assisting the parking, such as occupancy increment (e.g.,
[3, 10, 28]) and ease of parking operation (e.g., [34, 36]),
cannot reduce any conflict and further mitigate the delay
impact. The hot-spot usually attracts many people so that any
effort based on congestion control (e.g., [9, 26]) will go in
vain.

Secondly, the assignment of parking slots is expected to
reduce the total cruising/waiting time of vehicles, in order

to minimize their unnecessary dwellings in the traffic. This
will mitigate the congestion and environmental issues that are
associated with our hot-spot parking delay problem. As we
expect, when a slot becomes available in front of any two ve-
hicles, the one with less elapsed time in its successive cruising
after the back-off will sacrifice and defer the parking request.
Therefore, our reservation requires the complete information
of all vehicles’ trajectories, the corresponding cruising cost to
their next vacant slots, and then those potential competitions
along each of the cruising paths.

Thirdly, we need the bound of each vehicle’s cruising or
waiting. Without our comprehensive view of the slot compe-
tition loss and the corresponding cruising cost, a vehicle may
be sacrificed and pushed away back to the idle driving, not
being able to seize the target slot as it is supposed to be.
As a consequence of high demand against insufficient parking
supply, it may take a long time for the next vacant slot to
appear along the trajectory of such a vehicle. In the usual case,
this newly-emerged available slot will soon be depleted again
by other vehicles nearby when this delayed vehicle is still far
away in its cruising. In the worst situation, that vehicle can
encounter a starvation and falls into an endless loop of missed,
cruising, missed again.

Unique circumstance in the cruising of the hot-spot park-
ing. We observed that cyclic route is commonly used in the
cruising. Many users of our MDP system are tourists. Their
search for parking places is limited due to the lack of sufficient
local information. Unlike a spiral-like search for the parking
places, which forces to gradually leave from the travel desti-
nation, the cyclic route helps to seize the parking opportunity
around the scenic site. Fig. 1 (a) shows the sample routine that
is recommended by the travel agent and GPS for the tourists
to go to the most popular sites, Sudi and Feilai Peak around
the West Lake in the one-day trip during the Golden Week.
In the real traffic, this routine and the driving directions are
predetermined by the local government to mitigate the volume
traffic or jams (in Fig. 1 (b)). This traffic model also helps
to simplify our discussion in the paper. It is noted that our
solution is also applicable for bidirectional traffic because the
vehicle trajectory is represented by the arrival time at each
parking place in our algorithms, supporting vehicle driving in
every direction or even changing the direction at any time. The
sample is applied for vehicles intending to park at those top 5
facilities only. Those five places are denoted by a, b, c, d, and
e, respectively. Note that we focus on a technical solution here.
An accreditation system will be associated with the real system
implementation in order for every user to follow the guidance,
and not to create the interfering noise by changing the routine
or falsifying the data in the parking request. However, that
part is omitted here due to the scope of this paper.

Unlike residential parking, in which one may need the
permission for overnight parking, a 3-hour limit is com-
monly adopted in many urban areas for the hot-spot parking.
Therefore, the capability growth along the time scale can be
predicted with recent surveillance technologies (e.g., [37]),
helping us to control the cruising within a desired bound.

Starvation as the parking delay problem. In the following,
we use a real scenario to explain the incentive of our research.
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Fig. 1. (a) Map of the West Lake scenic area with the top 5 parking facilities [2]. (b) Volume traffic in holiday season caused by insufficient parking
management of private vehicles. (c) 5 vehicles in parking requests and their trajectories. (d) Cruising and slot occupancy with the existing shortest-path-based
reservation where the critical slot reservation has been highlighted in red. (e) Target optimization on total cruising time after a switch of slot assignment at
site-a (explained later in Section 6A). (f) A possible starvation with an incorrect slot resrvation/assignment at the site b in red. (g) MDP solution for the
starvation problem (explained later in Section 6B).

In the first example, we demonstrate our target optimization
on the total cruising time and its need for the information of
all competitions along the vehicle trajectories. In the second
example, we illustrate the use of such heuristic path infor-
mation to solve the starvation problems. First, we show the
shortage of using the shortest path as the metric in choosing
the slot assignment in existing PGI schemes (e.g., [8, 12, 19]).
Then, we show the limit in similar vehicle dispatching (e.g.,
[5, 18, 23, 24]) that adopt the assignment on slots currently
available only. The starvation problem cannot completely
solved and its endless delay effect cannot be overlooked; even
the centralized resource such as cloud (e.g., [6, 19, 28, 31])
is adopted. This induces the need for a new and complete
solution.

In the first example, each parking place has one vacant slot,
and four vehicles are on schedule. Two local drivers, denoted
by 1 and 2, adopt route b→ c→ d to enter the area (see the
cyan path in Fig. 1 (c)). Vehicle 3 comes from the suburban
area and the driver is familiar with the traffic situation. Only
the tour around the lake a → b → d → e (see the magenta
path in Fig. 1 (c)) is needed. The other two drivers, denoted
by 4 and 5, come from a nearby city and do not have parking
site preferences. The route a → b → c → d → e (see the
brown path in Fig. 1 (c)) is predetermined in order to obtain
any place around the lake.

In the traditional PGI (e.g., [8, 12, 19, 21]) based on the
shortest path, vehicle 3 will take the slot at site a, while
vehicles 1 and 2 will take the slots at sites b and c, respectively.
Such occupancy (see Fig. 1 (d)) will force vehicle 4 to go to
site d. If we switch the allocation between vehicles 3 and 4,
vehicle 3 can take the shortcut b → d (see the critical site in
Fig. 1 (e)), saving the time of vehicle 4 along b → c → d.
The target optimization on the total cruising time (explained
later in Section 6A in our MDP solution) requires to consider
the entire path of vehicle 4 when it competes against vehicle
3 at site a (see the red site in Fig. 1 (d)).

In the second example, we show that such a problem can
go worse where the victims are entrapped into a starvation
situation, even when a complete slot allocation is still feasible
in the global view. With the same setting of routes as the above
example, we consider vehicles 1 and 3 only in Fig. 1 (f)). We
assume that only sites b and c each has one vacant slot. In
the aforementioned shortest-path-based scheme, vehicle 1 can

be selected for site b, leaving vehicle 3 in the starvation (see
all unfilled circles as the block signs along the trajectory in
Fig. 1 (f)). Had we known at the global view level that site b
is the only option for vehicle 3 along the entire cruising path,
vehicle 1 can back-off at site b (see the red site in Fig. 1 (f)).
Thus, the parking problem can be solved (see the explanation
in Section 6B for Fig. 1 (g)). But this requires the heuristic
path information of each vehicle.

In an m×n assignment-based scheme (e.g., [5]), m vehicles
can be dispatched to n customers when n ≥ m. But when
m > n, the same scheme repeated for the rest (m−n) vehicles
cannot avoid the starvation problem. For instance, we consider
vehicles 1 and 3 in Fig. 1 (g). But this time, only site b has
one vacant slot. The vacancy at site c will occur later by the
time vehicle 1 approaches it. That is, the above optimization
in Fig. 1 (g) is still feasible (see the discussion on our MDP
solution in Section 6B). Considering two vehicles’ competition
at site b, any existing 2 × 1 assignment (e.g., [18, 23]) will
dispatch vehicle 1 first. Then, by the time the vacancy at
site c occurs, it is now unreachable for vehicle 3. That is a
starvation because the location and capability growth of site c
is unknown to the previous assignment at the beginning. The
distance weight to each of m vehicles is not determined. This
induces the need for our spatiotemporal assignment, which
will be discussed in the rest of this paper.

IV. PRELIMINARY

The quadratic assignment problem (QAP) [32] is one of the
fundamental problems in the branch of optimization. It models
the following real-life problem: There are n agents (∈ X) and
n tasks (∈ Y ). Any agent can be assigned to perform any task,
incurring some cost that may vary depending on the agent-task
assignment. It is required to perform all tasks by assigning
exactly one agent to each task and exactly each task to each
agent so that the total cost of the assignment is minimized.

Such an assignment problem can be solved with the Hun-
garian algorithm [14] in four phases. The details are shown
in Alg. 1. Basically, each bipartite matching between agents
and tasks is conducted from the lowest cost (see the first
part of phase 4). The conflict is solved within a time bound.
Such a bound is denoted by 4 and can be calculated as
max{−L(v) | v ∈ S}, where L is the labeling function in
[14] and S denotes the considered agents in the record. For
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Algorithm 1: Hungarian algorithm [14] for assigning n agents (∈ X)
to n tasks (∈ Y ) in a QAP.

1) Initialization. For each agent i (∈ X) and a possible task j
(∈ Y ), initiate R(i, j) = −cost(i, j) where cost(i, j) is the
corresponding cost (for agent i to accomplish task j). After
that, set L(v) with Eq. (1).

2) Completion check. If every agent has the reservation, stop
the algorithm; otherwise, for any unassigned agent x, initiate
S = {x}, T = {}, and the E-tree E∗x = {x} (also called the
alternating tree in [14]). Then, go to the next phase.

3) Label update for any possible assignment.
• If N(S) 6= T , go to phase 4. N(S) is the set of tasks

that have been assigned or to be able to match with any
agent in S; that is, {j | (i, j) ∈ E∗x ∧ i ∈ S}.

• Otherwise, calculate α with Eq. (2) and then update
L with Eq. (3). After that, keep the edges of those
assignments in tree E∗x and add the new edge (i, j) when
L(i) + L(j) = R(i, j) (according to the new L labels).
Then, go to the next phase.

4) Construction from any y ∈ N(S)− T .
• If y has not been assigned, alternate the assignments from
i (found in the above phase 3) to the root x, along the
so-called augmenting path in E∗x (denoted as the E-path
Eix in this paper). After that, add the edge (i, y) in E∗x as
the new assignment and go to phase 2.

• Otherwise, y has been assigned with an agent, say z in
E∗x. Add the edge (z, y) to E∗x as a record, and set S =
S ∪ {z}, T = T ∪ {y}. After that, go to phase 3.

any possible assignment (i, j) under the consideration S, those
relevant assignments in the existing bipartite matching will be
shuffled, in order to add the task j and complete the current
bipartite matching that was initiated from agent x. To find such
an augmenting path in an easy way, the implementation in
[33] is adopted and we can deal with it as a maximum-weight
matching problem by using a non-positive value to express
each cost (see phase 1 of Alg. 1). Thus, the total cost in the
assignment within the consideration under the time bound 4
can be optimized. As this bound4 increases greedily (in phase
3), more agents will join the matching (see the end at phase
2). The above process will be repeated, until all agents can be
assigned. At the end, the desired optimization (on total cost
in assignment) can be obtained.

L(v) =

{
maxy∈Y R(v, y), v ∈ X
0, v ∈ Y (1)

α = minx∈S,y∈Y−T {L(x) + L(y)−R(x, y)} (2)

L(v) =

{
L′(v)− α, if v ∈ S
L′(v) + α, if v ∈ T
no change, otherwise

(3)

In Alg. 1, the agents and the tasks that have been considered
previously can be found in the records of S and T respectively.
N(S) 6= T implies the existence of a new assignment that has
not been considered. If such a task y has been assigned at a
lower price to another agent z, we can merge the result (z, y)
with those under the current search in E∗x (in the second part of
phase 4). Otherwise, we have i ∈ X and y ∈ N({i})∧y 6∈ T .
(i, y) will be assigned immediately (in the first part of phase

4) because i has the lowest price of y among all agents. The
previous assignment on i, if any, will be shuffled. This switch
process will continue in E∗x until it stabilizes at the root x,
along the path from x to i that is denoted as the E-path Eix. As
a result, all agents in S will be in a perfect bipartite matching.
The above merging and shuffle processes in phase 4 will be
repeated until N(S) = T . After that, the current bound 4 will
be recalculated in phase 3 in order to consider a higher price
to solve the conflict in the matching. The entire procedure
can converge when every agent has its own assignment. The
detailed sample of this shuffle and merging can be seen in
[33], and they are also demonstrated in the later discussion on
our Hungarian-algorithm-based MDP solution.

Theorem 1 [33] (the optimization achieved by Alg. 1 and
its time complexity). Alg. 1 will end with a bipartite matching
so that the total cruising time can be minimized. Its overall
complexity T 1(n) is O(n4), where n =| Y |.
Proof: This well-known claim of the Hungarian and its proven
can be found in a lot of existing work (e.g., [14] and [33]).

The above QAP includes every agent and task as the vertices
in the bipartite matching, but each appears only once. When
we consider the vehicle as agent and the parking place as
the task in the slot allocation problem, a parking place needs
to match with multiple vehicles as its capacity allows. The
capacity of a parking place will be taken as the weight of the
vertices. The corresponding merging and shuffle processes will
be considered as a special weighted bipartite matching (e.g.,
[18]), where the weights on both edges and vertices are taken.
From the next section, based on Alg. 1, we will present our
MDP solution and its extension along the time scale.

V. SYSTEM SETTING AND PROBLEM FORMATION

Our proposed system, MDP, takes the basic structure of
PGI as [19]. The allocation center will provide a schedule
to serve all parking places Y in the entire area around the
travel hot-spot. The driver will select the attraction site as the
travel destination and those nearby parking places. After that,
such information will be sent to the center via the wireless
communication, with the parking reservation request. Note
that each request is sent independently. Then, the system will
respond with a reserved parking place. By approaching this
target (parking place) along its predetermined trajectory, each
vehicle, denoted by x ∈ X , can ensure the speed [7] and
driving time [17] within an acceptable range. Meanwhile,
the total elapsed time of all vehicles in scheduling can be
optimized to the minimum, in each vehicle’s driving in the
distributed manner.

At each parking place y ∈ Y , the vacancy can be detected
(e.g., [15]) and is denoted by Cy . The access of parking is
verified in a vehicle-to-roadside (V2R) communication. It can
be granted at the gate only to the driver who has received the e-
ticket in our reservation response, but the gate is not necessary
to know which specified slot. Thus, the capacity increases as
vehicles leave. For the scheduling conducted at t = 0, such a
change at time t > 0, denoted as Cty , can be ensured with our
parking policy, or can be predicted with those history records
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TABLE I
NOTATIONS

X vehicle set X = {1, 2, 3, · · · }
| X | total number of vehicles (∈ X) in schedule
Y set of parking places Y = {a, b, c, · · · }
| Y | number of parking places
Cy available space (also called parking capacity) of y ∈ Y
Cty capacity of y ∈ Y at time t, where any period [t1, t2] has

non-descending records Ct1y ≤ Ct2y
R(x, y) cost [29] for x ∈ X to reach y ∈ Y in terms of elapsed

time where “−” indicates an initial/unreachable status
rx the cycle of vehicle x along its trajectory

the R(x, y) describing the cost for x ∈ X to reach y ∈ Y
Rt(x, y) after time t along its cyclic route

bipartite matching between x ∈ X and y ∈ Y where 1
m(x, y) denotes a saturated assignment, 0 denotes a possible

assignment, and “−” is the initial status
the above bipartite matching between x ∈ X and y ∈ Y

mt(x, y) for each capacity change Cty
L(v) labeling function of Hungarian algorithm [14], v ∈ X ∪ Y
L′(v) previous record of L for any given v ∈ X ∪ Y
α the difference between L(v) and L′(v) each time

the upper bound of interval where the assignments have
4 been considered, changeable as the process progresses,

i.e., max{−L(x) | x ∈ X}
the upper bound of the entire interval in consideration,

∇ changeable, in which each vehicle can cruise along its
cyclic route to reach every possible place after time 4

S vehicle set in the current consideration of allocation, ⊆ X
places (⊆ Y ) that are assigned to or arrived by vehicles

N(S) ∈ S, i.e., {j | ∃m(i, j) = 0 for arrival, or 1 for
assigned }, or {jt | ∃mt(i, j) = 0 or 1}

T set of assignments reserved, i.e., {j | ∃m(i, j) = 1} or
{jt | ∃mt(i, j) = 1}
status of a place (y ∈ Y ), saturated (= 0) or unsaturated

@ (> 0) for another vehicle under its capacity, i.e., @y = Cy
−

∑
x∈X m(x, y) or C4y −

∑
x∈X,0≤t≤4m

t(x, y)

E∗u an alternating tree [14] derived from m, with the root u,
simply called E-tree

Evu an augmenting path [14] in E∗u, with u and v as end
points, simply called E-path

on vehicle behaviors in a conservative manner [37]. Thus, we
have C0

y = Cy and Cty ≤ Ct+δy for any period [t, t+ δ].
Researchers have developed methods to predict driving

speed [7] and travel time [17], in order to solve the traffic
issues during the vehicles cruising along their trajectories. By
adopting the GPS or other global maps, the trajectory of each
vehicle x, can be interpreted by its arrival time at every place
y ∈ Y [29], which is denoted by R(x, y). As we addressed
earlier, we deal with a maximum-weight matching problem
and will have a non-positive value in each R(x, y). Our system
will select an arrival of vehicle x in R(x, y) when y has at
least one vacant slot (Cy > 0). Such an available selection
is calculated and stored in table m to avoid overbooking.
Respectively, the trajectory taken after time t is denoted by
Rt(x, y) and the selection on Rt is mapped into mt, under
the capacity constraint Cty > 0.

Our goal is to assign each vehicle ∈ X to a parking
place ∈ Y with a limited cruising or waiting time, while
the total cruising time (on the way to each target along their
predetermined trajectories) can be minimized. The assign-
ment at t = 0 for the cruising trajectories afterward can
be formalized as a maximum-weighted matching. With our
extensive consideration on the capacity at each location and

the growth of such capacity along the time scale, the problem
is formalized in the following:

argmax
mt

∑
x∈X

∑
y∈Y

∑
0≤t<∞R

t(x, y)mt(x, y)

s.t. every mt(x, y) = 0, 1, or “−” i)∑
y∈Y

∑
0≤t<∞m

t(x, y) = 1 for every x ∈ X ii)∑
x∈X

∑
0≤j≤tm

j(x, y) ≤ Cty for every y ∈ Y iii)

Cty ≤ Ct+δy for any δ > 0 iv)

−Rt(x, y) ≥ t ≥ 0 upon the occurrence of Cty v)

Rt+δ(x, y) ≤ Rt(x, y) for every δ > 0 vi)

“−” indicates an initial or unreachable status and is calculated
as “0”. Constraint i) ensures the slot assignment as a bipar-
tite matching. Constraint ii) guarantees such an assignment
without double-booking. Constraint iii) asserts the use of slots
under the capacity constraint, while constraint iv) indicates our
assumption on the capacity increment. When Cty is replaced
by a fixed value Cy , the above will represent our solution on
the snapshot where there is enough vacancy for all vehicles on
schedule. Constraint v) confirms the driving cost in the road
and ensures the availability of the vacant slot until the vehicle
with the reservation arrives. Constraint vi) secures the same
time scale t for considering both the capacity growth Ct and
the elapsed time of cruising Rt. Both constraints iv) and v) can
be relaxed when our approach is applied to an open system
with real time slot surveillance and prediction (e.g., [37]). An
accreditation system will be associated with the real system
implementation in order for every user to follow the guidance,
and not to create the interfering noise by changing the routine
or falsifying the data in the parking request. However, due the
scope of this paper here, we omit the relevant discussion.

Note that this, as we addressed in early Section 3, is a
totally new problem with our consideration of R and C. The
consideration of their changes along with the time t passing
is also important and distinguishes our contribution from any
existing methods. Such a time t cannot be limited in the
interval [0, λ] when the vacant slots are enough for all vehicles
under the schedule, i.e., λ = min{t |

∑
y∈Y C

t
y ≥| X |}.

When the last vacant slot appears too far away from the
vehicle to reach, some capacity change soon emerging in
neighborhood could be a better choice. The above proves the
research incentive of our 2-stage development in this paper.
The first is for the case when C is enough and the second is
for the case when C can grow.

When demand exceeds supply, some vehicles cannot seize
the reservation for obtaining an available slot. In order for
them to obtain the second chance and to park close to their
destination, in our approach, each of them will continue its
cruising along a cyclic route until a reserved place can be
reached. The justification of this cyclic cruising can be found
in early Section 3 as one of our observations on the hot-spot
parking. Thus, we have:{

Rt+δ(x, y)(1−
∑

0≤j≤tm
j(x, y)) ≤ rx +Rt(x, y)

for every Rt+δ(x, y) < Rt(x, y) or any δ > rx vii)

From constraints vii), if the arrival Rt(x, y) (of vehicle x at
place y since time t) is not considered in assignment mt (i.e.,
= 0), the route in a cycle rx can guarantee the second entry
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at the same place to appear within a bounded time after time-
(t + δ). Note that this constraint can be relaxed when the
cyclic route becomes not necessary. However, the impact is
limited on the upper bounds of cruising time and information
collection (see Theorem 5 in later discussion). It is because of
the need for considering any possible place along the trajectory
as long as the vehicle drives.

Our simulation work also studies the scenarios in which the
vehicles are allowed to change the routine and to slowly cruise
around the reserved place. In such an extension (denoted by
MDP+), the delay in waiting for a vacant slot to occur, will
be compared with the time spent in driving to the next place
along the preselected trajectory. The schedule will be made
to reduce the total end-to-end delay, while each individual
parking process can still have a bounded performance.

VI. THE PROPOSED SOLUTION MDP

This section provides our 2-stage development on the above
maximum weight target, as our MDP solutions to reduce the
total cruising/waiting in the hot-spot parking. The first is for
the slot allocation at time t = 0 with sufficient parking vacancy
C, and then the second is for the allocation along the time
scale. For each solution, we also provide the upper bound for
each vehicle in its cruising or waiting. The issues in the service
implementation are also discussed.

A. Solution with enough vacant slots

We first focus on the MDP solution on a snapshot with
sufficient slot vacancy in the global view. The problem can
be simplified with t = 0, Cy = C0

y , R = R0, and m = m0.
Given the trajectory of each vehicle and the corresponding
reachability in R, we extend Alg. 1 (i.e., the Hungarian
Algorithm for the QAP) in order to consider the capacity
volume of Y in the bipartite matching to X . Basically, the
parking place y with a vacant slot can be allocated to any
waiting vehicle i and makes a record m(i, y) = 1 in our
system. Under our capacity constraint, the status of a vehicle
x ∈ X or a place y ∈ Y in our assignment can be determined
in Def. 1, as follows.

Definition 1: Any x ∈ X that has not seized the reservation
is called unsaturated and it has m(x, y) 6= 1 for every y ∈ Y .
Any y ∈ Y still available for allocation is called unsaturated
and it has CY −

∑
x∈X m(x, y) > 0, simply @y > 0.

When the capacity allows, a place may appear in multiple
pairs of matching. This relation map is maintained in our
m-table, where we also implement the shuffle and merging
processes (i.e., phase 4) of Alg. 1. The m-table and the
corresponding path for the assignment shuffle are defined in
Def. 2 and 3, as follows.

Definition 2: The tree with a root u ∈ X is called alternating
tree (or simply called E-tree) and is denoted by E∗u when each
edge {x, y} (or {y, x}) has m(x, y) ≥ 0.

Definition 3: The path existing in E∗u is called augmenting
path (or simply called E-path) and is denoted by Evu when
such a path starts from u and ends with v. Along such a path,

Algorithm 2: Slot allocation based on Alg. 1.
REQUIRE: X , Y , R, and Cy > 0 for each y ∈ Y
ENSURE: bipartite matching m(x, y) = 1 for each x ∈ X to Y

1) Initialization. m(i, j) =“−” and R(i, j) = −t for each vehi-
cle i approaches a place j at time t; otherwise, R(i, j) =“−”
as an unreachable status. Calculate L(v) with Eq. (1).

2) Completion check. Apply phase 2 in Alg. 1 to stop the
algorithm. Otherwise, for any unsaturated (Def. 1) x ∈ X to
set initial records S = {x}, T = {}, and E∗x = {x} (Def. 2).

3) Label update for any possible assignment at 4.
• If N(S) 6= T , there exists a new m(i, j) = 0 according

to the definition of N(S) and T in Tab. I. That indicates
an arrival of vehicle i ∈ S at place j ∈ N(S) at time 4.
Go to phase 4 (the same as step 1 in phase 3 of Alg. 1).

• Otherwise, apply step 2 in phase 3 of Alg. 1 (upon the
update of α with Eq. (2) and L with Eq. (3)). Thus,4 can
be updated and m will be reset with Eq. (4), for places
not reserved only (i.e., m 6= 1), in order to consider more
vehicle arrivals (i.e., m = 0).

4) Table construction for any y ∈ N(S) − T and its m = 0
edge (i, y) connecting with S.
• If @y > 0 (with Def. 1), alt er m = 1 and 0 along the

E-path Eix based on Def. 3. Set m(i, y) = 1 to add this
assignment in E∗x and Eyx , and then go to phase 2.

• Otherwise, y was reserved (∃m(z, y) = 1). Set S = S ∪
{z} and T = T ∪ {y}. Then, go to phase 3.

the corresponding m-value of its edge changes alternatively
between 1 and 0.

The details of our extension can be seen in Alg. 2. Unlike
aiming to the traditional n × n QAP, this new assignment
scheme can find the best locations ⊆ Y for scheduling all
vehicles X to minimize the total cruising/waiting time, as we
will prove in the following theorem. The key is to implement
the corresponding shuffle and merging processes with m-table.
Note that m = 0 indicates a possible matching (see Eq. (4))
and it will be converted to a real reservation by setting m = 1
in phase 4. In the initialization phase, Eq. (1) is reused, but
is done so in order to consider the distance from where the
reservation is made to the first possible parking place in reach
along the trajectory.

m(x, y) =

{
0 L(x) + L(y) = R(x, y)
“− ” otherwise

(4)

Theorem 2 (the optimization achieved on average
delay). Alg. 2 will end with a bipartite matching m
so that the total cruising time can be minimized, i.e.,
argmax

m

∑
x∈X

∑
y∈Y R(x, y)m(x, y) since the time is rep-

resented in R ≤ 0.
Proof: Alg. 2 is derived from Alg. 1. Its completion with a
bipartite matching can be ensured as shown in Theorem 1.

Before m = 1 is granted in phase 4, the capacity allowance
@ is checked. Otherwise, a longer period is considered in
phase 3 with the update of L and4, in order for more vehicles
to reach available slots. The progress α is the minimum at
every time. Based on the Egervary theorem, the maximum
weight in the resultant matching m achieves the minimum size
of L, which is derived from R. According to the definition of
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Fig. 2. Process with Alg. 2 to achieve the optimization in Fig. 1 (e) where some important intermediate result at each step is highlighted in red. Note that
some steps are omitted due to the limit of space.

non-positive values in R (≤ 0), we have the minimum of the
total elapsed time.

Fig. 2 demonstrates step-by-step how the minimal total
cruising time in Fig. 1 (e) can be achieved with Alg. 2. In this
sample, we have the capacity C(a, b, c, d, e) = (1, 1, 1, 1, 1)
as a QAP. We also use this process to explain the shuffle and
the merging of E-paths in Alg. 2, as an extension from the
Hungarian algorithm in Alg. 1. To simplify the discussion, we
use a unit road segment between any two adjacent places.

Scenario 1: Data preparation in the initialization phase.
At step 1 in Fig. 2, not only is the arrival time interpreted
in the cost table R, but also is the reachability. With the
implementation of our maximum weight matching (e.g., [33]),

the non-positive R-value and the corresponding m-value is
initiated (as the same in Alg. 1). As indicated in Fig. 1 (c),
vehicle 1 will take the route b → c → d and has the
arrival time: 0, 1, and 2, respectively. We have R(1, b) = 0,
R(1, c) = −1, and R(1, d) = −2. Because a and e are not
reachable, we have R(1, a) = R(1, e) =“−”.

Scenario 2: Start of a new matching in the check phase. At
the beginning of the entire process (step 2 in Fig. 2) or when
a bipartite matching is accomplished for S-set ⊂ X (e.g., step
5 in Fig. 2), a new matching is initiated from an unsaturated
vehicle (by Def. 1) as the root of an E-tree. When all vehicles
are assigned, the entire procedure converges here.

Scenario 3: Seizing parking opportunities in the
label update phase. For instance, at step 3 in Fig. 2,
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α can be calculated. Then, the succeeding arrival(s)
with the minimum delay can be determined. With the
calculation of L, we can catch the arrivals of those
vehicles ∈ S in m-table with Eq. (4). At α = 0, we have
m(1, b) = m(2, b) = m(3, a) = m(4, a) = m(5, a) = 0,
implying where these vehicles start the cruising. This indicates
a fair chance for each vehicle to seize a parking opportunity:
1 and 2 at place b (i.e., N({1}) = N({2}) = {b}) and 3, 4,
and 5 at place a (i.e., N({3})=N({4})=N({5})= {a}). See
the dashed lines in the bipartite matching.

Scenario 4: Direct assignment without shuffle in the
table construction phase. For instance, at steps 4, 9, and 32
in Fig. 2, the root x will seize the opportunity and be assigned
with an unsaturated place under the capacity constraint. It is
the simplest of all three scenarios in this phase 4 of Alg. 2. In
step 4 in Fig. 2, we can locate a new place y = b ∈ N(S)−T
without being considered yet, i.e., @y > 0. We can make the
assignment m(x, y) = m(1, b) = 1. See the m-table update
in interpreting the arrow line in E∗1 and the thick line of the
bipartite matching.

Scenario 5: Merging assignments in the
table construction. For instance, at steps 7 and 17 in
Fig. 2, an existing assignment will merge into the current
consideration on S and T . This is a preparation in order to
find a connecting path for alternating the assignments later.
In step 7, N(S) = N({2}) = {b}. However, m(1, b) = 1 as
derived in step 4 early. Place b (Cb = 1) does not have enough
space for both vehicles 1 and 2 (i.e., @b = 0). Therefore, we
merge the assignment m(1, b) = 1 to E∗2 (interpreted by S,
T , and m) and will have S = {1, 2} and T = {b}. This is
fulfilled in the saturated case of phase 4 in Alg. 2.

Scenario 6: Expanding 4 in the label update phase for
more parking opportunities. For instance, at steps 8 and 16
in Fig. 2, after N(S) = T is confirmed, α is calculated as
the minimum time for vehicles ∈ S to reach any place that
has not been considered yet, i.e., ∈ Y − T . After that, L is
updated to include both existing and new parking opportunities
of vehicles ∈ S. See the updated m-table with Eq. (4) in step 8
in Fig. 2. Those records involved in this update are highlighted
in red circles. Note that those m = 1 records do not need
any change. Only those m = 0 records may be reset to an
unreachable status when the corresponding vehicle is not in
the current S-set (e.g., m(5, a) in step 16).

Scenario 7: Shuffle to balance the bipartite matching in the
table construction phase. For instance, at step 21 in Fig. 2,
we can find a new unsaturated place y that cannot be assigned
directly to the place x (i.e., the root of E-tree). However, it
can be assigned directly to a preassigned vehicle i, so that the
occupied slot for vehicle i can be released to x. It is called
the shuffle process, and such a process may involve many
assignments. The sequence of slot releasing, reassigning, and
releasing again is denoted by the E-path Eix. It will continue
until we achieve a new bipartite matching by considering that
place y and the root vehicle x with those existing assignments.
In step 21, we assign place d, by releasing the occupancy of
a from vehicle 3 and making room to reassign a to vehicle 4.
The resultant assignments after this shuffle are highlighted in
red in the bipartite graph and with circles in the m-table.

The above process can easily be extended to the situation
when a place y is capable of having multiple slots (i.e.,
Cy > 1). In the following, we prove the bound of the
computational cost of our solution and the cruising/waiting
time of each individual vehicle while it plays a local role in
achieving the global optimization.

Theorem 3 (the bound of computational overhead). The
overall complexity of Alg. 2, T 2(n), is O(n4), where n =| Y |.
Proof: We assume that the capacity of each place Cy is
limited by a constant threshold C. So searching all available
slots has the same complexity as searching all places ∈ Y .
Moreover, for a complete matching, all vehicles will become
saturated at the end. So we have | X |≤ C× | Y |. For
each vehicle in phase 2, we have a loop to stop at phase 4
until the E-path can be constituted. The place matching will
check every place in Y for an unsaturated candidate, while
the E-path can be implemented with König’s graph theorem.
The complexity in tree construction can be controlled within
O(| Y |2). The expanding of 4 is no more complicated than
O(| Y |2) because the size of S is smaller than C× | Y |. Such
an expanding is executed only when no unsaturated place is
available. Therefore, each iteration of this matching loop has
a complexity O(| Y |3) and then the statement is proven.

Corollary 1. T 1(n) = T 2(n).
Proof: The result is obvious based on Theorems 1 and 3.

Corollary 1 proves that Algs. 1 and 2 have the equivalent
complexity. Note that | Y |<<| X |. The complexity of our
MDP solution in Alg. 2 can be controlled with the size of
garages, rather than that large amount of vehicles. That is,
Alg. 2 is a practical solution.

Corollary 2 (the upper bound of cruising/waiting as the
worst case). While achieving the global optimization in total
cruising time, the upper bound of cruising time for any vehicle
x ∈ X in Alg. 2 is r = maxi∈X ri, where ri is the cycle of
every vehicle i along its loop.
Proof: We have assumed that there is sufficient parking
vacancy. Thus, there exists a solution to match all the vehicles
to their places before everyone completes a cycle in its
cruising. However, such an assumption does not provide the
assignment solution and cannot guarantee its optimization.
In Alg. 2, the global optimization can be achieved with
Theorem 2. Moreover, any vehicle x can reach its farthest
place in time rx along the trajectory loop. Otherwise, some
loops are isolated and the problem can be reconsidered as
an individual in each connected graph. Therefore, the upper
bound of cruising/waiting time is r = maxi∈X ri.

The arrangement in Fig. 1 (f) can also be achieved with
Alg. 2, from Cb = Cc = 1 at time t = 0. In the next
section, we will demonstrate how to schedule parking slots
after considering the vacancy growth in the time scale. As a
result, the assumption of sufficient vacancy at the scheduling
moment can be released. In Fig. 1 (g), when only one slot is
available (C0(a, b, c, d, e) = (0, 1, 0, 0, 0)) at time t = 0, the
proposed scheme can guide both vehicles 1 and 3 to reach
their targets within a time bound.
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B. Solution with the vacancy growing along the time scale

The above solution requires the sufficient capacity to con-
sume all parking requests, i.e., | X |≤

∑
y∈Y Cy . It cannot

completely support our hot-spot parking when the demand
exceeds the supply. We need to utilize the capacity growth
along the time scale, which can be induced by the enforced
leaving under our parking restriction or other facts. Here,
we present the complete solution for our maximum-weight
matching mt in Alg. 3.

The unsaturated status of vehicle or place can be defined as
follows in Def. 4, with the consideration of capacity against
occupancy along the time scale.

Definition 4: Any x ∈ X is called unsaturated when
mt(x, y) 6= 1 for every 0 ≤ t ≤ 4 and y ∈ Y .
Any y ∈ Y is called unsaturated at time t when Cty −∑
x∈X

∑
0≤i≤tm

i(x, y) > 0, simply y@ > 0. Especially, we
consider y@ > 0 at time 4.

The implementation is derived from Alg. 2, with the exten-
sion of R and m to Rt and mt respectively. For the assignment
shuffle at different time 0 ≤ t ≤ 4, the E-tree will consider
all records in the past. Respectively, each mt must be stored.
Thus, the E-tree is built on the union

⋃
0≤t≤4m

t and the
corresponding E-path can be defined as the follows in Def. 5.

Definition 5: The path existing in E∗u (Def. 2) with the m-
weight on each edge is called augmenting path (or simply
called E-path) and is denoted by Evu (Def. 3) when such a
path starts from u and ends with v. Along this path, the
corresponding m-value of its edge {x, yt} or {yt, x} (i.e.,
mt(x, y) respectively) changes alternatively between 1 and 0.

Considering a valid occupancy, each Cty will trigger a
recalculation of Rt. R will be updated with the most recent
Rt (t ≤ 4) where the 4 is derived from the update of L(X)
with Eq. (3) and has the progress of α with Eq. (2). The use
of Eq. (5) is to obtain the initial result in our extension, as the
use of Eq. (1) in Alg. 1 and Alg. 2. Eq. (6) resets L within
the current consideration S for each update of Rt. The rest
will be treated as the same as applying Alg. 2 in an extended
R-table with the consideration of capacity change in Cty .

L(v) =

{
maxy∈Y,0≤t≤∇R

t(v, y), v ∈ X
0, v ∈ Y (5)

L(v) =

{
maxy∈Y,0≤t≤∇R

t(v, y), v ∈ S
0, v ∈ Y (6)

In the following Lemma 1, we prove that capacity check
at time 4 will be effective for the entire matching process.
The result also ensures the feasibility of assignment shuffle
between different times. Then, in Theorem 4, we prove the
optimization at the global view level achieved by Alg. 3. After
that, a bounded reservation service can be ensured, in terms of
the cruising/waiting time proven in Theorem 5. We also show
that the computational overhead of Alg. 3 can be controlled
in an acceptable range, in terms of the limited information
collected during a certain long period (i.e., [0..(γ + 2r)] in
Theorem 5) and the time complexity (in Corollary 3).

Algorithm 3: Slot allocation extended from Alg. 2 to consider the
capacity growth in the time scale.
REQUIRE: Global time t, Y in a indoor parking system where
Cty < Ct+δy for each y ∈ Y during any period [t, t + δ], X , and
their cyclic routes Rt after each possible Cty appears.
ENSURE: saturated matching mt(x, y) = 1 for each x ∈ X to Y .

1) Initialization. Apply phase 1 of Alg. 2 for m = m0 and
R = R0. Calculate ∇ and L (with Eq. (5)). Then, update 4.

2) Completion check. Set t = 0. Apply phase 2 in Alg. 2 to
initiate S, T and E∗x for an unsaturated vehicle x ∈ X (defined
in Def. 4); otherwise, stop the algorithm.

3) Label update for any possible assignment at 4. Repeat the
following process until N(S) 6= T , then go to the next phase.
• Calculate α with Eq. (2).
• When Cky > 0 (k ≤ α + 4) exists, find the minimal
k. For each x ∈ S and its Rx = Rtx where t < k, set
Rx = Rkx. Then, calculate ∇, L (with Eq. (6)), and 4.

• Apply the label update phase of Alg. 2 and reset each
parking opportunity in m with Eq. (4) when m 6= 1.

4) Table construction for any y ∈ N(S) − T and its edge
m(i, y) = 0 where i ∈ S. The same as the phase 4 in Alg. 2,
with the saturated/unsaturated status of y at time 4 defined in
Def. 4 and the E-tree E∗u (or E-path Evu) defined in Def. 5.

Lemma 1. The capacity constraint @ applied on place y at
time 4 can ensure that no occupied slot can be included in
m at any time and then be double-booked.
Proof: Assume we have Ct1y and Ct2y . Without loss of gener-
ality, t1 < t2 and Ct1y ≤ Ct2y . We assume there is no other
Cty that t1 < t < t2. For any new m = 1 record to occupy
a slot in Ct2y − Ct1y , its capacity check on Rt2 is enough.
Meanwhile, for any m = 1 shuffle (along the E-path at time
4), the capacity has been checked in the past and Alg. 3 will
rely on the use of the earliest appearance. As the 4 advances,
the statement holds in the entire process.

Theorem 4 (the optimization on average delay). The bipar-
tite matching achieved with Alg. 3 is optimal on total elapsed
time in R when each Cty is accurate.
Proof: With Lemma 1, the convergence can be ensured.

Derived from Alg. 2, the pace α advances in two dimen-
sions: one is the elapsed time in R as calculated in Eq. (2), and
the other is the time t for each Cty update, which may induce
a new R-table and the corresponding elapsed time. That is, L
has the minimum of the elapsed time in R. Then, similar to
the proof of Theorem 2, we have this statement proven.

Lemma 2. For Alg. 3 to schedule the vacancy growing along
the time scale until time γ, a saturated matching can be
achieved iff

∑
0≤t≤γ,i∈Y C

t
i ≥| X | and Y (γ) = {y |

min
y∈Y
{
∑

0≤t≤γ,i∈Y C
t
i −

∑
0≤t≤γ C

t
y− | X(y, γ) |} < 0} = φ

where X(y, γ) = {x | x ∈ X ∧ 0 ≤ t ≤ γ,∀Rt(x, y) =“−”}
is the set of vehicles that never reach y during period [0..γ].
Proof: The sufficiency is obvious. We assume that we have
enough vacancy slots for all | X | in the entire system, but we
can find y ∈ Y (γ) 6= φ. Therefore, we cannot have enough va-
cant slots (i.e., the remaining

∑
0≤t≤γ,i∈Y C

t
i −
∑

0≤t≤γ C
γ
y )

for those vehicles in X(y, γ).
Now, we prove the necessity. Assume that there exists an

unsaturated vehicle x and its Rx. If Y = Rx, x goes through
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Fig. 3. Process with Alg. 3 to achieve the optimization in Fig. 1 (g), where initially C(a, b, c, d, e) = (0, 1, 0, 0, 0) and the capacity changes (C1
c = 1 and

C4
c = 2); that is, a solution for the starvation problem in current shortest-path-based and assignment-based schemes of vehicle dispatching.

all parking places and we have
∑

0≤t≤γ,i∈Y C
t
i <| X |. If

Y ⊃ Rx and
∑

0≤t≤γ,i∈Y C
t
i ≥| X |, we can find y ∈ Y −Rx

to meet the above condition of Y (γ). Otherwise, there exists
another vehicle that goes through all parking places, but ends
with

∑
0≤t≤γ,i∈Y C

t
i <| X |.

Theorem 5 (the fairness and starvation-freedom). In Alg. 3,
the upper bound of cruising/waiting time of each vehicle is
γ + r and will be scheduled within time period [0..(γ + 2r)],
where γ is the minimum provided with Lemma 2 and r =
maxx∈X rx (see definition in Tab. I).
Proof: We assume that each Cty is underestimated. Due to the
definition of4, the exclusive reservation made with Alg. 3 can
help the last vehicle to reach the vacant slot in time γ+r. γ is
the time when not only the entire area has the capacity to hold

all | X | vehicles, but also each vehicle has at least one vacant
slot appearing within reach along its trajectory (see Lemma 2).
r denotes the longest cycle of vehicle along its trajectory. The
proof is obvious. After 4 extends to γ + r, union

⋃
mt is a

complete graph, and a bipartite match will be achieved.
In Rγ+r, ∇ ≤ (γ + r) + r according to the definition of

∇. Therefore, the information collection of each trajectory is
limited within the interval [0..(γ + 2r)].

Corollary 3. The overall complexity of Alg. 3, T 3(n), is O(n5)
where n =| Y |.
Proof: Since the capacity is limited by C, the number of a
valid Cty and the update of Rt, is limited by C× | Y |. In
the iteration of interior loop, the update of α and the E-path
construction both introduce the time scale. Therefore, based
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on the proof of Theorem 3, the complexity of the interior part
is O(| Y |4). As a result, the overall cost is O(| Y |5).

Corollary 4 (the scalability). The extension from Alg. 2 to
Alg. 3 is under a linear-time incremental structure.
Proof: T 1(n) = T 2(n) = O(n4) by Theorem 3 and Corol-
lary 1. Based on Corollary 3, T 3(n) = nT 2(n).

Fig. 3 shows a sample process of using Alg. 3, for schedul-
ing the first 3 vehicles in Fig. 1 (c), under the scenario
in Fig. 1 (g). The schedule of vehicles 1 and 3 is to
demonstrate our solution for the starvation problem in the
existing shortest-path-based PGI schemes. Since vehicles 1
and 2 adopts the same routine, the schedule of vehicles 2
and 3 here is to demonstrate our solution discussed in early
Section 3 with the consideration of capacity growth along
the time scale. This distinguishes our MDP from existing
assignment-based scheme of vehicle dispatching. Initially we
have C(a, b, c, d, e) = (0, 1, 0, 0, 0) and only one vehicle is
allowed to confirm the parking at t = 0. After that, we have
C1
c = 1 and C4

c = 2.
In step 1, vehicle 3 has the longest cycle r = r3 = 3 so

that ∇ = r3 = 3. Then, we set R = R0 and m. We add
succeeding trajectories of vehicles 1 and 2 to R in order to
complete the table R with the period ∇ (i.e., [0..3]). After
that, we set L and get 4 = 0. From step 2 to 4, vehicle 1 is
matched with the unsaturated place b, forcing the other two
to wait. See the competition among vehicles 1 and 2 in step
8 (i.e., N(S) = N({1, 2}) = {b} = T ). In step 9, before we
consider the arrivals at t = 4 + α = 1, R = R1 due to a
new slot available at t = 1 (C1

c ). R(3, a) is the last stop in
the cycle from t = 1 and triggers an update of ∇ = 4. After
that, m-table is reset and these arrivals (R(1, c) and R(2, c))
can be considered within the period [1..4]. Finally, in step
10, we assign place c to vehicle 2. In step 11, R = R0 for
the only vehicle unassigned. R-table is soon updated to R1

in the next step. The reservation conflict is observed while
the existing assignment (1, b) = 1 at m0 blocks the possible
assignment (3, b) = 0 in m1. Then, in step 16, R = R4 due to
the existence of C4

c = 2. This triggers the assignment switch
between vehicles 1 and 3 at place b in step 17, as we expected
in Fig. 1 (g). Note that Alg. 3 requires to check the complete
m-tables along the time scale, though each update is made on
a snapshot in a specified mt.

Therefore, both starvation problems discussed early in
Fig. 1 (f) are solved in our MDP solution.

C. Service implementation

Alg. 3 can be applied directly to a real road system when the
cost between two adjacent parking places is various for every
vehicle and represented with a decimal number in R. For any
reserved vehicle to reach its slot within the expected bound,
the reservation cannot be depleted. Otherwise, a starvation
may incur. For every vehicle comes after an assignment is
fulfilled, it can be scheduled with Alg. 2 immediately if there
exists any vacant slot in the network. This kind of service
adopts the FIFO policy. Otherwise, our allocation center can

wait until another unsaturated vehicle x approaches very close
to an unsaturated place y. Then all unsaturated vehicles that
have submitted their requests will be scheduled with Alg. 3,
to those potential places that will create vacancy along the
time scale. The time between two consecutive allocations is
called the schedule interval [19] and can be used to avoid
the computation overhead that is triggered by every incoming
request. Therefore, a seamless service can be provided and
every parking request can be satisfied. There might be room to
improve the scheduling of two consecutive MDP assignments
between an interval time period. However, the need for a
separated MDP assignment is due to the lager of request
sending. Such deviation to the theoretical optimization is out
of the technical scope and the corresponding solution for the
drivers to obtain a better reservation (e.g., [27]) is omitted.

VII. SIMULATION

We set up our simulation based on the real scenario around
the West Lake. The street map is derived from OpenStreetMap
[20]. The trace data of each vehicle is generated by the sim-
ulation SUMO [11], based on the traffic information fetched
via all media channels such as [35] and our road tests. Note
that this simulation work is not to show whether we can cover
all schedules in the entire lake area. Indeed, it is a smallest
field environment to cover all possible delay problems in other
existing work, including those discussed in both Sections 3 and
6. This is used to prove the delay improvement under a real
traffic mode by our MDP solution (also MDP+).

We chose 5 major parking facilities for the attractions
around the lake as shown in Fig. 1. To avoid the effect of
bottleneck, we assume that each place has a uniformed size
C = 150 (in red dash-dot line in Fig. 4). The occupancy
of daily parking, weekend parking, and the one during the
Golden Week Holiday is shown in Fig. 4 in blue lines, under
a continuous surveillance of 3 hours. Each represents the
situation of low, medium, and high traffic volume, respectively.
When the vehicles are allowed to dwell around the reserved
place due to the cost for driving to the next available place,
more reservations are allowed than the capacity of each place
(denoted by “allowance” in green line in Fig. 4).

This data of occupancy also implies the amount of parking
needs at any moment along the time scale. We randomly select
a scenario from Fig. 4, and then apply different PGI schemes
to schedule those vehicles coming to reserve the vacant slots.
We test TSP [8], SMART [19], our MDP, and its extension
MDP+ with the dwelling around the reserved place. SMART
allows the user to select the closest place, while TSP simply
follows the predetermined trajectory to the next available one.
In SMART, MDP and MDP+, each driver will predetermine a
routine trajectory according to the travel plan and then submit
the request with such path information. The place from where
the request is received by the center will be considered as the
starting point in the scheduling, and can be different according
to the timing of submission. Along such a trajectory, the arrival
at each parking place is determined by the GPS in different
modes of traffic volume: daily parking low, weekend parking
medium, and Golden Week Holiday high, with a considerable
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Fig. 4. Size, occupancy, and capacity of a parking place in different traffic models.

change of +/− 25% on the time/speed that is estimated with
[7, 17] in our MDP calculation. That is due to the impact of
road traffic or congestion in real time. Note that, in existing
schemes TSP and SMART, the starvation problem cannot be
solved. In this paper, we show the results from the first 200
times of scheduling, which are consistent with all of our
results.

In Fig. 5, we show the average cruising time needed for
vehicles to obtain their parking opportunities. Fig. 6 shows the
worst case with our analysis on its bound in Theorem 5, which
is denoted by MDP-A. In order to facilitate the calculation,
the simulation adopts the commonly used 3-hour parking limit
to ensure the time γ < 180 minutes in Lemma 2. Fig. 7 shows
the distribution of slot allocation.

Our observations are summarized in fourfold: (1) From
Fig. 5, the global optimization on total cruising time can be
seen obviously via the average cruising time in MDP and
MDP+, compared with those existing PGIs. MDP, TSP, and
SMART are listed as the second, third and fourth. Note that
we focus on the parking in an extremely crowded area, not the
one in a small town. Without any guidance, the cruising may
need hours even in the weekdays (with low traffic volume),
and becomes worse in the weekends (with medium traffic
volume) and the holiday seasons (with high traffic volume). (2)
Fig. 5 also shows that the average cruising of each individual
vehicle under MDP or MDP+ can outperform those in the
existing PGIs. When the parking demands exceed the supply,
our results show that the simple rule in TSP outperforms the
flexibility in SMART. Our MDP always outperforms TSP and
SMART, while MDP+ sacrifices the driving speed (slowly
cruising around and waiting in the local area) to reduce the
cruising time. The time reduction in MDP+, compared with
MDP, convinces us about the fact that that roughly knowing
how long to wait will favor the driver. (3) Fig. 6 shows the
effectiveness of our performance bound in MDP as the analysis
provided in Theorem 5. The worst case on that bound is even
better than the average achieved in the existing PGIs, showing
the substantial improvement of our MDP. This bound can be
lifted up when the number of vehicles increases in the denser
traffic condition, and can also be extended to MDP+ after
the corresponding data in estimation is used. (4) Fig. 7 shows
the distribution of reservations. No place in our MDP and
MDP+ will have the occupancy exceeding the maximum one
in either TSP or SMART. Our new schemes have the capability
to obtain the parking opportunity in the entire network, without
relying on any specified place. This proves the fairness in our

MDP and MDP+ assignments. Moreover, MDP and MDP+
are distance-relevant schemes and will prefer those places
close to the starting point of each vehicle. The results show
that many drivers living in center city will enter the system
from place b. For people from suburban areas and even nearby
cities, place a is more convenient because it is close to the
highway exit.

VIII. CONCLUSION AND FUTURE WORK

In this paper, a new PGI, denoted by MDP, has been
proposed, in order to mitigate the impact of the parking
hassle of delay (in both the average and the worst cases).
We provide a spatiotemporal assignment, in order to take
advantage of the vacancy that grows along the time scale
when the demands exceeds the supply. The unique directive
is to solve the aforementioned starvation problem in other
PGI schemes or similar vehicle dispatching. The contribution
is to reduce delay without increasing the facility supply.
Both analytical and experimental results demonstrate that our
approach can achieve a bounded service, in terms of vehicle
cruising time and the overhead cost of information collection
and computation. Moreover, we study the extension by trading
in the local waiting when the driver knows how soon the
vacancy becomes available. The corresponding assignment is
denoted by MDP+. After that, a full service can be provided
for scheduling every parking request.

In our future work, we will consider the capacity deca-
dence when both assisted and non-assisted drivers co-exist in
the parking field. We will st udy the tradeoff between the
global optimization and the greedy approximation algorithm,
so that even more practical solutions can be achieved. We
also expect to apply this spatiotemporal assignment scheme to
other resource shortage problems (e.g., [4, 22]), while a global
optimization is desired.
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