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Abstract.We develop a High-Order Symmetric Interior Penalty (SIP) Discontinuous Galerkin (DG) Finite Element Method (FEM)
to investigate two-dimensional in space natural convective flows in a vertical cavity. The physical problem is modeled by a coupled
nonlinear system of partial differential equations and admits various solutions including stable and unstable modes in the form
of traveling and/or standing waves, depending on the governing parameters. These flows are characterized by steep boundary and
internal layers which evolve with time and can be well-resolved by high-order methods that also are adept to adaptive meshing.
The standard no-slip boundary conditions which apply on the lateral walls, and the periodic conditions prescribed on the upper
and lower boundaries, present additional challenges. The numerical scheme proposed herein is shown to successfully address these
issues and furthermore, large Prandtl number values can be handled naturally. Discontinuous source terms and coefficients are
an innate feature of multiphase flows involving heterogeneous fluids and will be a topic of subsequent work. Spatially adaptive
Discontinuous Galerkin Finite Elements are especially suited to such problems.

INTRODUCTION

The main purpose of the current work is to provide a stepping stone towards the development of a reliable numerical
framework for the solution of complex convective flow problems with added features, such as multiphase flows [1],
biological fluids [2] and nutrient/gas solutions [3]. These flows will be investigated in both a constant- and a micro-
gravity [4, 5] environment. In addition, the effect of applying the Maxwell-Cattaneo heat conduction law [6, 7, 8, 9, 10]
to the system will also be investigated.

In order to be able to tackle the aforementioned problems we first need to have a robust, accurate and efficient
numerical scheme. The problem of unsteady two-dimensional flow subject to a vertical temperature gradient provides
an excellent benchmark for developing and testing our method, since it contains many of the features we seek to
address, such as a coupled nonlinear system subject to different types of boundary conditions, e.g. periodic and no-
slip.

This flow and its variants have been the topic of numerous works. The linear stability was examined experimen-
tally, theoretically and numerically in the classic works of Elder [11], Gill and Davey [12] and Bergholz [13] listed
in chronological order. Christov and Homsy [14] extended the analysis to include the nonlinear dynamics of the flow
with and without gravity modulation with the aid of an energy-conservative finite-difference splitting scheme and
Christov and Tang in [15] investigated the constant gravity case further using the same scheme.

The case of plane-parallel convective flow under g-jitter was examined in [16] with the aid of a Beam-Galerkin
Spectral method and the same method was applied to investigate the effect of the Maxwell-Cattaneo heat conduction
law on one-dimensional-in-space g-jitter convective flows subject to two thermal gradients [17].

In a previous work [18], we revisited the problem of two-gradient convection, where an SIP-DG Finite Element
scheme was developed for the case of plane parallel flow in streamfunction-vorticity formulation. The results were
found to be in good agreement with [17]. Note that for the case of plane-parallel flow, the problem is linear and no
periodic boundary conditions are required. Here, we extend our previous work to two spatial dimensions including
nonlinearities and the periodic portion of the boundary.
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THE TWO-DIMENSIONAL CONVECTIVE FLOW

Flow Geometry
Consider the two-dimensional convective flow in an infinite vertical slot of width L with an imposed linear verti-
cal temperature gradient and differentially heated lateral walls (see ref [14, 16]) as depicted in Figure 1. Following
standard notation, u and v are the x- and y-components of the velocity vector u, ψ is the vorticity stream function
defined by u = ∂ψ/∂y, v = −∂ψ/∂x, ν is the kinematic viscosity, κ the thermal diffusivity, T the temperature and β the
coefficient of volumetric expansion. The temperatures of the left and right walls at y = 0 are denoted by T ∗L and T ∗R
respectively, δT = T ∗L − T

∗
R is the horizontal temperature difference and τB is the vertical temperature gradient.
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FIGURE 1. The flow geometry for the convective problem

Denoting dimensional variables with an asterisk and adopting the scheme introduced in [14] we define the di-
mensionless variables

x =
x∗

L
, y =

y∗

L
, t = t∗

κ

L2 , ψ =
ψ∗

κ
, θ =

T ∗

δT
−

1
2
− τB y , τB =

τ∗B L
δT

. (1)

It is important to note here that the dimensionless temperature θ is the departure from the linear vertical stratifi-
cation. Also, in accordance with theory and experimental observations (see, e.g., [13]), the perturbation solutions are
periodic in the vertical direction. The dimensionless wavelength of the periodic solutions is denoted by H = 2π/α
where α is the wavenumber.

The dimensionless parameters Ra and Pr are termed the Rayleigh and Prandtl numbers and are given by

Ra =
β g0 δTL3

νκ
and Pr =

ν

κ
, (2)

respectively. In addition, the stratification parameter γ is defined by 4γ4 = τB Ra. Its significance will be discussed
later.

If the slot is placed in a microgravity environment, which will be discussed in a future work, the body force g
acting in the negative y-direction is harmonic, namely,

g = g0(1 + ε cosΩt), (3)

where g0 is the mean gravity, ε and Ω are the g-jitter amplitude and cyclic frequency respectively and t is the time.
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Governing Equations
The 2-D convective flow is governed by the coupled nonlinear initial boundary value problem (IBVP)

1
Pr
∂Δψ

∂t
+

1
Pr
J(ψ,Δψ) = −Ra

∂θ

∂x
+ Δ2ψ, (4)

∂θ

∂t
+ J(ψ, θ) − τB

∂ψ

∂x
= Δθ, (5)

where J(u, v) = uyvx−uxvy is the nonlinear operator and u, v any two differentiable functions. System (4)-(5) is subject
to boundary conditions in the x-direction

ψ =
∂ψ
∂x = 0 , θ = 1

2 for x = 0,

ψ =
∂ψ
∂x = 0 , θ = −1

2 for x = 1,
(6)

and periodic conditions in the y-direction

ψ(x, 0, t) = ψ(x,H, t), ψy(x, 0, t) = ψy(x,H, t)
ψyy(x, 0, t) = ψyy(x,H, t), ψyyy(x, 0, t) = ψyyy(x,H, t), (7)

θ(x, 0, t) = θ(x,H, t), θy(x, 0, t) = θy(x,H, t).

Note that the streamfunction formulation was employed in order to eliminate the pressure reducing the number of
unknown functions and partial differential equations.

THE NUMERICAL METHOD

Notation and Preliminaries

For a regular domain D, (·, ·)D is the inner product on L2(D), and 〈·, ·〉∂D denotes the inner product on L2(∂D).
Th = {K} defines a family of star-like partitions (triangulations) of the domain Ω parameterized by 0 < h < 1.

The weak formulations and the approximations involve functions that are discontinuous across interior boundaries,
therefore, our functions belong to the “broken” Sobolev spaces

Hm(Th) =
∏
K∈Th

Hm(K). (8)

Note that members of these spaces are not functions in the proper sense since they can be multivalued on the
interelement boundaries and can be interpreted as traces. Another consequence of the discontinuous nature of the
functions is that the edges of the partition Th play a prominent role in the formulation of the methods. So we define

EI := set of all interior edges of Th,
EB := set of all boundary edges of Th,
E := EI ∪ EB = set of all edges of Th.

For e ∈ EI , we have e = ∂K+∩∂K− for some K+,K− ∈ Th. Suppose v ∈ Eh. For e ∈ EI , we define the jump [v] of
v on e as [v] |e = v+|e − v−|e where v+ and v− denote the restrictions of v to K+ and K−, respectively. For e ∈ EB, we set
[v]|e = v|e. For e ∈ EI we define the average of v on e to be {v}|e := 1

2
(
v+|e + v−|e

)
. If e ∈ EB, set {v}|e = v|e. For e ∈ E,

he will denote the length of e when n = 2. For e ∈ EI , we define ∂n as the normal derivative operator on e pointing
from K+ to K−. For e ∈ EB, we define ∂n in the same way, with the understanding that the unique cell containing e is
labeled as K+, there being no K− for such edges.

For any K ∈ Th and integer r ≥ 1, let Pr−1(K) denote the set of all polynomials of degree less than or equal to
r − 1 on K. The discontinuous finite element space Vh is defined by

Vh :=
∏
K∈Th

Pr−1(K) ⊂ L2(Ω).

The maximum polynomial degree will be denoted q := r − 1; thus r = q + 1.
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Numerical Scheme

In this section we present our numerical discretization scheme. The SIP-DG method is used for the spatial discretiza-
tion. An important feature of this method is that it yields block symmetric positive definite linear algebraic systems
which can be solved using efficient direct and iterative numerical solvers, e.g., sparse Cholesky and Preconditioned
CG methods based on multigrid with block smoothing. Treating the biharmonic in primal formulation results in a
positive definite system unlike mixed formulation approaches [18], [19].

Since we do not need the introduction of an extra unknown, e.g., the vorticity in this case, the resulting algebraic
system has a smaller dimension compared to the one obtained from a mixed-formulation. In addition, it maintains its
symmetry which is no longer the case for the block systems for ψ in [18], [19]. For optimal spatial accuracy a choice
of degree q ≥ 3 of basis functions is required. Nonetheless, having to use higher order polynomials to obtain optimal
spatial accuracy does not necessarily affect the efficiency of the scheme. The resulting systems for the same accuracy
are smaller, can exploit symmetry to save storage and faster solvers exploiting the positive definiteness and blocked
nature of the system, can be employed.

The fully discrete SIP-DG weak formulation of our governing equations (4)-(5) subject to boundary conditions
(6)-(7) as applied to the 2-D problem reads:

Find ψnh, θ
n
h ∈ Vh such that

−αPNh (δnψh, v) − Pr αPBihh (ψnh, v) = −RaPr
⎛⎜⎜⎜⎜⎝∂θ

n−1
h
∂x

, v
⎞⎟⎟⎟⎟⎠ − (J(ψnh,Δψ

n
h), v) , ∀v ∈ Vh (9)

(δnθh, v) + αPDh (θnh, v) = τB
(
∂ψnh
∂x

, v
)
+ BT θh(θ

n
h) − (J(ψnh, θ

n
h), v) , ∀v ∈ Vh (10)

where the operator δn is the discrete time derivative defined in (14), and

BT θh(θ
n
h) = −

∑
e∈EB

{〈
θnh, ∂nv

〉
e
− γh−1

e

〈
θnh, v

〉
e

}

is the weakly imposed Dirichlet boundary condition term for the temperature equation. The superscripts n and n − 1
denote the current and previous time-steps respectively.

In our model and numerical implementation we require periodic conditions on the upper and lower parts of the
boundary. It is very important to note here that the periodic boundary conditions for the second and fourth order
equations are implemented weakly following the ideas in [20] for the Poisson equation. This is consistent with the
classic DG formulations and the principal behind Discontinuous Galerkin methods.

The method proposed by Vemaganti in [20] requires the existence of the same number of edges in corresponding
periodic boundaries and suggests the creation of a map between matching periodic edges, ei, e j ∈ EB, defined as
periodic pairs ep, that is, ep := {ei, e j}, where ei ⊆ [0, 1] × {y = 0} and e j ⊆ [0, 1] × {y = H} and Ep is the set of
all periodic pairs. Essentially, a periodic pair is treated as a single interior edge and the corresponding extra terms
are introduced in the bilinear forms. When dealing with adaptive meshes there is a level of complexity in correctly
maintaining the periodic map due to the fact that refined periodic edges may create an imbalance to the number of
edges on each periodic boundary. This was addressed in our work and we provide a numerical test in a subsequent
section.

The symmetric bilinear forms,αPDh (·, ·),αPNh (·, ·), incorporating the aforementioned periodic boundary conditions,
corresponding to the Laplace operators, for Dirichlet, and Neumann conditions respectively, on the left and right parts
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of the boundary, were inspired by [21, 22],

αPDh (uh, v) :=
∑
K∈Th

(∇uh,∇v)K −
∑
e∈EI

{
〈{∂nuh}, [v]〉e + 〈[uh], {∂nv}〉e − γh−1

e 〈[uh], [v]〉e
}

−
∑
ep∈EP

{
〈{∂nuh}, [v]〉ep + 〈[uh], {∂nv}〉ep − γh

−1
e 〈[uh], [v]〉ep

}
(11)

−
∑
e∈EB

{
〈∂nuh, v〉e + 〈uh, ∂nv〉e − γh−1

e 〈uh, v〉e
}
,

αPNh (uh, v) :=
∑
K∈Th

(∇uh,∇v)K −
∑
e∈EI

{
〈{∂nuh}, [v]〉e + 〈[uh], {∂nv}〉e − γh−1

e 〈[uh], [v]〉e
}

−
∑
ep∈EP

{
〈{∂nuh}, [v]〉ep + 〈[uh], {∂nv}〉ep − γh

−1
e 〈[uh], [v]〉ep

}
. (12)

The symmetric bilinear form, αPBihh (uh, v), for the biharmonic operator with essential boundary conditions on the
non-periodic boundary, is given by,

αPBihh (uh, v) :=
∑
K∈Th

(Δu,Δv)K +
∑
e∈E

{
〈{∂nΔu}, [v]〉e + 〈[u], {∂nΔv}〉e

− 〈{Δu}, [∂nv]〉e − 〈[∂nu], {Δv}〉e + γh−1
e 〈[∂nu], [∂nv]〉e + γh

−3
e 〈[u], [v]〉e

}
+

∑
e∈EP

{
〈{∂nu}, [v]〉ep + 〈[u], {∂nΔv}〉ep

− 〈{Δu}, [∂nv]〉ep − 〈[∂nu], {Δv}〉ep + γh
−1
e 〈[∂nu], [∂nv]〉ep + γh

−3
e 〈[u], [v]〉ep

}
, ∀ v ∈ Vh. (13)

The bilinear form is an adaptation of the expressions that appear in [23, 24, 25] to incorporate the periodic portion of
the boundary.

For the time-stepping, θ-method is employed, where we use λ as the parameter to avoid confusion with the
temperature, i.e.,

δnAn = An,λ := λAn + (1 − λ)An−1, A ∈ {t, ψ,Δψ, θ} , 0 < λ ≤ 1 (14)
As is well known λ = 0 and λ = 1 correspond to the explicit and implicit Euler methods respectively which provide
o first-order approximation in time, whereas choosing λ = 1/2 corresponds to the Crank-Nicolson method which
provides a second-order time scheme for the linear problem.

We obtain the following algebraic system[
SNψn + λPrΔt SBih

]
ψn =

[
SN − (1 − λ)PrΔt SBih

]
ψn−1 + RaPr∂xθn−1 (15)

+ λΔt J(ψn,Δψn) + (1 − λ)Δt J
(
ψn−1,Δψn−1

)

[
M + λΔtSD

]
θn =

[
M − (1 − λ)ΔtSD

]
θn−1 − λΔt J(ψn, θn) − (1 − λ)Δt J

(
ψn−1, θn−1

)
(16)

where M is the block-diagonal symmetric positive-definite mass matrix given by Mi j := (v j, vi), S Di j := αPDh (v j, vi) and
S Ni j := αPNh (v j, vi) are the block-structured symmetric positive- and semi-positive-definite stiffness matrices due to the
discretization of the Laplacian. The symmetric positive definite matrix SBih := αPBihh (v j, vi) is the matrix corresponding
to the biharmonic operator, where i, j = 1, . . . ,M and M is the number of degrees of freedom in Th.

Implementation
We decouple equations (15), (16) by considering the partial derivative of θ in the right hand side of (15) at the previous
time step. Therefore, we can solve two equations consecutively allowing for a different number of nonlinear iterations
for each equation and thus increasing efficiency. Here, the nonlinear systems are solved in each time step using a
fixed-point iteration and the iterations are terminated when the following Cauchy convergence criterion is satisfied

maxK∈Th ‖u
n,[k]
h − un,[k−1]

h ‖L2(K)

maxK∈Th ‖u
n,[k]
h ‖L2(K)

≤ 10−10 ,
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where [k] and [k − 1] are the current and previous fixed-point-iteration steps and n is the current time step.
The block positive definite nature of our solution matrices allows us to solve the resulting linearized system

(15), (16) using a sparse Cholesky solver which requires half the operations and half the storage compared to its LU
counterpart. In the case of adaptive meshes, we use an iterative solver based on the preconditioned conjugate gradient
method, exploiting once again the symmetry and positive definiteness of our operators and the blocked structure of
the system to implement an efficient matrix-vector multiplication routine. The various matrices in the non-adaptive
case, need only be assembled and factored once at the initial time, which makes the scheme very efficient.

RESULTS-DISCUSSION

Numerical Tests
Nonlinear Equation with Exact Solution

To assess the accuracy and convergence of our scheme we solve the nonlinear initial boundary value problem

∂u
∂t
− Δu = uux + uuy + f (x, y, t) , (x, y; t) ∈ Ω̊ × (0, T ] where Ω = [0, 1] × [0, 1] , (17)

f (x, y, t) = −2nπA2e−16n2π2t sin (2nπx) cos (2nπy) cos
[
2nπ(x + y)

]
, (18)

u(0, y, t) = u(1, y, t) = 0 on ∂ΩD × (0, T ] and u(x, 0, t) = u(x, 1, t) on ∂ΩP × (0, T ] , (19)
u(x, y, 0) = A sin (2nπx) cos (2nπy) , (x, y) ∈ Ω , (20)

which admits the exact analytic closed-form solution

Uexact = A e−8n2π2 t sin (2nπx) cos (2nπy) . (21)

Problem (17)-(18), (19)-(20) is a good test case for our scheme because it has the same type of periodic and Dirichlet
boundary conditions as the IBVP for the temperature and possesses a similar nonlinear term (see Eqs. (5),(6)-(7)).

To allow for a clearer presentation we use a uniform grid with mesh diameter h = 1/2R where R is the number
of mesh refinements. According to the theory the optimal L2 error of the spatial approximation for linear problems is
‖Uexact − uh‖L2 = O(hq+1), where q is the degree of the basis functions [21, 22]. For the temporal approximation we
use the θ method, which for λ = 0.5 is a second order method, i.e., ‖Uexact − uh‖L2 = O(Δt2) where Δt is the time step.
Again, we underline that this is only true for linear equations. Therefore, for linear equations the overall error is given
by

‖Uexact − uh‖L2 = O(hq+1) + O(Δt2) , (22)
whereas for nonlinear equations a reduction in the order of accuracy is expected.

For the tests presented here the parameter valuers are A = 2, n = 3 and the final time T is T = 0.25. Linear
polynomials are used (q = 1) and the time step is chosen as Δt = h for the linear path and Δt = h2 for the quadratic
path. The results are presented in Table 1.

TABLE 1. Scheme Accuracy Test for Nonlinear IBVP.
Δt = h Δt = h2

h ‖Uexact(·, T ) − uh‖Ω Rate ‖Uexact(·, T ) − uh‖Ω Rate
2−6 3.270772× 10−03 - 3.993340× 10−8 -
2−7 2.876463× 10−04 3.50726 1.034621× 10−8 1.94849
2−8 7.171584× 10−05 2.00393 2.616206× 10−9 1.98355
2−9 1.792986× 10−05 1.99993 Did not perform -

Let the L2-error that corresponds to computation for a mesh with diameter h = 1/2R be denoted by errR =
‖Uexact(·, T ) − uh‖RΩ. Then the rate is defined as the base two logarithm of the ratio errR/errR+1. Here we use linear
polynomials as basis functions (q = 1) so the theoretical optimal error for the spatial approximation is O(h2). There-
fore, the first column which represents the linear path is dominated by the temporal approximation and the second
column (quadratic path) by the spatial approximation.

110002-6



FIGURE 2. Solution of the moving ball problem for a = 1, b = 2 c = 8. The θ – method with θ = 0.5 was used for the time
discretization. Scheme parameters: Time step Δt = 0.002, refinement and coarsening constants ΘR = 0.001 and ΘC = 0.0005
respectively and basis function degree q = 2
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FIGURE 3. The numerical solution for stationary biharmonic test case. Left panel: Surface plot; Right panel: Density plot. The
step-size used was h = 1/24 and the basis function degree was q = 3

Adaptivity - The “Moving Ball”

Our scheme is currently capable of performing adaptive coarsening and refinement for both stationary and time-
dependent problems for any kind of boundary conditions, including periodic. To drive the adaptive mesh refinement
and coarsening for our test problems, the Inverse Estimate Marking Strategy is used (see [26] and references therein).
An appropriate marking strategy for the full problem of transient 2D convective flow (4)-(5), (6)-(7) is under investi-
gation. The added difficulty comes from the fact that there are two unknown functions involved.

To describe the concepts involved we first define the following:

Definition 1 For uh ∈ Vqh , at each element K we define

cK := hK
||∇uh||K
||uh + aK ||K

≤ C , (23)

where aK an appropriately chosen constant to avoid division by zero and C an upper bound of cK for all K ∈ Th and
all q.

Our marking strategy is based on the fact that the constants cK are a measure of the spatial rate of change of the
numerical solution uh on a cell K. Large cK values indicate a steep slope or oscillatory behavior. The marking criterion
implemented in our algorithm is as follows:

Definition 2 (The Inverse Estimate Marking Criterion)
Let cK, K ∈ Th be the constants as defined in Eq. (23).

If cK
{ ≤ ΘC C then coarsen.
≥ ΘR C then refine.

The constants ΘC and ΘR are problem specific and are chosen empirically.
The so-called moving ball problem is an excellent test for the adaptive capability of a scheme. It is a linear

parabolic equation in two spatial dimensions whose solution profile is a circle (or ball) that moves in a circular
manner. Appropriate changes to the signs and problem parameters can control the direction of motion and starting
point. Here the ball starts at the right boundary and rotates in a clockwise direction.

The partial differential equation reads

∂u
∂t
− Δu = f , (x, y; t) ∈ Ω̊ × (t0, T ] (24)
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FIGURE 4. Transition to a standing wave for the case Pr = 1000, τB = 0.05461 Ra = 3 × 105 (γ = 8). Selected snapshots of the
streamfunction ψ. Scheme parameters: q = 4, h = 1/16, T = 0.8, Δt = 8 × 10−6.

where Ω = [0, 1] × [0, 1] and

f =
{

600
ac
b

[
cos(ct)

(
−

sin(ct)
b
+ x −

1
2

)
− sin(ct)

(
−

cos(ct)
b
+ y −

1
2

)]

+ 1200a
⎡⎢⎢⎢⎢⎢⎣1 − 75

(
1 − 2y + 2

cos(ct)
b

)2

− 75
(
1 − 2x + 2

sin(ct)
b

)2⎤⎥⎥⎥⎥⎥⎦
}

(25)

× exp
⎛⎜⎜⎜⎜⎜⎝−300

⎡⎢⎢⎢⎢⎢⎣
(
−

cos(ct)
b
+ y −

1
2

)2

+

(
−

sin(ct)
b
+ x −

1
2

)2⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎠ .
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FIGURE 5. Transition to a standing wave for the case Pr = 1000, τB = 0.05461 Ra = 3 × 105 (γ = 8). Selected snapshots of the
temperature θ. The scheme parameters are the same as those in Figure 4.

Dirichlet conditions are prescribed at the left and right boundaries

u(x, 0, t) = 1 + a exp
⎛⎜⎜⎜⎜⎜⎝−300

⎡⎢⎢⎢⎢⎢⎣
(
−

1
2
−

1
b

cos (ct)
)2

+

(
x −

1
2
−

1
b

sin (ct)
)2⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ , (26)

u(x, 1, t) = 1 + a exp
⎛⎜⎜⎜⎜⎜⎝−300

⎡⎢⎢⎢⎢⎢⎣
(
1
2
−

1
b

cos (ct)
)2

+

(
x −

1
2
−

1
b

sin (ct)
)2⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ . (27)
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periodic conditions are applied at top and bottom boundaries,

u(x, 0, t) = u(x, 1, t) on ∂ΩP × (t0, T ] (28)

and the initial condition is given by

u(x, y, t0) = 1 + a exp
⎛⎜⎜⎜⎜⎜⎝−300

⎡⎢⎢⎢⎢⎢⎣
(
y −

1
2
−

1
b

cos (c t0)
)2

+

(
x −

1
2
−

1
b

sin (c t0)
)2⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ , (x, y) ∈ Ω . (29)

We present our results for the case a = 1, b = 2, c = 8 in Figure 2. The initial condition is t0 = 1. It was chosen in
this way to avoid t0 = 0 which represents a time where the “ball” would be touching a periodic boundary. The solution
is superimposed on the mesh in order to clearly demonstrate how well it resolves the solution. It is clear that a much
finer mesh follows the ball, which is a region where the solution gradient is high. The implementation of the periodic
conditions imposed on the top and bottom boundaries is quite remarkable. When the ball touches one of the periodic
boundaries its “missing” portion is mirrored in the opposite boundary. This behavior is followed by the mesh.

The biharmonic operator

The following fourth-order stationary boundary value problem demonstrates how well our method approximates the
biharmonic operator and implements the periodic and homogeneous essential boundary conditions.

Δ2u = f (x, y, t) , (x, y) ∈ Ω̊ where Ω = [0, 1] × [0, 1] , (30)

f (x, y) =
(
162 π4x2(x − 1)2 − 18 π2(6x2 − 6x + 1) + 3

)
8 cos (6πy) , (31)

u(0, y) = u(1, y) = 0 on ∂ΩD (32)
and u(x, 0) = u(x, 1), uy(x, 0, t) = uy(x,H, t), uyy(x, 0, t) = uyy(x,H, t), uyyy(x, 0, t) = uyyy(x,H, t) on ∂ΩP.

This is especially important because the equation for the streamfunction contains the same biharmonic differential
operator (4) and is subject to the exact same periodic (7) and homogeneous (6) boundary conditions. BVP (30)-(32)
admits the exact solution

Uexact = x2(x − 1.0)2 cos (3πy) . (33)

The results are presented in Figure 3. The correct implementation of the homogeneous Neumann boundary conditions
can be easily seen in the surface plot (left panel) whereas the periodic nature of the solution and the homogeneous
Dirichlet conditions are observed in both the surface and density plots of the numerical solution.

Results for the Two-Dimensional Flow
Our numerical results for the case Pr = 1000, Ra = 3 × 105, τB = 0.05461, (γ = 8) and H = 1.5 are presented in
Figure 4 and Fig. 5 for the streamfunction ψh and the temperature θh respectively. According to [14, 11] this set of
parameter values corresponds to a standing wave (SW). Our computations confirm this conclusion, since after t = 0.4
which corresponds to time step nSW = 5000 the maximum absolute difference between solutions at t = nΔt and
t = (n + 200)Δt for n ≥ nSW is less than 10−5 for ψ and 10−8 for θ. This is an even stricter criterion than comparing
two consecutive time steps.

Figures 4 and 5 show the transition of the flow and temperature fields to a standing wave. The final time was
T = 0.8 and for this value the streamfunction is near-identical to Figure 4.(a) of reference [14]; the corresponding
plot for θ is not shown in [14]. We note here that the modes corresponding to the wavelength H = 1.5 are the most
dangerous for this parameter set [15], which makes the agreement between our results and those of Christov and
Homsy in [14] even more significant.

Another important feature is the thickness of boundary layer. According to the theory it should be equal to 1/γ,
where γ is the stratification parameter [14, 16]. In our case it is given by 1/γ = 0.125, which is very near the results
depicted in both Figure 4 and Figure 5. We would also like to point out that our computations were carried out with a
rather coarse mesh (h = 1/16).
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CONCLUSIONS

An accurate and efficient SIP-DG numerical method was developed for two-dimensional-in-space unsteady convec-
tive flows. For the spatial discretization, the SIP-DG approach was applied to both the streamfunction and temper-
ature equations because of its innate ability to handle discontinuities and complex geometries. The resulting block-
structured symmetric positive definite coefficient matrices allowed for the use of fast numerical solvers. In addition,
due to the fact that the primal formulation was used, the algebraic system symmetry and positive-definiteness was
maintained allowing for further efficiency. For the time discretization the θ-method was employed.

In addition to the problem of unsteady 2D convective flow, our method was applied to three boundary value
problems which tested various features required of of our scheme: A nonlinear parabolic equation, a linear parabolic
equation and a stationary biharmonic equation. All three test cases involved Dirichlet and periodic boundary equations
whereas the biharmonic equation was subject to periodic and homogeneous essential conditions. The linear parabolic
equation was solved with an adaptive mesh which resolved the solution very well. The results were found to be in
agreement with the corresponding exact solutions where available.

The convective flow problem was solved for the case of a stationary wave. Despite the fact that the modes
corresponding to wavelength H = 1.5 are rather volatile the agreement between our computations and published
results was very good both for the streamfunction snapshot after the stationary wave is reached and the thickness of
the boundary layer. We have therefore developed an efficient, accurate and flexible scheme which is a good platform
for forming a numerical framework suitable for the investigation of more complex flows.
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