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CONTROLLABILITY OF NEUTRAL STOCHASTIC

INTEGRO-DIFFERENTIAL EVOLUTION EQUATIONS DRIVEN

BY A FRACTIONAL BROWNIAN MOTION

E. LAKHEL1 AND M. A. MCKIBBEN2

1National School of Applied Sciences, Cadi Ayyad University, 46000 Safi,
Morocco, 2Department of Mathematics, West Chester University of Pennsylvania,

25 University Avenue, West Chester, PA 19383, USA

Abstract. We establish sufficient conditions for the controllability of a cer-

tain class of neutral stochastic functional integro-differential evolution equa-

tions in Hilbert spaces. The results are obtained using semigroup theory,
resolvent operators and a fixed-point technique. An application to neutral

integro-differential evolution equation perturbed by fractional Brownian mo-

tion is given.

Keywords: Neutral stochastic partial integro-differential equations, mild solu-
tions, resolvent operators, fractional Brownian motion.

AMS Subject Classification: 35R10; 60G22; 60H20.

1. Introduction

The noise or perturbations of a system are typically modeled by a Brownian mo-
tion as such a process is Gauss-Markov and has independent increments. However,
empirical data from many physical phenomena suggest that Brownian motion is
often shown not to be an effective process to use in a model. A family of processes
that seems to have wide physical applicability is fractional Brownian motion (fBm).
This process was introduced by Kolmogorov in [10] and later studied by Mandelbrot
and Van Ness in [11], where a stochastic integral representation in terms of a stan-
dard Brownian motion was obtained. Since the fBm BH is not a semimartingale
if H 6= 1

2 (see [1]), we cannot use the classical Itô theory to construct a stochastic
calculus with respect to fBm.

The subject of stochastic calculus with respect to fractional Brownian motion
has gained considerable popularity and importance due to its frequent appearance
in a wide variety of physical phenomena, such as hydrology, economic, telecommu-
nications and medicine. Many contributions for stochastic calculus with respect
to fBm have emerged in the last decades, see [3, 4, 6, 14]. For example, Ferrante
and Rovira studied in [7] the existence and convergence when the delay goes to
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2 LAKHEL AND MCKIBBEN

zero using the Riemann-Stieltjes integral. Using also the Riemann-Stieltjes inte-
gral, Boufoussi et al. [3] proved the existence and uniqueness of a mild solution
and studied the dependence of the solution on the initial condition in infinite di-
mensional space. Recently, Caraballo et al. [5] and Boufoussi and Hajji [2] have
discussed the existence, uniqueness and exponential asymptotic behavior of mild
solutions using the Wiener integral. The literature related to neutral stochastic
partial functional integro-differential equations driven by a fBm is not vast. Very
recently, in [6], the authors studied the existence and uniqueness of mild solutions
for a class of stochastic delay partial functional integro-differential equations by
using the theory of resolvent operators.

The problem of controllability of nonlinear systems represented by stochastic
differential equations in infinite-dimensional spaces has been extensively studied by
several authors [12, 13, 16, 18, 19]. Moreover, the controllability of neutral sto-
chastic integro-differential systems is currently an untreated topic in the literature.
Motivated by this fact, the main aim of this paper is to focus on the controllabil-
ity for the following neutral stochastic delay partial functional integro-differential
equations perturbed by a fractional Brownian motion:

d[x(t) +G(t, x(t− r(t)))] = [A(t)x(t) +G(t, x(t− r(t))) +Hu(t)]dt

+
∫ t
0
B(t− s)[x(s) +G(s, x(s− r(s)))]dsdt

+F (t, x(t− ρ(t)))dt+ σ(t)dBH(t), t ∈ [0, T ],
x(t) = ϕ(t), −τ ≤ t ≤ 0.

(1.1)
Here, A(t) are closed linear operators on a separable Hilbert space X with dense do-
main D(A) which is independent of t, and B(t) are closed linear operators on X with
domain D(B(t)) ⊃ D(A). The control function u(.) takes values in L2([0, T ], U),
the Hilbert space of admissible control functions for a separable Hilbert space U .
The symbol H stands for a bounded linear operator from U into X. BH is a
Fractional Brownian motion on a real and separable Hilbert space Y ;

r, ρ : [0,+∞)→ [0, τ ], (τ > 0)

are continuous; and

F,G : [0,+∞)×X → X, σ : [0,+∞)→ L0
2(Y,X)

are appropriate functions. Here L0
2(Y,X) denotes the space of all Q-Hilbert-

Schmidt operators from Y into X (see section 2 below).
In this paper, we study the controllability result with the help of resolvent opera-

tors. The resolvent operator is similar to the evolution operator for nonautonomous
differential equations in a Hilbert spaces. It will not, however, be an evolution op-
erator because it will not satisfy an evolution or semigroup property. On the other
hand, to the best of our knowledge, there is no paper which investigates the con-
trollability of neutral stochastic integro-differential equations with delays driven by
a fractional Brownian motion . Thus, we will make the first attempt to study such
problem in this paper.

The rest of this paper is organized as follows, In Section 2, we introduce some
notations, concepts, and basic results about fractional Brownian motion and Wiener
integrals over Hilbert spaces, and we mention a few results and notations related
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NEUTRAL STOCHASTIC INTEGRO-DIFFERENTIAL EQUATIONS WITH FBM 3

to resolvent of operators. In Section 3, the controllability of the system (1.1) is
investigated via a fixed-point analysis approach. An example presented in Section
4 demonstrates the controllability result of section 3.

2. Preliminaries

In this section, we give some basic definitions and results about fractional Brow-
nian motion and resolvant operators. For details of this section, we refer the reader
to [15, 8] and the references therein.

Let (Ω,F , {Ft}t≥0,P) be a complete probability space satisfying the usual con-
dition, which means that the filtration is a right continuous increasing family and
F0 contains all P-null sets.

Consider a time interval [0, T ] with arbitrary fixed horizon T and let {βH(t), t ∈
[0, T ]} be a one-dimensional fractional Brownian motion with Hurst parameter
H ∈ (1/2, 1). This means by definition that βH is a centered Gaussian process
with covariance function

RH(s, t) =
1

2
(t2H + s2H − |t− s|2H).

Moreover, βH has the following Wiener integral representation

βH(t) =

∫ t

0

KH(t, s)dβ(s), (2.1)

where β = {β(t) : t ∈ [0, T ]} is a Wiener process, and KH(t; s) is the kernel given
by

KH(t, s) = cHs
1
2−H

∫ t

s

(u− s)H− 3
2uH−

1
2 du,

for t > s, where cH =
√

H(2H−1)
β(2−2H,H− 1

2 )
and β(, ) denotes the Beta function. We put

KH(t, s) = 0 if t ≤ s.
We will denote by H the reproducing kernel Hilbert space of the fBm. In fact,

H is the closure of set of indicator functions {1[0;t], t ∈ [0, T ]} with respect to the
scalar product

〈1[0,t], 1[0,s]〉H = RH(t, s).

The mapping 1[0,t] → βH(t) can be extended to an isometry between H and the

first Wiener chaos and we will denote by βH(ϕ) the image of ϕ by the previous
isometry.

We recall that for ψ,ϕ ∈ H their scalar product in H is given by

〈ψ,ϕ〉H = H(2H − 1)

∫ T

0

∫ T

0

ψ(s)ϕ(t)|t− s|2H−2dsdt.

Let us consider the operator K∗H from H to L2([0, T ]) defined by

(K∗Hϕ)(s) =

∫ T

s

ϕ(r)
∂K

∂r
(r, s)dr.

We refer to [15] for the proof of the fact that K∗H is an isometry between H and
L2([0, T ]). Moreover, for any ϕ ∈ H, we have

βH(ϕ) =

∫ T

0

(K∗Hϕ)(t)dβ(t).
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4 LAKHEL AND MCKIBBEN

It follows from [15] that the elements of H may be not functions but rather
distributions of negative order. In order to obtain a space of functions contained in
H, we consider the linear space |H| generated by the measurable functions ψ such
that

‖ψ‖2|H| := αH

∫ T

0

∫ T

0

|ψ(s)||ψ(t)||s− t|2H−2dsdt <∞,

where αH = H(2H − 1). We have the following Lemma (see [15]):

Lemma 2.1. The space |H| is a Banach space with the norm ‖ψ‖|H| and the
following inclusions hold:

L2([0, T ]) ⊆ L1/H([0, T ]) ⊆ |H| ⊆ H.
Also, for any ϕ ∈ L2([0, T ]),

‖ψ‖2|H| ≤ 2HT 2H−1
∫ T

0

|ψ(s)|2ds.

Let X and Y be two real, separable Hilbert spaces and let L(Y,X) be the
space of bounded linear operator from Y to X. For convenience, we shall use
the same notation to denote the norms in X,Y , and L(Y,X). Let Q ∈ L(Y, Y )
be an operator defined by Qen = λnen with finite trace trQ =

∑∞
n=1 λn < ∞,

where λn ≥ 0 (n = 1, 2, ...) are non-negative real numbers and {en} (n = 1, 2...)
is a complete orthonormal basis in Y . Let BH = (BH(t)) be Y− valued fBm on
(Ω,F ,P) with covariance Q defined by:

BH(t) = BHQ (t) =

∞∑
n=1

√
λnenβ

H
n (t),

where βHn are real, independent fBm’s. This process is Gaussian, it starts from 0,
has zero mean and covariance:

E〈BH(t), x〉〈BH(s), y〉 = R(s, t)〈Q(x), y〉 for all x, y ∈ Y and t, s ∈ [0, T ].

In order to define Wiener integrals with respect to the Q-fBm, we introduce the
space L0

2 := L0
2(Y,X) of all Q-Hilbert-Schmidt operators ψ : Y → X. We recall

that ψ ∈ L(Y,X) is called a Q-Hilbert-Schmidt operator if

‖ψ‖2L0
2

:=
∞∑
n=1

‖
√
λnψen‖2 <∞,

and the space L0
2 equipped with the inner product 〈ϕ,ψ〉L0

2
=
∑∞
n=1〈ϕen, ψen〉 is

a separable Hilbert space.

Now, let φ(s); s ∈ [0, T ] be a function with values in L0
2(Y,X), The Wiener

integral of φ with respect to BH is defined by

∫ t

0

φ(s)dBH(s) =

∞∑
n=1

∫ t

0

√
λnφ(s)endβ

H
n (s) =

∞∑
n=1

∫ t

0

√
λn(K∗H(φen)(s)dβn(s),

(2.2)
where βn is the standard Brownian motion used to present βHn as in (2.1).

We end this subsection by stating the following result which is critical in the
proof of our result. It can be proved by similar arguments as those used to prove
Lemma 2 in [5].
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NEUTRAL STOCHASTIC INTEGRO-DIFFERENTIAL EQUATIONS WITH FBM 5

Lemma 2.2. If ψ : [0, T ] → L0
2(Y,X) satisfies

∫ T
0
‖ψ(s)‖2L0

2
ds < ∞ then the sum

in (2.2) is well-defined as an X-valued random variable, and

E‖
∫ t

0

ψ(s)dBH(s)‖2 ≤ 2Ht2H−1
∫ t

0

‖ψ(s)‖2L0
2
ds.

Before proceeding to the main result, we shall make the following assumptions
[8]:

(A1) A(t) generates a strongly continuous semigroup of evolution operators in
the Banach space X.

(A2) Suppose that Y represents the Banach space D(A) equipped with the graph
norm. A(t) and B(t) are closed operators; it follows that A(t) and B(t)
are in the set B(Y,X) of bounded operator from Y to X for 0 ≤ t ≤ T .
Further, A(t) and B(t) are continuous on 0 ≤ t ≤ T into B(Y,X).

Definition 2.3. A resolvent operator for (1.1) is a bounded operator valued func-
tion R(t, s) ∈ B(X), the space of bounded linear operators on X, 0 ≤ s ≤ t ≤ T,
having the following properties:

(a) R(t, s) is strongly continuous in s and t , R(s, s)x = x for all x ∈ X,
‖R(s, t)‖ ≤Meβ(t−s) for some constants M and β.

(b) R(t, s)Y ⊆ Y , R(t, s) is strongly continuous in s and t on Y.
(c) For x ∈ X, R(t, s)x is continuously differentiable in t and s and

∂R(t, s)x

∂t
= A(t)R(t, s)x+

∫ t

s

B(t− τ)R(τ, s)xdτ, (2.3)

∂R(t, s)x

∂s
= −R(t, s)A(s)x−

∫ t

s

R(t− τ)B(τ − s)xdτ, (2.4)

with ∂R(t,s)x
∂t and ∂R(t,s)x

∂s are strongly continuous on 0 ≤ s ≤ t ≤ T . Here R(t, s)
can be extracted from the evolution operator of the generator A(t). More details
about resolvent operator can be found in [8].

3. Controllability Result

In this section, we present and prove the controllability results for the system
(1.1). Before starting, we introduce the concept of a mild solution of the problem
(1.1) and controllability of neutral integro-differential stochastic functional differ-
ential equations. Motivated by the theory of resolvent operators, we introduce the
following concept of mild solution for equation (1.1).

Definition 3.1. An X-valued stochastic process {x(t) : t ∈ [−τ, T ]}, is called a
mild solution of equation (1.1) if

i) x(.) ∈ C([−τ, T ],L2(Ω, X)),
ii) x(t) = ϕ(t), −τ ≤ t ≤ 0.
iii) For arbitrary t ∈ [0, T ], we have

x(t) = R(t, 0)(ϕ(0) +G(0, ϕ(−r(0))))−G(t, x(t− r(t)))
+

∫ t
0
R(t, s)[Hu(s) + F (s, x(s− ρ(s)))]ds

+
∫ t
0
R(t, s)σ(s)dBH(s) P− a.s.

(3.1)
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6 LAKHEL AND MCKIBBEN

Definition 3.2. The system (1.1) is said to be controllable on the interval [−τ, T ],
if for every initial stochastic process ϕ ∈ C([−τ, 0],L2(Ω, X)), there exists a sto-
chastic control u ∈ L2([0, T ], U) such that the mild solution x(.) of (1.1) satisfies
x(T ) = x1, where x1 ∈ L2(Ω, X) and T are the preassigned terminal state and time,
respectively.

Roughly speaking, the controllability problem for evolution system consists in
driving the state of the system (the mild solution of the controlled equation under
consideration) from an arbitrary initial state to an arbitrary final state in finite
time.

To prove the controllability result, we consider the following assumptions:

(H.1) The resolvent operator (R(t, s))0≤s≤t≤T given by Definition 2.3 satisfies the
following condition: there is a positive constant M such that

sup
0≤s,t≤T

‖R(t, s)‖ ≤M.

(H.2) The function f : [0,+∞)×X → X satisfies the following growth conditions:
that is, there exist positive constants Ci := Ci(T ), i = 1, 2 such that, for all
t ∈ [0, T ] and x, y ∈ X
(i) ‖F (t, x)− F (t, y)‖ ≤ C1‖x− y‖,
(ii) ‖F (t, x)‖2 ≤ C2(1 + ‖x‖2).

(H.3) The function G : [0,+∞) ×X −→ X satisfies the following growth condi-
tions: there exist positive constants C3 and C4, C3 <

1
2 , such that, for all

t ∈ [0, T ] and x, y ∈ X
(i) ‖G(t, x)−G(t, y)‖ ≤ C3‖x− y‖,
(ii) ‖G(t, x)‖2 ≤ C4(1 + ‖x‖2).

(H.4) The function G is continuous in the quadratic mean sense:

For all x ∈ C([0, T ],L2(Ω, X)), lim
t→s

E‖G(t, x(t))−G(s, x(s))‖2 = 0.

(H.5) The function σ : [0,+∞)→ L0
2(Y,X) satisfies∫ T

0

‖σ(s)‖2L0
2
ds <∞, ∀T > 0.

(H.6) The linear operator W from U into X defined by

Wu =

∫ T

0

R(T, s)Hu(s)ds

has an inverse operator W−1 that takes values in L2([0, T ], U) \ kerW ,
where kerW = {x ∈ L2([0, T ], U), Wx = 0} (see [9]), and there exists
finite positive constants Mh, Mw such that ‖H‖ ≤Mh and ‖W−1‖ ≤Mw.

Moreover, we assume that ϕ ∈ C([−τ, 0],L2(Ω, X)).

We can now state the main result of this paper.

Theorem 3.3. Suppose that (H.1) − (H.6) hold. Then, the system (1.1) has a
unique mild solution on [−τ, T ] which satisfies x(T ) = x1. Thus, the system (1.1)
is controllable on [−τ, T ].
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NEUTRAL STOCHASTIC INTEGRO-DIFFERENTIAL EQUATIONS WITH FBM 7

Proof. Fix T > 0 and let BT := C([−τ, T ],L2(Ω, X)) be the Banach space of all
continuous functions from [−τ, T ] into L2(Ω, X), equipped with the supremum norm

‖ξ‖BT
= sup
u∈[−τ,T ]

(
E‖ξ(u)‖2

)1/2
and let us consider the set

ST = {x ∈ BT : x(s) = ϕ(s), for s ∈ [−τ, 0]}.

ST is a closed subset of BT provided with the norm ‖.‖BT
.

Using the hypothesis (H.6) for an arbitrary function x(.), define the control

u(t) = W−1{x1 −R(T, 0)(ϕ(0) +G(0, ϕ(−r(0)))) +G(T, x(T − r(T )))

−
∫ T
0
R(T, s)F (s, x(s− ρ(s)))ds−

∫ T
0
R(T, s)σ(s)dBH(s)}(t).

(3.2)
We shall now show that when using this control, the operator Φ defined on ST

by Φ(x)(t) = ϕ(t) for t ∈ [−τ, 0] and for t ∈ [0, T ]

Φ(x)(t) = R(t, 0)(ϕ(0) +G(0, ϕ(−r(0))))−G(t, x(t− r(t)))
+

∫ t
0
R(t, s)[Hu(s) + F (s, x(s− ρ(s)))]ds] +

∫ t
0
R(t, s)σ(s)dBH(s)

(3.3)
has a fixed point. Substituting (3.2) in (3.3) we can show that (ψx)(T ) = x1, which
means that the control u steers the system from the initial state ϕ to x1 in time
T , provided we can obtain a fixed point of the operator ψ which implies that the
system in controllable.

Next, we will show by using Banach fixed point theorem that ψ has a unique
fixed point. We divide the subsequent proof into two steps.

Step 1: For arbitrary x ∈ ST , let us prove that t→ Φ(x)(t) is continuous on the
interval [0, T ] in the L2(Ω, X)-sense.
Let 0 < t < T and |h| be sufficiently small. Then, for any fixed x ∈ ST , we have

E‖Φ(x)(t + h)− Φ(x)(t)‖2 ≤ 5E‖(R(t+ h, 0)−R(t, 0))(ϕ(0) +G(0, ϕ(−r(0))))‖2

+ 5E‖G(t+ h, x(t+ h− r(t+ h)))−G(t, x(t− r(t)))‖2

+ 5E‖
∫ t+h

0

R(t+ h, s)F (s− ρ(s))ds−
∫ t

0

R(t, s)F (s− ρ(s))ds‖2

+ 5E‖
∫ t+h

0

R(t+ h, s)σ(s)dBH(s)−
∫ t

0

R(t, s)σ(s)dBH(s)‖2

+ 5E‖
∫ t+h

0

R(t+ h, ν)HW−1{x1 −R(T, 0)(ϕ(0) +G(0, ϕ(−r(0))))

+ G(T, x(T − r(T )))−
∫ T

0

R(T, s)F (s, x(s− ρ(s)))ds

−
∫ T

0

R(T, s)σ(s)dBH(s)}dν −
∫ t

0

R(t, ν)HW−1{x1 −R(T, 0)(ϕ(0)

+ G(0, ϕ(−r(0)))) +G(T, x(T − r(T )))
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8 LAKHEL AND MCKIBBEN

−
∫ T

0

R(T, s)F (s, x(s− ρ(s)))ds−
∫ T

0

R(T, s)σ(s)dBH(s)}dν‖2

=
∑

1≤i≤5

5E‖Ii(h)‖2.

We are going to show that each function t → Ii(t) is continuous on [0, T ] in the
L2-sense.
By the strong continuity of R(t, s), we have

lim
h→0

(R(t+ h, 0)−R(t, 0))(ϕ(0) +G(0, ϕ(−r(0)))) = 0.

The condition (H.1) guarantees that

‖(R(t+h, 0)−R(t, 0))(ϕ(0)+G(0, ϕ(−r(0))))‖ ≤ 2M‖ϕ(0)+G(0, ϕ(−r(0)))‖ ∈ L2(Ω).

Then we conclude by the Lebesgue dominated convergence theorem that

lim
h→0

E‖I1(h)‖2 = 0.

By using the fact that the operator G is continuous in the quadratic mean sense,
we conclude by condition (H.4) that

lim
h→0

E‖I2(h)‖2 = 0.

For the third term I3(h), we suppose that h > 0, note that similar estimates
hold for h < 0. Then, we have

‖I3(h)‖ ≤ ‖
∫ t

0

(R(t+ h, s)−R(t, s))F (s, x(s− r(s)))ds‖

+‖
∫ t+h

t

R(t+ h, s)F (s, x(s− r(s)))ds‖

≤ I31(h) + I32(h).

By Hölder’s inequality, we obtain

E|I31(h)|2 ≤ tE
∫ t

0

‖(R(t+ h, s)−R(t, s))F (s, x(s− r(s)))‖2ds

By using the strong continuity of R(t, s), we have for each s ∈ [0, t],

lim
h→0

(R(t+ h, s)−R(t, s))F (s, x(s− r(s))) = 0.

By using condition (H.1) and condition (ii) in (H.2), we obtain

‖(R(t+ h, s)−R(t, s))F (s, x(s− r(s)))‖2 ≤ 4M2‖F (s, x(s− r(s)))‖2.
So, we conclude by the Lebesgue dominated convergence theorem that

lim
h→0

E‖I31(h)‖2 = 0.

By conditions (H.1), (H.2) and Hölder’s inequality, we get

E‖I32(h)‖2 ≤ C2
2hM

2

∫ T

0

(E‖x(s− r(s))‖2 + 1)ds.

So that
lim
h→0

E‖I3(h)‖2 = 0.
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For the term I4(h), we have

‖I4(h)‖ ≤ ‖
∫ t

0

(R(t+ h, s)−R(t, s))σ(s)dBH(s)‖

+ ‖
∫ t+h

t

R(t+ h, s)σ(s)dBH(s)‖

≤ I41(h) + I42(h).

By condition (H.1) and Lemma 2.2, we get that

E|I41(h)|2 ≤ 2Ht2H−1
∫ t

0

‖(R(t+ h, s)−R(t, s))σ(s)‖2L0
2
ds.

Since lim
h→0
‖(R(t+ h, s)−R(t, s))σ(s)‖2L0

2
= 0 and

‖(R(t+ h, s)−R(t, s))σ(s)‖2L0
2
≤ 4M2‖σ(s)‖2L0

2
∈ L1([0, T ], ds),

we conclude, by the Lebesgue dominated convergence theorem that,

lim
h→0

E|I41(h)|2 = 0.

Again by Lemma 2.2, we get that

E|I42(h)|2 ≤ 2Hh2H−1M2

∫ t+h

t

‖σ(s)‖2L0
2
ds→ 0.

Next, let’s observe that

E‖I5(h)‖2 ≤ 2E‖
∫ t+h
t

R(t+ h, ν)HW−1{x1 −R(T, 0)(ϕ(0) +G(0, ϕ(−r(0))))

+G(T, x(T − r(T )))−
∫ T
0
R(T, s)F (s, x(s− ρ(s)))ds

−
∫ T
0
R(T, s)σ(s)dBH(s)}dν‖2

+2E‖
∫ t
0
(R(t+ h, ν)−R(t, ν))HW−1{x1 −R(T, 0)(ϕ(0)

+G(0, ϕ(−r(0)))) +G(T, x(T − r(T )))

−
∫ T
0
R(T, s)F (s, x(s− ρ(s)))ds−

∫ T
0
R(T, s)σ(s)dBH(s)}dν‖2

≤ 2[E‖I5,1(h)‖2 + E‖I5,2(h)‖2].

Let’s first deal with I5,1(h). Using conditions (H.1)−(H.6) and Hölder inequality,
it follows that

E‖I5,1(h)‖2 ≤ 5M2M2
hM

2
w

∫ t+h
t
{E‖x1‖2 +M2E‖ϕ(0) +G(0, ϕ(−r(0)))‖2

+C2
4 (1 + sups∈[−τ,T ] E‖x(s)‖2) +M2TC2

2 (1 + sups∈[−τ,T ] E‖x(s)‖2)

+2M2HT 2H−1 ∫ T
0
‖σ(s)‖2L0

2
ds}dν.
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10 LAKHEL AND MCKIBBEN

Assures
lim
h→0

E||I5,1(h)||2 = 0.

In a similar way, we have

E‖I5,2(h)‖2 ≤ 5M2
hM

2
w

∫ t
0
‖(R(t+ h, ν)−R(t, ν))‖2{E‖x1‖2

+M2E‖ϕ(0) +G(0, ϕ(−r(0)))‖2

+C2
4 (1 + sups∈[−τ,T ] E‖x(s)‖2)

+M2T 2C2
2 (1 + sups∈[−τ,T ] E‖x(s)‖2)

+2M2HT 2H−1 ∫ T
0
‖σ(s)‖2L0

2
ds}dν.

Since

‖R(t+ h, ν)−R(t, ν)‖2{E‖x1‖2 +M2E‖ϕ(0) +G(0, ϕ(−r(0)))‖2

+C2
4 (1 + sups∈[−τ,T ] E‖x(s)‖2) +M2T 2C2

2 (1 + sups∈[−τ,T ] E‖x(s)‖2)

+2M2HT 2H−1 ∫ T
0
‖σ(s)‖2L0

2
ds}

≤ 4M2{E‖x1‖2 +M2E‖ϕ(0) +G(0, ϕ(−r(0)))‖2

+C2
4 (1 + sups∈[−τ,T ] E‖x(s)‖2)

+M2T 2C2
2 (1 + sups∈[−τ,T ] E‖x(s)‖2)

+2M2HT 2H−1 ∫ T
0
‖σ(s)‖2L0

2
ds} ∈ L1([0, T ], ds]),

we conclude, by the Lebesgue dominated convergence theorem that

lim
h→0

E||I5,2(h)||2 = 0.

The above arguments show that lim
h→0

E‖Φ(x)(t+ h)− Φ(x)(t)‖2 = 0. Hence, we

conclude that the function t→ Φ(x)(t) is continuous on [0, T ] in the L2-sense.

Step 2. Now, we are going to show that Φ is a contraction mapping in ST1
with

some T1 ≤ T to be specified later.
Let x, y ∈ ST we obtain for any fixed t ∈ [0, T ]

‖Φ(x)(t)− Φ(y)(t)‖2 ≤

4‖G(t, x(t− r(t)))−G(t, y(t− r(t)))‖2

+4‖
∫ t

0

R(t, s)[F (s, x(s− ρ(s)))− F (s, y(s− ρ(s)))]ds‖2

+4‖
∫ t

0

R(t, ν)HW−1[G(T, x(T − r(T )))−G(T, y(T − r(T )))]dν‖2
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+4‖
∫ t

0

R(t, ν)HW−1
∫ T

0

R(T, s)[F (s, x(s− ρ(s)))− F (s, y(s− ρ(s)))]dsdν‖2.

Using growth conditions on F and G combined with Hölder’s inequality, we obtain

E‖Φ(x)(t)− Φ(y)(t)‖2 ≤ 4C2
3E‖x(t− r(t))− y(t− r(t))‖2

+4M2C2
1 t

∫ t

0

E‖x(s− r(s))− y(s− r(s))‖2ds

+4tM2M2
hM

2
w[E‖x(T − r(T ))− y(T − r(T ))‖2

+T 2C2
1M

2 sup
s∈[−τ,t]

E‖x(s)− y(s)‖2.

Hence,

sup
s∈[−τ,t]

E‖Φ(x)(s)− Φ(y)(s)‖2 ≤ γ(t) sup
s∈[−τ,t]

E‖x(s)− y(s)‖2,

where

γ(t) = 4[C2
3 +M2C2

1 t
2 + tM2M2

hM
2
w(1 + T 2C2

1M
2)].

By condition (iii) in (H.3), we have γ(0) = 4C2
3 < 1. Then there exists 0 < T1 ≤

T such that 0 < γ(T1) < 1 and Φ is a contraction mapping on ST1 and therefore has
a unique fixed point, which is a mild solution of equation (1.1) on [−τ, T1]. This
procedure can be repeated in order to extend the solution to the entire interval
[−τ, T ] in finitely many steps. Clearly, (ψx)(T ) = x1 which implies that the system
(1.1) is controllable on [−τ, T ]. This completes the proof. �

4. Example

We consider the following stochastic partial neutral functional integro-differential
equation with finite delays τ1 and τ2 (0 ≤ τi ≤ τ < ∞, i = 1, 2), driven by a
fractional Brownian motion of the form



∂
∂t [x(t, ξ) + g(t, x(t− τ1, ξ))] = ∂2

∂2ξ [x(t, ξ) + g(t, x(t− τ1, ξ))]

+
∫ t
0
b(t− s) ∂

2

∂2ξ [x(s, ξ) + g(s, x(s− τ1, ξ))]ds

+f(t, x(t− τ2, ξ)) + µ(t, ξ) + σ(t)dB
H

dt (t), t ∈ J := [0, 1],

x(t, 0) + g(t, x(t− τ1, 0)) = 0, t ≥ 0,

x(t, 1) + g(t, x(t− τ1, 1)) = 0, t ≥ 0,

x(s, ξ) = ϕ(s, ξ), −τ ≤ s ≤ 0 a.s.,

(4.1)

where BH(t) is a fractional Brownian motion, f , g : R+×R −→ R and b : R+ −→
R are continuous functions and ϕ : [−τ, 0] × [0, 1] −→ R is a given continuous
function such that ϕ(s, .) ∈ L2([0, 1]) is measurable and satisfies E‖ϕ‖2 <∞.
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12 LAKHEL AND MCKIBBEN

We rewrite (4.1) in the abstract form of (1.1). Let X = L2(J) and define
A(t) : X −→ X by A(t)z = a(t, y)z” with domain

D(A) = {z ∈ X : z and z′ are absolutely continuous, z” ∈ X, z(0) = z(1) = 0}.
This family of operators generates an evolution system and R(t, s) can be extracted
from the evolution system [8] such that |R(t, s)| ≤M , M > 0, for s < t.
We assume that the following conditions hold:

(i) Let Hu : [0, 1] −→ X be defined by

Hu(t)(ξ) = µ(t, ξ), 0 ≤ ξ ≤ 1, u ∈ L2([0, 1], U).

(ii) Assume that the operator W : L2([0, 1], U) −→ X given by

Wu(ξ) =

∫ T

0

R(T, s)µ(t, ξ)ds, 0 ≤ ξ ≤ 1,

has a bounded invertible operator W−1 and satisfies condition (H.6). (For
the construction of the operator W and its inverse, see [17]).

(iii) For t ∈ [0, 1], f(t, 0) = g(t, 0) = 0,
(iv) There exist positive constants C1, and C3, C3 <

1
2 , such that

|f(t, ξ1)− f(t, ξ2)| ≤ C1|ξ1 − ξ2|, for t ∈ [0, 1] and ξ1, ξ2 ∈ R,

|g(t, ξ1)− g(t, ξ2)| ≤ C3|ξ1 − ξ2|, for t ∈ [0, 1] and ξ1, ξ2 ∈ R,
(v) There exist positive constants C2 and C4, such that

|f(t, ξ)| ≤ C2(1 + |ξ|2), for t ∈ [0, 1] and ξ ∈ R,

|g(t, ξ)| ≤ C4(1 + |ξ|2), for t ∈ [0, 1] and ξ ∈ R,
(vi) The function σ : [0,+∞)→ L0

2(L2([0, 1]), L2([0, 1])) satisfies∫ 1

0

‖σ(s)‖2L0
2
ds <∞.

Define the operators F,G : R+ × L2([0, 1]) −→ L2([0, 1]) by

F (t, φ)(ξ) = f(t, φ(−τ1)(ξ)) for ξ ∈ [0, 1] and φ ∈ L2([0, 1]),

and
G(t, φ)(ξ) = g(t, φ(−τ2)(ξ)), and φ ∈ L2([0, 1])

If we put {
x(t)(ζ) = x(t, ζ), t ∈ [0, 1] and ζ ∈ [0, 1]
x(t, ζ) = ϕ(t, ζ), t ∈ [−τ, 0] and ζ ∈ [0, 1],

(4.2)

then, the problem (4.1) can be written in the abstract form

d[x(t) +G(t, x(t− r(t)))] = [Ax(t) +G(t, x(t− r(t)))]dt+
∫ t
0
B(t− s)[x(s)

+G(s, x(s− r(s)))]dsdt+ [F (t, x(t− ρ(t))) +Hu(t)]dt

+σ(t)dBH(t), 0 ≤ t ≤ 1,
x(t) = ϕ(t), −τ ≤ t ≤ 0.

As a consequence of the continuity of f and g and assumption (iii) it follows that
F and G are continuous. By assumption (iv), one can see that

‖F (t, φ1)− F (t, φ1)‖L2([0,1]) ≤ C1‖φ1 − φ2‖L2([0,1]),
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‖G(t, φ1)−G(t, φ1)‖L2([0,1]) ≤ C3‖φ1 − φ2‖L2([0,1]), with C3 <
1

2
.

Furthermore, by assumption (v), it follows that

‖F (t, φ)‖ ≤ C2(1 + ‖φ‖2), for t ∈ [0, 1],

‖G(t, φ)‖ ≤ C4(1 + ‖φ‖2), for t ∈ [0, 1].

all the assumptions of Theorem 3.3 are fulfilled. Therefore, we conclude that the
system (4.1) is controllable on [−τ, 1].
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