West Chester University Digital Commons @ West Chester University

Chemistry

College of Arts & Sciences

2012

Making Bread from Air: The World's Most Important Chemical Synthesis

Kurt W. Kolasinski *West Chester University of Pennsylvania,* kkolasinski@wcupa.edu

Follow this and additional works at: http://digitalcommons.wcupa.edu/chem_facpub Part of the <u>Environmental Chemistry Commons</u>

Recommended Citation

Kolasinski, K. W. (2012). Making Bread from Air: The World's Most Important Chemical Synthesis. Retrieved from http://digitalcommons.wcupa.edu/chem_facpub/14

This Report is brought to you for free and open access by the College of Arts & Sciences at Digital Commons @ West Chester University. It has been accepted for inclusion in Chemistry by an authorized administrator of Digital Commons @ West Chester University. For more information, please contact wcressler@wcupa.edu.

Making Bread from Air: The World's Most Important Chemical Synthesis Kurt W Kolasinski

Dept of Chemistry, West Chester University

Too Precious to be Expensive

- Energy
- Water
- Ammonia
- What does surface chemistry have to offer?

Human Impact of Energy

- Strong correlation between HDI & energy consumption
- To elevate Developing World to status of Poland requires equivalent of 148 Mbbl/day of oil
- Current production = 84 Mbbl/day
 - Kolasinski, Curr. Opin. Solid State Mater. Sci. 2006, 10, 129

Ammonia Synthesis

Why so important
Can it really be that difficult?

Can it really be that interesting?

Ammonia = Fixed Nitrogen

- Animals need protein (a nitrogen containing molecule)
- Most plants lousy at incorporating nitrogen (need fertilizer)
- Humans now fix more nitrogen than all natural sources combined
- >1% of world energy consumption
- Natural gas is the source of H₂

The Nobel Prize in Chemistry 1918

Fritz Haber Kaiser-Wilhelm-Institut Berlin, Germany "for the synthesis of ammonia from its elements"

Enriching the Earth, Vaclav Smil, MIT Press (2001)

The Surface Chemical Bond

 Haber is among the first to develop an understanding of how bonds form on surface

 He develops ideas on how to modify and control the chemistry on solid surfaces

Heterogeneous Catalysis

- The ammonia synthesis catalyst as revealed by high-resolution scanning electron microscopy
 - G. Ertl, D. Prigge, R. Schloegl, M. Weiss, *J. Catal.*, **79** (1983) 359.
- 200–300 atm, 670–770 K
- 120 MMt annual production
- 1% of world's energy consumption just to run this reaction

The Nobel Prize in Chemistry 1931

Carl Bosch University of Heidelberg, Germany

"in recognition of their contributions to the invention and development of chemical high pressure methods"

1965

World population surpasses 3.3 billion

- Modern agriculture dependent on ammonia based fertilizer
- This cannot be replaced by dung
- If ammonia production were shut down,
 3.2 billion people could not be supported by agriculture
- NH₃ requires fossil fuels both for H₂ and for the energy to run the chemical reaction

NH₃ Synthesis is, arguably, the single most important industrial chemical reaction

Erisman, Sutton, Galloway, Klimont & Winiwarter, Nature Geoscience 1 (2008) 636

The Nobel Prize in Chemistry 2007

Gerhard Ertl Fritz-Haber-Institut Berlin, Germany "for his studies of chemical processes on solid surfaces"

G. Ertl, Angew. Chem., Int. Ed. Engl. 47 (2008) 3524

Surface Reaction Dynamics

• CO oxidation to form CO₂ on platinum

 $CO + * \rightarrow CO *$ $O_2 + 2^* \rightarrow 2O^*$ $O^* + CO^* \rightarrow CO_2$

On Platinum

Imbihl & Ertl, *Chem. Rev.*, **95** (1995) 697 Wolff, Papathanasiou, Kevrekidis, Rotermund & Ertl, Science 294 (2001) 134 Ertl, *Reactions at Solid Surfaces*. (Wiley, Hoboken, NJ, 2009)

Surface Structure

 Reconstructed and nonreconstructed surfaces for the three low-index planes of Pt. Reproduced from R. Imbihl and G. Ertl, Chem. Rev.
 95 (1995) 697.

Ammonia Synthesis

 $H_{2}(g) + 2* → 2H*$ $N_{2}(g) + * → N_{2}*$ $N_{2}* + * → 2N* (RDS)$ N* + H* → NH* + * $NH* + H* → NH_{2}* + *$ $NH_{2}* + H* → NH_{3}* + *$ $NH_{3}* → NH_{3}(g) + *$

Surface Reaction Dynamics

 Spatiotemporal pattern formation in CO oxidation over Pt.
 Reproduced from R. Imbihl, G. Ertl, *Chem. Rev.*, **95** (1995) 697.

Solar Land Area Requirements

- U.S. Land Area: 9.1x10¹² m² (incl. Alaska)
- Average Insolation: 200 W/m²
- 2000 U.S. Primary Power Consumption: 99 Quads=3.3 TW
- 1999 U.S. Electricity Consumption = 0.4 TW

• Hence:

 3.3×10^{12} W/(2×10^2 W/m² x 10% Efficiency) = 1.6×10^{11} m² Requires 1.6×10^{11} m²/ 9.1×10^{12} m² = 1.7% of Land

Nathan S Lewis, Caltech, http://nsl.caltech.edu

Kurt W Kolasinski

Solar Land Area Requirements

Nathan S Lewis, Caltech, http://nsl.caltech.edu

Kurt W Kolasinski

Challenges in Surface/Nano/ Materials Chemistry

- Solar! Solar!!
 Solar!!!
 - Nanocrystalline materials for light conversions
 - Charge transfer dynamics
 - Thin films of conducting organic polymers
 - Solar fuels

- Biorefinery
- Hydrogen production
- Hydrogen storage
- Fuel cells
- Interfaces
 - Catalysis
 - Electrode/Electrolyte
- Materials
 - Superconductors
 - Thermoelectrics
 - Smart windows
 - Batteries

Nonlinear Dynamics: Pattern Formation in Chemical Reactions

Wolff, Papathanasiou, Kevrekidis, Rotermund & Ertl, Science 294 (2001) 134 Ertl, *Reactions at Solid Surfaces*. (Wiley, Hoboken, NJ, 2009)