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Foot Characteristics in Association With Inversion
Ankle Injury
Katherine E. Morrison, MS, ATC; Thomas W. Kaminski, PhD, ATC, FACSM

University of Delaware, Newark, DE

Objective: To review the literature that provides information
to assist in analyzing the role of the foot in acute and chronic
lateral ankle injury.

Data Sources: We searched MEDLINE, CINAHL, Institute
for Scientific Information’s Web of Science, and SPORT Discus
from 1965–2005 using the terms lateral, ankle, ligament, injury,
risk factors, foot, subtalar joint, talocrural joint, gait analysis, and
foot biomechanics.

Data Synthesis: We found substantial information on the in-
cidence and treatment of lateral ankle sprains in sport but very
few articles that focused on risk factors associated with these
injuries and even less information on the foot as it relates to
this condition. Moreover, little information was available regard-
ing the risk factors associated with the development of chronic
instability after a lateral ankle sprain. We critically analyzed the

foot articulations and the foot’s role in the mechanism of injury
to assist our clinical synopsis.

Conclusions/Recommendations: An in-depth review of the
foot complex in relation to lateral ankle sprains strongly suggested
its importance when treating and preventing inversion ankle trau-
ma. Throughout the literature, the only static foot measurements
that show a significant correlation to this condition are an identified
cavovarus deformity, increased foot width, and increased calca-
neal eversion range of motion. Authors also provided dynamic
measurements of the foot, which produced several significant find-
ings that we discuss. Although our findings offer some insight into
the relationship between foot characteristics and lateral ankle in-
juries, future research is needed to confirm the results of this re-
view and expand this area of investigation.

Key Words: ankle instability, chronic ankle instability, ankle
ligaments, ankle sprain, foot classification, risk factors

The ankle joint is one of the most commonly injured
joints in the body due to the forces it withstands and
the mass it supports. The ankle bears more weight per

unit area than any other joint in the body.1 Seventy-five per-
cent of all ankle injuries are ankle ligament injuries, with 85%
of those ankle sprains caused by inversion trauma.2 For the
purposes of this review, a lateral or inversion ankle sprain
denotes an acute injury of the lateral ligaments of the ankle
complex and is referred to as a lateral ankle sprain (LAS). In
a cost analysis study, Soboroff et al3 found that the cost of
treating these injuries ranged from $318 to $914 per sprain,
with an annual aggregate cost in the United States of $2 bil-
lion. This figure provides a glimpse into the significant prob-
lems associated with this condition.

Many LASs resolve with a conservative treatment approach,
whereas others have persistent pain, weakness, other symp-
toms of instability, and recurrent sprains.1,4,5 Chronic ankle
instability (CAI) is a term that is presently used to denote the
occurrence of repeated episodes of lateral ankle instability and
the presence of residual symptoms such as pain, swelling,
‘‘giving way,’’ and loss of motion occurring long after an ini-
tial LAS.1,4

Potential intrinsic risk factors for the development of an
initial LAS that have been examined include patient demo-
graphics,2,4,6,7 ligamentous stability,2,8,9 muscular strength,2

anatomic foot and ankle alignment,2,7,10,11 postural sway,9,12

gait mechanics,13 and muscle reaction time.2,12 No prospective
studies currently exist in the literature in which authors have
analyzed predictive factors for the development of chronic lat-
eral ankle instability and, therefore, intrinsic risk factors for
this condition have yet to be established.

The intrinsic risk factor of interest for this review is that of

anatomic foot and ankle alignment. The ability for the most
distal structures of the human body to control and adequately
absorb high-impact forces during dynamic, functional activity
is essential to injury prevention.14 The foot is largely respon-
sible for shock absorption during ground contact and lowering
the rate of loading to avoid ligamentous sprain.14 Specifically,
the foot is the initial point for ground contact, and its funda-
mental role in human motion is to provide a base for support
and to act as a lever for locomotion. The inability of the foot
to do this efficiently can result in insult. Therefore, it is not
unreasonable to question the association among the incidence
of LASs, the development of CAI, and the alignment and in-
tegrity of the foot complex.

Our purpose is to examine the role of static and dynamic
foot characteristics on both LAS and CAI. We synthesize the
recent literature, discuss clinical implications, and provide sug-
gestions for future research in this area. The relevant joints to
be discussed are the talocrural, subtalar, talonavicular, inter-
tarsal, and metatarsophalangeal joints.

FOOT MOTION AND POSITIONING IN THE
MECHANISMS OF INJURY

Common mechanisms for LAS include excessive foot in-
version or supination, extreme plantar flexion, and, most often,
a combination of both.15 To properly assess the role the foot
plays in LAS and CAI, it is advantageous to begin by briefly
addressing the involvement of the foot articulations in each of
the actions of the foot-ankle complex.

To analyze the role of the joints distal to the talocrural joint
in pronation and supination, Hicks16 studied the axes of sev-
eral joints of the foot-ankle complex in cadaveric feet. He
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found rotation in the talonavicular joint of the foot occurred
around 3 different axes, all with directions allowing for pro-
nation and supination. The first ray articulation comprises the
joints between the navicular and the medial cuneiform and
between the medial cuneiform and the first metatarsal. The first
ray rotates obliquely in the anterolateral to posteromedial di-
rection, also allowing pronation-supination.16 A final contrib-
utor to this motion in the foot is the subtalar joint (STJ). The
STJ is the articulation between the talus and the calcaneus,
with an oblique axis that allows the foot to pronate and su-
pinate.17 One can postulate that an increase or decrease in
motion of any of the previously mentioned segments may con-
tribute to the stability of an individual subjected to a vulner-
able supinated mechanism.

In a later in vivo study, Lundberg et al15 looked specifically
at the joint axes of the foot in relation to plantar flexion and
dorsiflexion. Even though most of the rotation around the
transverse axis caused by plantar flexion and dorsiflexion took
place at the talocrural joint, the joints distal to the talus also
were involved in this movement. In addition, they noted that
all of the joints of the arch, including the talonavicular, were
capable of rotating around axes that allow a substantial amount
of plantar flexion and dorsiflexion. Hicks16 had earlier deter-
mined that the complex first tarsometatarsal articulation con-
tributed to these motions as well. This evidence suggests that
motion in the foot articulations during the various mechanisms
involved with an LAS warrant further scrutiny in the preven-
tion and treatment of such injuries.

In addition to illustrating joint motion at the foot during the
actions occurring in an LAS mechanism, Wright et al18 ex-
amined the influence of changes in foot positioning at touch-
down (initial contact) during a simulated LAS. Analyzed using
mathematical modeling and perturbated simulations, the data
suggested that an increased foot supination angle caused an
apparently small increase in the occurrence of sprains, whereas
a decrease in the initial supination angle caused a slight de-
crease in sprains. They also demonstrated that, for large su-
pination torques, an increase in the initial dorsiflexion angle
at the foot caused a decrease in the sprain occurrence, whereas
a decrease in the initial dorsiflexion angle caused a slight in-
crease in sprains. The researchers speculated that increased
supination and plantar flexion at touchdown may increase the
ground reaction force moment arm about the STJ and cause
the excessive supination necessary to create lateral ankle in-
jury.18

STATIC FOOT POSTURE AND LATERAL ANKLE
INJURY AND INSTABILITY

Although an initial LAS and subsequent LASs occur during
dynamic activity, static measurements of foot characteristics
have been performed most frequently to examine the relation-
ships between the foot and lateral ankle injury. Static char-
acteristics have been evaluated at the rearfoot, midfoot, and
forefoot sections.

Rearfoot

The rearfoot can be defined as the interaction of the distal
one third of the tibia and the calcaneus, or the interaction of
the distal one third of the tibia and the STJ in a neutral po-
sition. Therefore, both the talocrural and the STJs are consid-
ered part of the rearfoot, and these definitions are used inter-

changeably. The STJ is considered part of the rearfoot, but in
the first part of this section, we evaluate static measurements
of this articulation that indicate its role in LAS and CAI sep-
arately due to the specific increase in interest over recent years.

Structural STJ hypermobility has been implicated as a factor
associated with LAS and CAI.19 The static restraints of the
STJ collectively combine to resist excessive supination, and,
therefore, the integrity of these structures may play a role in
the development of an initial LAS and eventually CAI. Evi-
dence supports the association of STJ injury with LAS. Stress
radiographs enable views of the foot-ankle complex and the
integrity of the STJ after acute and recurrent LAS. Few authors
have published the results of this method of analysis, but those
who have20–23 reported an association between talocrural and
STJ instability. Kjaersgaard-Anderson et al24 suggested that
when the calcaneofibular ligament was sectioned in vitro, ad-
duction in the transverse plane of the talocalcaneal joint in-
creased, and when the interosseus ligament was sectioned, dor-
siflexion increased at this same joint. Ishii et al21 performed a
cadaveric study demonstrating that, as the lateral ligamentous
structures were injured, movement of the lateral process of the
talus articulating with the posterior articular facet of the cal-
caneus subsequently increased, increasing motion at the STJ.

Stress fluoroscopy has provided a more contemporary ap-
proach in evaluating STJ motion. A group20 using this method
found that 75% of subjects suffering from talocrural instability
also presented with signs of STJ injury. This result is consis-
tent with that of previous researchers using stress radiography,
showing significant differences in both the subtalar and talar
tilt angles between the acutely injured subjects and their un-
injured controls and between subjects with CAI and their con-
trol counterparts.20,25

Static clinical and radiographic measurements such as cal-
caneal position relative to the tibia and calcaneal range of mo-
tion have also been recorded to evaluate the relationship be-
tween static rearfoot function and LAS.2,12,20–22,24–27 Beynnon
et al12 prospectively evaluated calcaneal range of motion and
found that women with increased calcaneal eversion range of
motion in the open chain were significantly more likely to
suffer an LAS. No support for this correlation currently exists
in the literature and, therefore, further research is needed to
examine this possible relationship.

The static alignment of the calcaneus depicts rearfoot po-
sitioning and has also been evaluated as a potential risk factor
for LAS. The normal valgus alignment of the calcaneus rela-
tive to the tibia theoretically protects the ankle and STJ from
excessive inversion stress.12 Beynnon et al12 evaluated rear-
foot (calcaneus) varus and valgus static alignment goniometr-
ically to examine a possible correlation with LAS. This as-
sessment was performed on the subject’s non–weight-bearing
limb and in an STJ neutral position. The investigators then
measured the resulting angle between lines drawn to bisect the
calcaneus and calf in the midsagittal plane. The results from
these measurements were inconclusive and provided no sig-
nificant correlation with LAS.12 Another group2 prospectively
studying LAS risk factors examined degrees of rearfoot (cal-
caneal) valgus and varus positioning using weight-bearing go-
niometric assessment and also found no significant correlation
with injury.

Goniometric and visual clinical assessment of the rearfoot
are considered by some to be unreliable26 and, subsequently,
radiographic analysis of rearfoot alignment as it relates to CAI
has been suggested.20–22,24,25,27 Van Bergeyk et al27 retro-



Journal of Athletic Training 137

spectively used computerized tomography to evaluate rearfoot
alignment as a means of accurately examining the structures
in the coronal plane. They concluded that those suffering from
CAI showed a trend toward increased varus alignment of the
calcaneus, with a significant difference in the measured central
calcaneal varus angle.27 The central calcaneal varus angle was
one of several measurements taken to identify static rearfoot
alignment and was obtained from coronal images at the pos-
terior aspect of the STJ and the calcaneal tuberosity while the
subject was supine with both feet resting on a footplate to
simulate a weight-bearing condition. To specifically assess var-
us alignment of the calcaneus, they determined the long axis
of the calcaneus against the horizontal, measuring along the
central axis of the calcaneus. Increased values were thought to
increase calcaneal varus, and subjects with this increase were
referred to as having a calcaneal varus malalignment. These
results support the notion that an increased calcaneal varus
malalignment is more prevalent in patients with CAI than in
controls and suggests a theoretic advantage to correcting the
malalignment in a CAI treatment protocol.27

Midfoot and Forefoot

Static measurement of midfoot and forefoot posture has also
been evaluated in conjunction with lateral ankle injury. The
midfoot comprises the navicular, cuboid, and corresponding
cuneiforms, whereas the forefoot is composed of the metatar-
sals and phalanges. The involvement of the forefoot and the
midfoot in LAS has not been clarified in the literature. Most
investigators2,10,12,28,29 have focused on the static anatomical
position classifications of the midfoot and rearfoot known to
clinicians as pes cavus (excessively supinated) and pes planus
(excessively pronated). Thus far, most findings suggest that
neither foot abnormality appears to be a risk factor associated
with LAS.12,28–30 It should be noted, however, that the static
methods used to classify these foot types are very subjective11

and may be an inadequate method of describing and classi-
fying dynamic foot mechanics.

A recent group10 prospectively examined the structure of
the medial longitudinal arch and its relationship with LAS in-
cidence. The Tx-Smirak index was used to categorize medial
arch heights in 65 military recruits as low, normal, or high.10

At the end of training, those who were classified as having a
low medial longitudinal arch suffered a significantly higher
number of acute and recurrent LASs as compared with those
with a high or normal arch height. It is well known that a pes
planus foot type allows overpronation, and this entity accom-
panies a low arch.10 It has been previously suggested that a
low arch is accompanied by permanent eversion, leading to
shorter, looser, and weakened peroneus longus and brevis mus-
cles, which may delay reaction time and lead to subsequent
sprain.2,10 However, the cause of the low arch and overpron-
ation was not discussed or examined by these authors.

In a retrospective radiographic study, researchers analyzed
differences in the arch height of subjects (using a series of 3
defined angles on a lateral non–weight-bearing radiograph)
with and without CAI and found contrasting results.31 Higher
arches were seen in the subjects with CAI than in the matched
controls. Consistent methods11 and further biomechanical
analysis of these individuals may allow for a more thorough
examination of the problem and perhaps well-defined trends
will emerge as a result.

Flexion and extension range-of-motion measurements at the

first metatarsophalangeal joint in the forefoot region were not
as frequently evaluated in lateral ankle injury as arch height,
but one group32 did look at this association in a prospective
study of LAS incidence. Metatarsophalangeal joint range of
motion was obtained from static goniometric measurements.
Of the 223 subjects, 21 sustained an LAS. Those with an LAS
had significantly more metatarsophalangeal joint extension
than the controls.32

A last approach in the literature for static assessment of the
midfoot and forefoot in correlation with LAS involves exam-
ining foot size rather than the position or range of motion of
the foot segments. In a prospective study of military recruits,
foot width and length measurements revealed that those who
sustained an LAS had a significantly greater foot width and
length.7 This may suggest that during inversion injury, in-
creased foot width and length is associated with an increased
moment arm and corresponding inversion moment compared
with a foot that is significantly shorter and more narrow.7

However, it is important to note that these authors also showed
that those individuals with greater height and weight were sig-
nificantly more at risk for suffering an LAS, and it would seem
that larger individuals would have a larger foot. An increase
in body mass index has also been reported8,33 to correlate sig-
nificantly with an initial LAS and the development of CAI and
may logically explain the results examining foot size.

Complex Foot Postures

Studies of static foot postures have also been conducted to
examine complex foot deformities involving malalignments at
the rearfoot, midfoot, and forefoot. Regarding LAS, specific
attention has been focused on cavovarus foot deformity, a
combination of rearfoot varus, pes cavus, and excessive plan-
tar flexion of the first ray. Researchers have not identified a
cavovarus foot as a predictive factor for an LAS, but this de-
formity has been correlated with CAI.31

In 1990, an author31 examining standard radiographs noted
a higher frequency of cavovarus foot deformity in patients
with CAI. Later, this relationship was evaluated again by a
group34 that obtained clinical and radiographic measurements
from 10 subjects with CAI and severe degenerative changes.
Interestingly, these measurements identified all 10 subjects
with CAI as having a cavovarus deformity. After surgical cor-
rection of the deformity, all subjects had resolution of pain
and instability.34 Fortin et al34 suggested that correction of the
cavovarus foot deformity in patients with CAI may help to
normalize forces across the ankle, aiding in the effectiveness
of lateral soft tissue reconstruction.

Detailed statistical information for the results presented
throughout this section is found in Tables 1 and 2.

GAIT CHARACTERISITICS AND LATERAL ANKLE
INJURY AND INSTABILITY

The investigation of static foot type in association with
LASs and instability is helpful to establish structural risk fac-
tors for these conditions, but it is important to determine how
these static alignments of the foot affect the dynamic activity
in which these injuries occur. Although various ranges of dy-
namic actions incorporate foot motion and can create an LAS
mechanism, currently only foot characteristics in gait have
been assessed. Evaluation of gait can be performed using 3-
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dimensional motion analysis systems, forceplates, and plantar
pressure measurement systems.

A uniquely designed prospective study by Willems et al32

used dynamic 3-dimensional kinematic data of 223 subjects to
determine gait-related risk factors for inversion sprains. The
results were based on those subjects who sustained an LAS
during the investigation. Video data showed the subjects walk-
ing barefoot at a speed of 3.3 m/s. After a thorough kinematic
gait analysis, they reported 2 findings. First, the instant of
maximal calcaneal inversion or resupination velocity occurred
significantly later in the LAS group than in those who did not
suffer a sprain. They stated this most likely occurred because
of the prolonged pronation phase in the LAS group, which
means that resupination has to occur in a shorter time. Second,
metatarsophalangeal joint extension range of motion was
greater during the gait cycle in subjects who sustained an LAS.
These results support the previous findings of increased me-
tatarsophalangeal joint range of motion with static goniometric
assessment.

Willems et al32 also measured plantar pressure to analyze
gait patterns in association with an initial LAS. They used a
Footscan pressure plate (RSscan INTERNATIONAL, Olen,
Belgium) mounted on a force platform to obtain plantar pres-
sure data during gait in the 223 subjects. Those who sustained
an LAS had a longer total foot contact time, more laterally
directed pressure displacement of the forefoot push-off phase,
and more laterally situated center of pressure at last foot con-
tact. Although most LASs occur at initial contact in the stance
phase of gait, the authors suggested that a more laterally sit-
uated center of pressure at last foot contact during the push-
off phase could place the athlete in a more vulnerable position
when in plantar flexion at push-off, producing an LAS.32 How-
ever, this mechanism is more likely to occur in high-level ac-
tivities at greater speeds. Conversely, it is important to note
that at the first metatarsal contact of gait, the pressure distri-
bution was directed more medially, and, overall, levels of load-
ing beneath the medial border of the foot were higher than
beneath the lateral border.32

Two other groups35,36 have retrospectively evaluated plantar
pressure and force distribution during gait specifically in sub-
jects with CAI. Nyska et al35 evaluated the changes in force
transfer and peak forces under the feet using the mini-EMED
plantar foot pressure system (Novel GmbH, Munich, Germa-
ny) during level walking in 12 subjects with CAI (more than
3 LASs in 6 months) and in 12 healthy controls. The CAI
subjects had a different pattern of walking, with a longer du-
ration of contact from the heel to the central forefoot, which
indicated a slowing down of weight transfer from heel strike
to toe off. The CAI subjects also showed greater forces under
the midfoot and lateral forefoot, causing a lateral shift of the
center of pressure.35

Nawata et al36 evaluated plantar pressure distribution in 8
CAI subjects (2 or more episodes of ‘‘giving way’’ in the past
6 months) and in 10 healthy control subjects using the MP-
4800 pressure measuring system (Anima, Tokyo, Japan). They
evaluated the pressure distribution of a final footprint from
combined frames using 2 factors identified as the mean foot
angle and pronation-supination index. The mean foot angle
was defined as the angle between a line that bisected the heel
and the forward line of progression (Y-axis) and was lower in
the CAI group, suggesting that these subjects had greater ‘‘in-
toeing’’ during gait.36 The pronation-supination index mea-
sured the relative amount of pronation or supination at the

stance phase of gait and was defined as the distance between
the medial footprint border and the center of pressure divided
by the distance from the medial to the lateral borderline.36 The
pronation-supination index at the midsupport phase was higher
among the CAI subjects. The authors stated that this increase
in adduction-supination at the midsupport phase seen in the
CAI subjects could suggest an impaired ability of the pronators
to counteract inversion. Both groups concurred that further ex-
amination of the foot using these plantar pressure measurement
techniques is needed, especially during dynamic condi-
tions.35,36

Further detailed statistical information for the results pre-
sented throughout this section can be found in Tables 1 and 2
of this review.

LIMITATIONS IN LITERATURE

After one reviews the literature, it is evident that some in-
consistency in the reported findings has occurred. This vari-
ability may be due, in part, to the inability to obtain accurate
and reproducible measurements of foot alignment and motion.
Discrepancies may also result from the clinical tools used and
the variation among examiners.37 Some authors reviewed go-
niometric data that calculated STJ or rearfoot measurements
and included calcaneal range of motion and static positioning
of the calcaneus and tibia in STJ neutral. Rearfoot and forefoot
relationships were also measured in STJ neutral. Assessments
of the reliability of goniometric measurements at the STJ have
been sparse but have provided us with some insight into the
validity of this measurement tool.19,38

Calcaneal inversion and eversion range-of-motion measure-
ments on normal subjects in a non–weight-bearing position
displayed a moderate correlation coefficient of 0.83.39 How-
ever, one criticism is that the authors did not state if they
measured intratester or intertester reliability, nor did they re-
port measurement precision data. Elveru et al38 explored the
goniometric reliability of subtalar and ankle measurements and
provided intratester intraclass correlation coefficient values of
0.74 and 0.75, respectively, for calculating calcaneal inversion
and eversion range of motion. Intertester reliability provided
low intraclass correlation coefficient values of 0.32 and 0.17,
respectively. Once more, SEM values were not reported, nor
could they be calculated from the data provided. Two years
later, a second set of researchers26 evaluated this measurement,
and they, too, reported consistently low intertester measure-
ment reliability for calcaneal inversion and eversion range of
motion in the non–weight-bearing position. Calculated SEM
values for inversion and eversion were 4.82� and 3.5�, respec-
tively, indicating low measurement precision.26

Smith-Oricchio and Harris26 also investigated the reliability
of palpated STJ neutral, a position commonly used in research
and clinical evaluation. They reported less than moderate in-
traclass correlation coefficient values of 0.60 for intertester
reliability, with an SEM of 2.95�.26 Subtalar joint neutral re-
liability is crucial because the position provides the clinician
with a relative zero point of reference from which to measure
range of motion and a starting point for other lower extremity
measurements.19 Further emphasis needs to be placed on im-
proving measurement and palpation techniques and developing
more reliable tools to obtain these measurements.

Due to the perceived inaccuracy of clinical measurements,
some researchers21–25 have chosen to measure foot alignment
with radiographs. We recognize that the angles measured from
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these radiographs to classify foot type also have the potential
to contain intertester and intratester error. In addition, the ra-
diographs we discuss in this review were taken with subjects
in an open chain position and do not provide the functional
view of the foot that a closed chain position would offer.

An additional methodologic limitation affecting this area of
research is the need for more advanced strategies for motion
analysis of the foot. Three-dimensional kinematic and kinetic
analysis of gait is an effective way to functionally examine
these orthopaedic structures and provides valuable information
in the area of foot research, but to this point, the foot has been
evaluated as a rigid structure. Although current motion anal-
ysis systems have greater resolution than previous models,
some foot marker placements for popular marker sets prohibit
accurate measurement of foot frontal-plane motion, a very im-
portant element in foot mechanics.40 Other marker set place-
ments, such as that of Willems et al32 using motion analysis,
have given more information regarding rearfoot frontal mo-
tion; however, the midfoot has not been assessed.

Although authors of prospective studies in the literature
identify links between foot characteristics and the development
of an initial LAS, at this time, no prospective studies have
been conducted to associate any static or dynamic foot traits
and CAI. All research to this point has been retrospective and,
therefore, cannot show causality but only identify relation-
ships. In order for foot characteristics to be recognized as risk
factors for CAI, prospective studies must be conducted. In
addition, more studies of that design must be performed when
evaluating the foot and LASs to provide stronger support for
the risk factors already identified.

Lastly, odds ratios for LAS and CAI risk in subjects who
have and do not have given foot characteristics were not pre-
sented in any of the articles we reviewed. Odds ratios can give
us an idea of how strongly a given variable may be associated
with the outcome of interest compared with other variables.
The absence of these ratios in the literature can be regarded
as a major limitation in understanding relationships between
foot structure and lateral ankle injury risk. If odds ratios were
given in the literature, they would refer to the ratio of the odds
of an event (LAS or CAI) occurring in a group with a certain
foot characteristic versus the control group. This method is an
effective way of expressing the relative risk of sustaining an
acute or chronic lateral ankle injury when a subject possesses
certain foot characteristics.

CLINICAL IMPLICATIONS

Structural variations of the foot have been implicated as
potential risk factors for lower extremity injury.41 Although
these links do exist, little emphasis is placed on the foot and
its structures regarding the treatment and prevention of LAS
and CAI.

We suggest that in addition to the assessment of talocrural
joint laxity, the STJ also be evaluated. Hertel et al20 described
the medial subtalar glide as an effective assessment tool in
examining STJ laxity; however, its use has not been wide-
spread. Clinicians should also be encouraged to evaluate first
ray mobility, static calcaneal positioning both in weight bear-
ing and in STJ neutral position, the midtarsal joints, and the
longitudinal arches to assess the midfoot. Additionally, an
evaluation of the joints and articulations distal to the talocrural
joint is needed to help identify and correct damage and ab-
normalities in these areas during the treatment of LASs.

No information in the literature targets the foot region spe-
cifically for prevention strategies in those with either LAS or
CAI. Orthotic devices successfully modified selected aspects
of lower extremity mechanics and enhanced foot stability dur-
ing the support phase of running.42 Also, the effect of orthotic
intervention on conditions such as peroneal tendinitis, anterior
compartment syndrome, tibialis anterior tendinitis, and stress
fractures has been examined.42 Recent studies20,25 on STJ mo-
tion and the effect of this motion on the position of the talus
at the talocrural joint may provide the basis for extending this
line of research to the conditions of interest in this review.

CONCLUSIONS

The recent literature has provided important advances with
regard to identifying lateral ankle injury risk factors for both
acute and chronic ankle injury. Although progress has been
made, more work still needs to be done to properly identify
the role of the foot in acute and chronic ankle sprain condi-
tions. Based on this review of the related literature, the factors
that most strongly identify at-risk individuals include a high
longitudinal arch, greater foot width, cavovarus foot deformity,
women with increased calcaneal eversion range of motion
(open chain), greater metatarsophalangeal joint extension, STJ
instability, and a more laterally situated gait. However, very
few studies have been devoted to evaluating these factors, and
more evidence is needed to confirm these findings. Also, the
inability to develop consensus among the results illustrates the
need for advanced and more consistent methods of understand-
ing the connection between the foot and ankle segments.

Accurately capturing foot motion is pivotal to understanding
lower extremity mechanics and injury mechanisms. Variations
in both foot structure and foot mechanics greatly influence
motion of the more proximal segments of the lower extremi-
ty.40 However, to assess the role of the foot in inversion ankle
trauma, more reliable measurement techniques need to be de-
veloped. The foot is an incredibly complex structure, com-
prising 26 or more bones and more than 30 articulations, most
with 6 degrees of freedom of movement. This anatomy sug-
gests that analysis of motion at the foot is a difficult task and
new techniques are needed to gain insight into this phenom-
enon. Specifically, new techniques for marker placement in
motion analysis should be developed to produce kinematic and
kinetic variables from the midfoot and forefoot to enhance our
knowledge of these segments in foot function among the sub-
jects of interest.

More concise and reliable results on this topic will help to
define those foot-related risk factors for LAS. Intervention
studies can then be performed to reduce the incidence and
severity of acute and chronic lateral ankle injury.
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