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The stoichiometry of metal assisted etching (MAE) of 
Si in V2O5 + HF and HOOH + HF solutions 
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The metals Ag, Au, Pd and Pt were deposited as nanoparticles onto H-terminated Si(100) wafers and 
single crystal Si chunks to act as catalysts for electroless etching induced by the presence of a strong 
oxidant in HF(aq). This process is known as metal assisted etching (MAE). Aqueous solutions of V2O5 + 
HF and HOOH + HF were investigated. The stoichiometry of MAE in V2O5 + HF solutions depended on 
the chemical identity of the metal. The stoichiometry when etching with Ag and Au was the same as 
previously determined for electroless Si etching in V2O5 + HF solutions in the absence of a metal 
catalyst. With Pd and Pt nanoparticles the stoichiometry is significantly different, consuming more V2O5 
and producing less H2 per mole of Si etched. This indicates that the metal catalyst changes the 
mechanism of etching, implicating the polarization induced by the metal nanoparticle in the etch 
mechanism. Etching in V2O5 + HF was well behaved and gave consistently reproducible kinetic results. 
In contrast, we were unable to obtain well-behaved stoichiometries for HOOH + HF solutions. This is 
related to heightened sensitivity on reaction conditions compared to the V2O5 system as well as 
nonlinearities introduced by side reactions. 

Keywords: Silicon nanowires, porous silicon, metal assisted etching, surface chemistry; reaction 
mechanism 
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Introduction 
Electroless etching of silicon in fluoride solutions is an extremely versatile process that is capable of 

producing planar, porous and nanowire structures [1]. When performed in a regime that produces 

microporous silicon it is commonly called stain etching [2,3], a process known since the work of Fuller 

and Ditzenberger [4], Turner [5] and Archer [6]. A metal catalyst can be used to modify the etching 

process. This was first recognized in a controlled manner by Kelly and co-workers, who coined the term 

galvanic etching to describe the catalytic etching of silicon induced by planar metal structures [7,8]. 

Bohn and co-workers [9,10] advanced the range of accessible morphologies by introducing the metal as 

random or patterned nanoparticles. This process is known as metal assisted etching (MAE). 

Metal assisted etching has attracted increasing attention because it is extremely adept at producing 

either porous Si (por-Si) [11] or Si nanowires (SiNW), potentially in ordered arrays [12-14] depending 

on the initial geometry of the deposited metal [15-19]. Silicon nanowires exhibit interesting electrical 

and optical properties [20-22] and are of considerable interest for applications in thermoelectrics [23], 

sensing [24,25], photovoltaics and photoelectrochemistry [26-29], surface functionalization [30] 

(including formation of superhydrophobic surfaces) [31], catalysis [32], nanoelectronics [33-37], and 

energetic materials [38]. An improved mechanistic understanding of the chemistry involved in metal 

assisted etching is vital to achieving more reproducible and controlled nanostructure formation. 

Understanding of the chemistry fundamental to stain etching has advanced greatly as a result of 

quantitative studies on charge transfer and reaction stoichiometry [39-42]. Anodic etching in the por-Si 

formation region occurs either by a current doubling (valence 2) or current quadrupling (valence 4) path. 

An electropolishing regime (valence 4) is also observed at high bias [43,44]. Kolasinski and Barclay 

demonstrated [39] that etching of Si in a solution composed of V2O5 dissolved in HF(aq) proceeds with a 

stoichiometry given by a half-reaction with valence 2 

Si + 2HF + 2HF2
– + VO2

+ + 2H+ → H2SiF6 + H2 + VO2+ + H2O + eCB
–  (1) 

accompanied by a charge balancing counter reaction 
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VO2
+ + 2H+ + eCB

– → VO2+ + H2O.       (2) 

In other words, two moles of the oxidant VO2
+ are consumed and one mole of H2 is produced per mole 

of Si etched. This is different than the stoichiometry observed in anodic etching of Si in the por-Si 

formation regime. However, it is completely consistent with a quantitative evaluation of charge transfer 

rates based on Marcus theory. This stoichiometry makes sense because the rate of conduction band 

electron transfer into VO2
+ via reaction (2) greatly exceeds that of the rate of conduction band electron 

transfer into H+ via reaction (3). 

    H+ + eCB
– → 1/2 H2     (3) 

 According to Marcus theory, the rate of electron transfer from the conduction band is proportional to 

the hopping probability factor W, which depends on the electrochemical potential of the oxidant Eox 

according to  

   W (Eox ) = exp − EC − Eox + λ( )2 4λkBT( )⎡
⎣

⎤
⎦ .  (4) 

Silicon etching in HF solutions is extremely exothermic [42] and its rate is controlled by the rate of 

hole injection into the Si valence band [40,42,44,45]. Any oxidant that can efficiently extract electrons 

from the Si valence band – a prerequisite for effective stain etching – must have an electrochemical 

potential more positive than roughly +0.7 V so that its acceptor level overlaps with the Si valence band. 

VO2
+ with E° = 0.91 V lies approximately 1 eV below the Si conduction band edge. Thus, not only is 

VO2
+ well suited to accept valence band electrons, but also conduction band electron transfer into VO2

+ 

is near the optimal value. H+ at E° = 0 V lies just a few tenths of an eV below the conduction band 

minimum EC [40,42] and well above the valence band maximum.. While it is thermodynamically 

possible for H+ to act as an oxidant for Si etching, it is kinetically inhibited from doing so. Furthermore, 

its acceptor level is poorly positioned compared to VO2
+, and it must have a lower rate of charge transfer 

from the conduction band. This comparison will hold for any stain-etchant-inducing oxidant that is 

stable in an aqueous solution [39]. 
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For etching in the presence of a metal, we need to consider the effect of the metal on charge transfer 

as well as on its potential role as a catalyst. A solution of HOOH + HF does not etch Si at an appreciable 

rate, much less than 0.01 nm s–1 at the concentrations used in this study [46,47]. However, HOOH + HF 

is the most commonly used solution for MAE. Therefore, a fundamental question to ask is, since we 

know that the metal (by density of states arguments) can change the kinetics of the charge transfer, does 

the metal act only as a catalyst or does it also affect the etch mechanism? Furthermore, is the etch 

mechanism influenced by the chemical identity of the metal? 

We have chosen a range of metals that differ with respect to their catalytic character. A good hydrogen 

recombination catalyst (1) has a d band that straddles the Fermi energy, (2) does not bind H atoms too 

strongly, and (3) does not present a barrier to H2 dissociation [48,49]. Si fails on all three counts and is 

an inferior catalyst. Ag and Au are also poor hydrogen recombination catalysts, though they are still 

more effective than Si. Both bind H atoms weakly and present a barrier to H2 dissociation. Pd and Pt are 

excellent hydrogen recombination catalysts. 

In this report we explore the deposition of Ag, Au, Pd and Pt onto H-terminated Si and then compare 

etching induced by either V2O5 or HOOH dissolved in HF(aq) to etching in the absence of the metal. In 

general, metals deposited by galvanic displacement on Si do not adhere strongly to the surface. 

Therefore they tend to form clusters or dendrites of various shapes depending on the deposition 

conditions, such as temperature, pH, concentration and deposition time [50]. We find that the 

stoichiometry of etching in V2O5 + HF depends on the metal used as a catalyst. Just as for etching in the 

absence of metal, etching in the presence of Ag and Au nanoparticles exhibits molar ratios of roughly 

2:1 for n(VO2
+ ) n(Si)  and approximately 1:1 for n(H2 ) n(Si) . Therefore, even though the 

photoluminescence (PL) and structure of these films is different from films produced in the absence of 

the catalyst, the mechanism of etching is the same. Put differently, the spatial character of etching is 

different with and without the presence of Ag or Au, but the chemistry itself does not change. 
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Etching in the presence of Pd and Pt nanoparticles exhibits decidedly different stoichiometries. For 

Pt, n(VO2
+ ) n(Si) ≈ 4  and n(H2 ) n(Si) ≈ 0 . Pd etches initially with the same stoichiometry as Pt; 

however, as time passes it tends toward n(VO2
+ ) n(Si) ≈ 3  and n(H2 ) n(Si) ≈ 0.5 . Therefore, the 

introduction of a good hydrogen recombination catalyst changes the mechanism of etching as compared 

to stain etching. 

We were unable to obtain similarly well-behaved kinetic data from HOOH-initiated etching. This 

system is inherently more chaotic. We believe this is caused by much greater sensitivity to reaction 

conditions and the interference of competing reactions involving H2, O2, H2O and HOOH. 

 

Experimental 
Etching was performed on Si(100) 0–100 Ω cm p-type test grade wafers (University Wafers) or 

unpolished single crystal reclaimed wafer chunks (Union Carbide). Wafers and chunks were used for 

SEM and PL studies, whereas chunks were used exclusively in kinetics studies. Polished wafers could 

not be used for kinetics studies because of their low surface area. The wafer chunks represent a moderate 

surface area (high compared to wafers, low compared to powder) and high purity sample. Chunks were 

sieved to obtain a narrow size distribution (3.35–4.75 mm) and a large enough sample size was used (1–

2 g) to ensure constant initial surface area. Roughly 2–3% of this mass is etched during experiments. 

Silicon was cleaned by ultrasonication in acetone (Pharmco-Aaper HPLC/UV grade) then ethanol 

(Pharmco-Aaper anhydrous ACS/USP grade) followed by rinsing in water. After etching, samples were 

rinsed in water (deionized and distilled) and ethanol, then dried either in a stream of Ar gas or in CO2 + 

ethanol mixtures using a Tousimis AutoSamDri 815 critical point drier. V2O5 (Fisher certified grade), 

HOOH (Columbus Chemical Industries 3% solution in water) and HF (JT Baker 49% analytical grade) 

were used to create stain etchants. Concentrated HF was diluted 1:3 with water. The concentration of 
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V2O5 was 0.012 M for UV/Vis experiments and 0.045 M in H2 evolution experiments. HOOH etchant 

was composed of 2:5:30 solution of 3% HOOH : 49% HF : H2O. 

Secondary electron scanning electron microscopy (SEM) images were obtained in an FEI Quanta 400 

Environmental SEM operating at 20 kV in high vacuum mode and using an Everhardt-Thornley 

detector. Higher resolution SEM images were acquired using the electron column in an FEI Strata 400S 

dual-beam focused ion beam apparatus. This latter instrument was operated at an accelerating voltage of 

10 kV and the secondary electron signals were collected using a through-the-lens detector. Cross-

sectional samples for transmission electron microscopy were prepared in the dual-beam instrument using 

the Ga ions column. The samples were examined in an FEI Tecnai T12 TEM operating at 120 kV. 

Absorption spectroscopy for kinetics experiments was performed on a Cary 300 Bio UV/Vis 

spectrometer. Digital pressure, temperature and time data were recorded with a MicroLAB 4205 unit 

interfaced to a computer. Hydrogen evolution was monitored by measuring the pressure in a reaction 

vessel composed of two 750 mL high-density polyethylene (HDPE) Erlenmeyer filter flasks connected 

by a short section of Tygon tubing. Both the reaction and ballast flasks were stoppered and submerged in 

a thermostated bath. The ballast flask was connected through its stopper by a thin Teflon tube to the 

pressure sensor. Photoluminescence spectra excited at 350 nm were acquired on a Cary Eclipse 

fluorescence spectrometer with the slits set on both excitation and emission monochromators for 5 nm 

resolution. The excitation light is incident at 45°. A handheld Way Too Cool 9 W UVC lamp with 

primary emission near 250 nm was used for visual inspection of photoluminescence. 

Our initial efforts at depositing metal layers were performed with a Cressington sputter coater. The 

results were very poor, subject to lift off of the metal layer, and yielding irreproducible kinetics and film 

structure. Infrared spectroscopy revealed that metal layers produced in this manner are easily 

contaminated with hydrocarbons due to exposure to the atmosphere. 
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Therefore we switched to a technique that involved formation of a H-terminated Si surface followed 

immediately by metal deposition and etching without exposure of the H-terminated or metal-deposited 

surface to the atmosphere. Metal deposition was performed with an Ar buffer layer blown into the 

beaker by stripping the oxide from a clean Si wafer in concentrated HF to make a H-terminated Si 

surface. An appropriate number of drops of ~3 mM metal salt solution was added to HF to deposit a 

quantity of metal corresponding to a uniform coverage of 10nm in thickness. As we show below, the 

metals form clusters rather than flat films. The cleaned Si wafers were transferred directly from the 

water rinse solution to HF for oxide stripping and metal deposition with a droplet of water covering the 

wafer. After 15 min in the deposition solution, the Si wafers with metal deposits were transferred 

directly to the stain etchant while still wet to avoid atmospheric contamination. As will be shown below, 

it is critical for reproducible results that the deposited metal layers are not dried in air before etching. If 

allowed to dry in air, deposited metal nanoparticles tend to agglomerate. For some SEM and PL studies 

an oxidant containing solution was added directly to the deposition solution. In either case, the H-

terminated surface and the deposited metal nanoparticles were never exposed to the atmosphere nor 

subjected to drying. Aqueous salt solutions used for deposition include PdCl2 (Sigma-Aldrich, reagent 

plus, 99%), AgNO3 (ACS certified, >99.7%), HAuCl4 (Sigma-Aldrich, 200 mg dl–1) and H2PtCl6 (EMD 

Chemical, 10% (w/w) solution).  

V2O5 dissolves in HF to produce VO2
+. This is reduced during por-Si formation to form VO2+. The 

decrease in concentration of the V(V) species VO2
+(aq) and the increase in concentration of the V(IV) 

species VO2+(aq) were simultaneously monitored by UV/Vis spectroscopy. A quantitative 

correspondence in the decrease in VO2
+(aq) and increase in VO2+(aq) concentrations described by a 

single rate constant indicates that no side reactions occur during stain or metal assisted etching. We used 

V2O5 + 1:3 HF:H2O to form the etchant for kinetics studies. Therefore, we must use 

polymethylmethacrylate (PMMA) cuvettes for absorption spectroscopy and Beer-Lambert analysis. We 
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used VOSO4 (Strem) dissolved in 1:3 HF:H2O to provide a standard for the VO2+ absorption spectrum. 

Further details pertaining to experimental and data analysis procedures have been reported elsewhere 

[51]. 

Results 
Metal Deposition 

We investigated the state of the metal particles before etching with electron microscopy. Metal was 

deposited galvanically from solution as detailed above. In our first series of experiments, the samples 

were rinsed once in 1:1 water:ethanol and three times in ethanol solutions. They were then blown dry 

with a stream of Ar. Typical SEM images and particle size distributions for Ag and Pd deposited and 

dried in this manner are shown in Fig. 1 (a)–(d). Particularly in the case of Ag, there was evidence for 

the agglomeration of much smaller clusters into larger clusters. This was also the case for Pd, though the 

agglomeration was less severe. The majority of Ag clusters were <100 nm in diameter. Larger clusters 

were clearly composed of aggregations of smaller particles and the long tail in the distribution brought 

about by the larger clusters increased the mean cluster diameter to 110 nm. A more symmetrical 

distribution centered about 47 nm was observed for Pd. We can conclude with certainty that the nascent 

cluster size distributions for Ag and Pd were significantly smaller than those presented in Fig. 1. The 

agglomeration effect was consistent with very weak adhesion of Ag and Pd clusters to the Si surface, 

which has been reported in the literature [50,52,53].  

Similar preparation conditions were simply inadequate for the observation of Au and Pt clusters. If the 

samples were dried with Ar after deposition of Au and Pt, SEM images revealed that clusters had been 

completely removed from large areas of the surface. The vast majority of the deposited metal was either 

removed entirely from the surface or displaced into large debris piles. In order to investigate the nascent 

size distribution of the deposited Au and Pt clusters, we changed our rinsing protocol. The images and 

distributions displayed in Fig. 1 (e)–(h) were obtained after rinsing four times in ethanol. The samples 

were placed in a Teflon cup for transfer from one solution to the next so that they never were dried 
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between rinsing steps. After the fourth rinse, the Teflon cup was then introduced into a critical point 

drying apparatus. Critical point drying in CO2 was then performed. Well-dispersed and very small 

nanoclusters were then observed. Pt exhibited a symmetrical distribution much like Pd but narrower and 

centered at 33 nm. The Au distribution was displaced toward much smaller clusters with a mean 

diameter of only 10 nm. 

Previous studies [50,52,53] of galvanic metal deposition on Si have reported that the deposited metals 

adhere poorly to the Si surface. This is consistent with the very weak adhesion we observed. These 

previous studies, as well as other reports [11,54-62] of nanoparticle formation, dried their samples in air, 

with streaming gas, or did not specify their drying conditions. Our results suggest that the use of critical 

point drying is essential for obtaining accurate nanoparticle size distributions and that previous 

conclusions regarding size distributions and their dependence on deposition parameters may need, in 

some cases, to be reevaluated. 

While the distributions shown in Fig. 1 are not the nascent distributions in the case of Ag and Pd, they 

nonetheless demonstrate that the deposited metal exists prior to etching as isolated nanoparticles rather 

than a continuous film. Furthermore, the nanoparticles primarily (perhaps exclusively in the absence of 

aggregation) exhibit diameters below 100 nm and cover roughly 5% of the surface area of the substrate.  

Observation of Etch Progress and Photoluminescence of Si Wafers 
After metal deposition there were no obvious changes to the appearance of the Si crystals. This was 

consistent with the low coverage of nanoparticles expected from the deposition conditions. Before the 

addition of oxidant, it was clear that the behavior of a Pd coated sample was different than the samples 

coated with other metals. Silicon crystals upon which Ag, Au and Pt have been deposited maintained 

their mirror finish and did not evolve any bubbles. If the Pd coated Si was allowed to sit for an extended 

period, the surface roughened, losing its mirror finish and a small quantity of bubbles was found. This 

behavior was consistent with that reported by Matsuda and co-workers [63], who found high catalytic 

activity for Pd nanostructures on Si in HF even in the absence of an oxidant. They attributed this low 
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level of reactivity to the effects of dissolved O2. They also reported that this does not lead to por-Si 

formation. We confirmed the lack of microporous Si formation by photoluminescence (PL) 

measurements, or rather, the absence of PL under ultraviolet excitation. 

After the addition of dissolved V2O5, reaction clearly occurred. The nature of the reaction depended on 

whether metal was present and the chemical identity of the metal. The addition of dissolved V2O5 in the 

absence of metal (conventional stain etching) led to very low bubble production. Bubbles often formed 

at the edges of the crystal and slowly grew in size before detachment. Crystals developed colors that 

swept across the surface and changed as etching proceeds. Only for extended etch times of 30 min or 

more did the surface lose its mirror finish and a rough surface appeared. These observations have been 

described previously and the smoothness or roughening of the layers has been confirmed by SEM 

measurements [40-42,64]. 

In the presence of metal, bubble formation and color changes were dramatically different. Bubbles 

immediately streamed off of the Ag-coated surface. The bubbles were very small and emanated from the 

entire crystal face. The color changed rather uniformly; however, after an initial burst of vibrant colors, 

the Ag-coated samples soon became quite dark. The dark surface maintained mirror like properties for 

short etches but eventually became quite rough. Au-coated Si behaved similarly; however, the response 

was somewhat delayed compared to the Ag-coated samples. Pt-coated samples exhibited rapid color 

change initially then darkening and roughening. Bubble production was much reduced, with larger 

bubbles that tended to stick to the sample. 

Brilliant visible PL was observed from films etched in the presence of Ag, Au and Pt nanoparticles. 

The PL was green-yellow-orange depending on several factors. Figure 2 displays the PL spectrum of a 

film etched in V2O5 + HF on a Pt-coated Si(100) wafer. Minimal exposure to the atmosphere ensured by 

placing the sample in an Ar purged desiccator until the PL spectrum was measured. This sample was 

deep green to the eye when excited by a handheld UV lamp. The PL peaks at 570 nm with excitation at 
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350 nm. The green PL was more persistent than what we have previously reported for conventional 

stain etching [65]. Green PL from stain-etched por-Si was stable as long as the samples were held in 

water. After a few minutes to an hour of air exposure, the green PL converted to the more usual orange 

PL. Green PL from metal assisted etching with V2O5 often persisted for several days or even weeks 

before evolving into the usual orange PL. 

The behavior of Pd-coated samples was completely different. The surface of the sample did not exhibit 

color change – they simply darkened and roughened. Bubbles did not stream off. Instead they developed 

slowly and formed larger attached bubbles. No visible or infrared PL was observed unless etching was 

performed for extended periods of time (>60 min). Therefore, no microporous silicon was formed 

initially even though etching clearly occurred. Etching was clearly indicated both by the roughening of 

the sample and by the appearance of a blue color in the etch solution as VO2
+ was converted to VO2+. 

The behavior was much different when HOOH was added as an oxidant instead of V2O5. In the 

absence of deposited metal, no reaction occurred with HOOH. This is consistent with previous results 

[15]. Even though allowed on energetic grounds (the HOOH donor level lies below the Si valence band 

maximum), the kinetics of charge transfer is very slow and requires a metal to catalyze the reaction of 

HOOH with Si. The need for a catalyst means that the HOOH must specifically adsorb on the surface of 

the metal before charge transfer can occur. If nonspecific adsorption were sufficient, there would be no 

barrier to direct hole injection into Si. We can infer this because we have previously shown [40] that 

Marcus theory quantitatively described the rate of hole injection of VO2
+, Fe3+, Ce4+ and IrCl6

2–, all of 

which must therefore nonspecifically absorb on the Si surface before hole injection. 

When HOOH was added to metal-coated Si samples immersed in HF(aq), etching was immediate in 

all cases. Small bubbles streamed off the surface from the entire surface. Samples immediately 

roughened. Ag- and Au-coated samples tended to take on more of a tan color as opposed to the darker 

brown or even black appearance of Pd- and Pt-coated samples. Samples exhibit visible PL, which has a 
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long tail into the IR, much longer than observed for metal assisted etching with V2O5. A typical 

spectrum from a sample etched into a Pt-coated wafer is shown in Fig. 2. The PL peaks around 615 nm 

and extends beyond 850 nm. 

Structure of Etched Si Chunks 
Silicon chunks are single-crystalline pieces of reclaimed Si wafers. As shown in Fig. 3(a), they are 

initially rough and exhibit multiple facets resulting from cleavage. Stain etching in the absence of metal 

does not change the surface morphology. After metal assisted etching a system of nanopores and 

nanowires was formed. The exact structure of the observed nanowires and the channels between them, 

as shown e.g. in Figs. 3(b) and (c), depended on the distribution of metal before etching, the etching 

conditions as well as the drying regimen employed after etching and rinsing. Nonetheless, the images in 

Fig. 3 are representative of the types of structures observed before and after etching with each type of 

metal. Here we do not investigate this structure in detail. However, the features shown in Fig. 3(c) that 

are etched in the rough chunks are quite similar to structures observed when etching wafers with flat 

surfaces. This indicates that the crystalline structure of the chunk, the nature of the metal/silicon 

interface, and the etch chemistry are more important for determining the ultimate structure of the etched 

film than is the initial structure of the Si surface. Figure 3 demonstrates for the first time that V2O5 + 

HF(aq) can be used to form Si nanowires just as has been reported for HOOH + HF(aq). The channels 

revealed in Fig. 3(c) are directed along the 110  direction. In metal assisted etching of planar Si wafers 

using HOOH + HF(aq), the preferred direction of etching is the 100  though this can be changed to the 

111  family of directions by changing the etchant composition [15]. 

Kinetics of VO2
+ to VO2+ Conversion by UV/Vis Spectroscopy 

The kinetics of hole injection by VO2
+ into the Si valence band can be followed by absorption 

spectroscopy. We have previously reported that during stain etching with V2O5 + HF solutions, hole 

injection follows pseudo-first order kinetics when a large surface area sample of silicon chunks is etched 
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[39,51]. For all of the metal-coated samples investigated here, we also observed pseudo-first order 

kinetics during metal assisted etching. Figure 4 displays a typical fit of the data to first-order kinetics for 

both the decay of the V(V) species and the growth of the reduced V(IV) species. 

By measuring the mass of Si before and after etching, we also determined the etch stoichiometry. The 

results for both etch rate and stoichiometric ratios depended on the identity of the metal. These results 

are summarized in Table 1. The stoichiometries represent means of between 3 and 9 independent 

experiments and their uncertainties are reported at 95% confidence intervals. The uncertainties in the 

rate constants are derived from fits that inherently have the potential for greater systematic error. The 

uncertainties are reported as standard deviations. The pseudo-first order rate constants reported in Table 

1 were normalized to the initial mass of Si under the assumption that the mass was proportional to the 

initial surface area. This did not affect the order of the kinetics but it did make comparisons between 

different runs more consistent. 

Kinetics of H2 Evolution in V2O5 + HF etchants 
Hydrogen gas evolution was shown to follow pseudo-first-order kinetics for stain etching in a V2O5 + 

HF [39]. The relative stoichiometry of H2 formation compared to Si etching was determined by a 

combination of pressure rise and gravimetric measurements. The evolution of H2 gas in metal assisted 

etching exhibited a striking dependence on the identity of the metal. As shown in Figure 5, H2 evolution 

from Ag-coated silicon was well described by pseudo-first-order kinetics. For a Au-coated surface 

pseudo-first-order kinetics with the same rate constant was also observed. However, this rate was 

attained after an induction period in which the rate was initially somewhat slower. This induction period 

(15–30 min) was relatively short compared to the usual length of an experiment (120–240 min). Pt-

coated surfaces evolved so little H2 that it was more difficult to evaluate, as shown in Fig. 5(b). H2 

production was roughly constant over time but the amount produced was very low compared to the 

extent of etching. Pd-coated surfaces again acted much differently, as shown in Fig. 5(c). Initially, in the 

first two hours of etching they produced virtually no hydrogen. Subsequently, a significant amount of H2 
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was evolved at a rate only somewhat lower than that of the Ag- and Au-coated surfaces. To confirm 

the time-dependent nature of this system, two experimental runs were terminated in the period of little-

to-no H2 production and seven were run to the full duration displayed in Fig. 5(c). If etching was 

terminated in the early stages, the absence of PL indicated that no microporous Si was formed. After 3 to 

4 hours of etching, weak visible PL was observed. For all other metals, visible PL was observed any 

time enough etching had been performed to produce a color change in the surface of the material. It 

must be emphasized that because of the variable nature of H2 production, bubble formation is a very 

poor proxy for the rate of etching. 

Kinetics of H2 Evolution in HOOH + HF etchants 
Unfortunately, the kinetics of hole injection in HOOH + HF cannot be followed in real time by 

absorption spectroscopy. We attempted two other methods of quantifying the amount of HOOH before 

and after etching. While this would not allow us to determine the etch kinetics directly as shown in Fig. 

4 for V2O5, it would allow us to determine the stoichiometry. The two methods used were (1) to titrate 

against KMnO4 [66] and (2) to measure O2 evolution caused by catalytic HOOH decomposition in the 

presence of MnO2 [67]. Both of these methods allowed us to quantitatively determine HOOH 

concentrations in our reagents. However, we were unable to obtain consistent results even after many 

repeated attempts for metal assisted etching. Etching with V2O5 never exhibited such irreproducibility. 

Therefore we conclude that the variability of the n(HOOH)/n(Si) ratio is inherent to the HOOH-based 

MAE system. 

We also attempted to determine the H2 to Si stoichiometric ratio by the same method as employed 

above for V2O5. Yet again, we were unable to obtain consistent, reproducible results. Therefore, we 

conclude that the irreproducibility must be inherent to the HOOH + HF metal assisted etching system. 

The rate of etching in this system must be so dependent on temperature, composition, partial pressures, 

metal dispersion, pH, surface coverage, surface contamination, side reactions, etc. that we found it 

impossible to obtain kinetic data of similar quality and reliability as that acquired for the V2O5 system. 
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In addition, it should be noted that a number of metal-nanoparticle-catalyzed side reactions are 

possible in any system containing HOOH, O2 and H2. These side reactions lead to irreconcilable 

complications with our methods of quantitation. 

Discussion 
The rate constant for VO2

+ consumption (which is equal to the rate of VO2+ formation) was measured 

directly by time-dependent absorbance measurements for all systems except Ag. For Ag, absorbance 

before and after etching was measured. In addition for Ag, the overall rate of consumption can be 

calculated from the H2 evolution rate and the reaction stoichiometries since both were constant as 

etching proceeded. Table 1 summarizes our kinetics results. The rate of VO2
+ consumption is equal to 

the rate of hole injection into the Si valence band. The rate of hole injection controls the rate of metal 

assisted etching. The metals all catalyzed the injection of holes into the Si. Importantly, the rate of hole 

injection follows smooth first-order kinetics with a fixed rate constant in all cases. For MAE in the 

presence of Ag, Au, Pd and Pt the hole injection rate was 5 times faster than for stain etching. However, 

since only ~5% of the plan view surface area of the substrate was covered by metal, the rate of MAE per 

unit area of metal was roughly 100 times faster than the rate of stain etching. We believe that the 

constant rate found for all four metals indicated that the measured hole injection rate was diffusion 

limited in all four cases. 

Metal Assisted Etching with Ag and Au 
 The behavior of Ag- and Au-coated surfaces was very similar. Both exhibited the same 

stoichiometries as stain etching in the absence of metal. Both also produce microporous Si that exhibited 

visible PL much like conventionally stain-etched Si. Therefore, the steps of the etching reactions in the 

presence of Ag and Au nanoparticles are chemically analogous to when the nanoparticles are absent. As 

we have shown previously [39], this mechanism shares much in common with anodic etching in the 

current doubling regime (valence 2). However, the counter reaction involves the consumption of an 
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electron by the oxidant, as described in reactions (1) and (2). Therefore the overall reaction is a 

valence two reaction 

 Si + 2HF + 2HF2
– + 2VO2

+ + 2H+ → SiF6
2– + 2VO2+ + H2(g) + 2H2O. (5) 

The molar stoichiometry with respect to V(V) consumption is VO2
+ Si = 2  and with respect to hydrogen 

evolution is H2 Si = 1 . 

The increased rate of reaction in the presence of Ag and Au catalysts was reflected in increased Si 

consumption, increased H2 production and an enhancement of the hole injection rate. Since hole 

injection is the rate limiting step [40], it is the increased rate of hole injection that increases Si 

consumption (etching) and H2 production. The increased hole injection rate is caused by the higher 

density of states near the Fermi energy in the metals as compared to Si, which has essentially no density 

of states there. 

Metal Assisted Etching with Pt 
Metal assisted etching in the presence of Pt exhibited statistically the same rate of hole injection as Ag 

and Au but a different stoichiometry with respect to V(V) consumption VO2
+ Si = 3.9 ± 0.3 . H2 

evolution was just above the measurable limit even though the hole injection exhibited a substantial 

first-order rate constant. This stoichiometry is indicative of a mixture of nearly all valence 4 etching 

reactions occurring concurrently with a small amount of valence 2 reaction. There are two different 

valence 4 reaction pathways. One is the stain-etching analog of the current-quadrupling path found in 

anodic etching. The second path is electrochemical oxide formation followed by chemical removal of 

the oxide by HF(aq), which we denote electropolishing. While these two reactions are different 

mechanistically, overall both reactions have the same stoichiometry, 

 Si + 4VO2
+ + 2HF + 2HF2

– + 4H+ → SiF6
2– + 4VO2+ + 4H2O,  (6) 

with molar stoichiometry n(VO2
+)/n(Si) = 4 and n(H2)/n(Si) = 0. Therefore, stoichiometry alone cannot 

be used to distinguish between these two reaction mechanisms. 
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Metal assisted etching in the presence of Pt was dominated by the valence 4 reaction paths. The 

observation of visible photoluminescence confirmed the formation of nanoporous Si with Pt MAE. 

Therefore, the current-quadrupling path, which forms nanoporous Si, must occur and electropolishing 

cannot occur exclusively. Note that because the overall rate of etching as defined by the rate of Si atom 

removal was the same for Ag, Au and Pt, the shift of mechanism was inherent to the chemical identity of 

the metal. The change in stoichiometry was not caused by a kinetic effect analogous to "etching beyond 

the critical current density" since the rate of hole injection and coverage of metal is roughly the same in 

all cases. 

Metal Assisted Etching with Pd 
The stoichiometry and reaction mechanism of in the presence of Pd was more complex than for the 

other three metals. Initially the reaction was dominated by a valence 4 path with n(VO2
+)/n(Si) ≈ 4 and 

n(H2)/n(Si) ≈ 0. However at long times the stoichiometry became mixed with n(VO2
+)/n(Si) ≈ 3 and 

n(H2)/n(Si) ≈ 0.5, which can be explained by concurrent etching along both the valence 4 and valence 2 

paths. At early times no nanoporous Si was formed in the presence of Pd. Therefore, electropolishing 

was the dominant valence 4 process at early times and no nanoporous Si exhibiting visible PL was 

formed. At long times, the surface became rough. The Pd nanoparticles continued to catalyze 

electropolishing in their vicinity. However, ridges removed from the Pd nanoparticles were subjected to 

slower conventional stain etching. This causes a mixed valence overall etch stoichiometry to be 

observed at long times. 

Metal Dependent Etch Mechanism 
How does the chemical identity of the metal change the stoichiometry and, therefore, the mechanism 

of the reactions involved in metal assisted etching? The hole injection step is what controls the rate and 

this step is, in turn, controlled by the electronic structure of the metal and the metal/Si interface. 

Kolasinski [68] has recently calculated the band bending inherent to the metal/Si interface for Ag, Au, Pt 

and Pd. It is commonly proposed in the literature that holes injected by the oxidant into the metal diffuse 
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from the metal into the Si. Etching then occurs according to the three pathways (current doubling, 

current quadrupling and electropolishing) delineated above once the hole has been injected into Si. 

First, the conventional explanation is contradicted by the fact that hole injection occurs primarily at 

the Fermi level of the metal and that the Fermi energy of the metal lies above the valence band 

maximum of Si. Since holes relax to the top of a band, there is no driving force for them to leave the 

metal. Furthermore, the band bending is such that for none of the four metals is the hole more stable in 

the Si than either in the metal or at the metal/Si interface. Second, the conventional mechanism does not 

explain why an etch track forms below the metal nanoparticle (a region not exposed to the solution) but 

por-Si forms away from the nanoparticle. Third, it does not explain why electropolishing, which is 

required to form an etch track, occurs next to the nanoparticle while por-Si formation occurs remotely 

from the nanoparticle. 

The formation of both etch track pores and porous Si away from the metal particles requires that 

etching be made "nonlocal," that is, that it must occur not only at the location of the metal nanoparticle 

but also remotely. The work of Chiappini et al. [69] and Geyer et al. [70,71] addressed the need for 

nonlocal etching by considering the dissolution and redeposition of the metal. Dissolution and 

redeposition is well documented for Ag; however, it is not evident for Au, Pd and Pt [9] when HOOH is 

used as the oxidant. Furthermore, because of the lower electrochemical potential of VO2
+, application of 

the Nernst equation shows that Au cannot be dissolved and Pt can only be minimally dissolved when 

VO2
+ is used as the oxidant. Since both Ag and Au exhibit the same stoichiometry, it appears either (1) 

that dissolution and redeposition do not play a role, or (2) that dissolution and redeposition do not alter 

the mechanism of the etching processes and are not essential for local and nonlocal etching. 

Kolasinski [68] has proposed that it is the polarization induced by an excess of holes on the metal 

and/or at the metal/Si interface that causes etching. A charge imbalance caused by hole injection into the 

metal nanoparticle turns the nanoparticle into a localized power supply. This model requires a detailed 
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calculation of the charge distribution at the metal/Si interface and its screening by the metal 

nanoparticle, the Si bulk and the solution. Nonetheless, the introduction of metal-dependent interface 

electronic structure and the concomitant electric field distribution in its vicinity have several appealing 

features to explain metal assisted etching in general and metal-dependent etch mechanisms. 

A charged metal nanoparticle produces an electric field that drops in strength as distance from the 

nanoparticle increases. Therefore, the effective electric field near the nanoparticle can be in the 

electropolishing regime, while further away the polarization corresponds to the por-Si formation regime. 

Thus, nanoporous Si can be formed remotely from the nanoparticle, which will facilitate etchant 

transport to the metal/Si interface, which then allows electropolishing to form the etch track of the metal 

nanoparticle. The balance between por-Si formation and electropolishing depends on the exact nature of 

the metal/Si electronic structure and the charge imbalance that it supports on the nanoparticle. Therefore, 

the stoichiometry of the etch reactions should unsurprisingly depend on the chemical identity of the 

metal. The reactivity of the various metals might also depend on the size and structure of the metal 

nanoparticles. A systematic study of reaction rates and stoichiometries would be required to determine 

the detailed influence of nanoparticle size and structure. 

Conclusion 
The stoichiometry of etching in V2O5 + HF depends on the metal used as a catalyst. The presence of 

Ag and Au nanoparticles causes etching to exhibit molar ratios of roughly 2:1 for n VO2
+( ) n Si( )  and 

approximately 1:1 for n H2( ) n Si( ) . These stoichiometries are the same as those exhibited by stain 

etching in the absence of metals. The photoluminescence and structure of these films is different from 

films produced in the absence of the catalyst; nonetheless, the mechanism of etching is the same. Put 

differently, the spatial character of etching is different with and without the presence of Ag or Au, but 

the chemistry itself does not change. 
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Etching in the presence of Pd and Pt nanoparticles exhibits stoichiometries that differ from Ag and 

Au as well as from each other. For Pt, n(VO2
+)/n(Si) ≈ 4 and n(H2)/n(Si) ≈ 0. Pd etches initially with the 

same stoichiometry as Pt; however, whereas etching with Pt creates brightly photoluminescent 

nanoporous Si, initial etching with Pd does not. Therefore, Pt catalyzed etching is dominated by current-

quadrupling etching whereas Pd catalyzed etching is dominated by electropolishing. The introduction of 

a good hydrogen recombination catalyst (Pt and Pd) as opposed to a poor hydrogen recombination 

catalyst (e.g. Ag and Au) changes the mechanism of etching as compared to stain etching. The 

dependence of the etch mechanism and the balance between valence 2 and valence 4 processes is 

ascribed to the dependence of the electronic structure of the metal/Si interface (and the resulting 

polarization of the surrounding Si) on the chemical identity of the metal and the charge imbalance 

created by hole injection by the oxidant into the metal. 

The HOOH + HF system is inherently more nonlinear and not kinetically well behaved. This is caused 

by much greater sensitivity to reaction conditions (e.g. amount and structure of metal deposited, 

temperature, composition including the concentrations of reaction products, specific adsorption leading 

to dependence of reaction rates on surface coverages rather than solution concentrations directly, etc.) 

and the interference of competing reactions involving H2, O2, H2O and HOOH. 
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Figure Captions 
 

Figure 1. Secondary electron SEM micrographs and particle size distributions for (a, b) Ag, (c, d) Pd, (e, 

f) Pt and (g, h) Au deposited galvanically on Si chunks. The distributions represent a minimum of 250 

measurements of particle/cluster diameters in each case. 

Figure 2. Photoluminescence spectra acquired with excitation at 350 nm. Both samples had Pt 

nanoparticles deposited prior to etching. The PL from the HOOH + HF etched sample is clearly red 

shifted and much broader as well as less intense than the PL from the sample etched in V2O5 + HF. 

Figure 3. SEM micrograph of Si chunk before (a) and after (b) Ag MAE. (c) A TEM micrograph of a 

FIB lifted section after Ag MAE revealing parallel nanopores below the irregular surface of the Si 

chunk. V2O5 dissolved in HF(aq) was used as the etchant. 

Figure 4. Absorbance data indicates that both the disappearance of VO2
+ and the appearance of VO2+ 

follow first order kinetics. This example is for etching in a V2O5 + HF solution. The Si surface has had 

Pt nanoparticles deposited on it prior to etching. Similar pseudo-first-order behavior is found for Ag, Au 

and Pd metal assisted etching in V2O5 + HF. 

Figure 5. H2 evolution during the metal assisted etching of Si in V2O5 + HF solution. H2 is produced 

according to pseudo-first-order kinetics. (a) Ag/Si. (b) Pt/Si. (c) Pd/Si. In each case the pressure is 

measured from before the stopper is placed on the reaction vessel (indicated by sudden jump in pressure) 

until the stopper is removed (indicated by the sudden drop). 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Kolasinski et al. Stoichiometry of Metal Assisted Etching 24 

 
Table 
 

Table 1. Stoichiometric coefficients and pseudo-first order rate constants for etching in V2O5 + HF 

solutions. V/Si = moles VO2
+ consumed / moles Si etched. H2/Si = moles H2 evolved / moles Si etched. 

kV is the rate constant for VO2
+ consumption. kH2 is the rate constant for H2 evolution. Stain refers to 

etching in the absence of metal nanoparticles. 

 V/Si H2/Si kV(25°C) / s–1 g–1 kH2(25°C) / s–1 g–1 

Stain 1.98±0.13 1.01±0.08 (4.0±1.2) × 10–5 (1.9±0.8) × 10–5 

Ag 2.1±0.4 0.89±0.03 (2.1±0.8) × 10–4 (9±3) × 10–5 

Au 2.0±0.2 0.94±0.02 (1.8±0.4) × 10–4 (9±2) × 10–5 

Pd 3.0±0.5* 0.51±0.09* (2.1±0.1) × 10–4 (7.2±1.2) × 10–5* 

Pt 3.9±0.3 0.2±0.2 (2.1±0.1) × 10–4 (4±4) × 10–5 

*These values are evaluated at long times. 
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