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BIOADHESION IN CAULERPA MEXICANA (CHLOROPHYTA): RHIZOID-SUBSTRATE
ADHESION1

Wayne R. Fagerberg 2, Jennifer Towle

Department of Molecular Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, USA

Clinton J. Dawes

Department of Biology, University of South Florida, Tampa, Florida 33620, USA

and Anne Böttger

Department of Biology, West Chester University, West Chester, Pennsylvania 19383, USA

The attachment of the psammophytic alga Caul-
erpa mexicana Sond. ex Kütz., a coenocytic green
alga, to crushed CaCO3 particles was examined uti-
lizing the scanning electron microscope and fluores-
cently tagged antivitronectin antibodies. Plants
attached to the substrate through morphologically
variable tubular rhizoidal extensions that grew from
the stolon. In this study, we describe two means of
attachment: (i) the rhizoid attachment to limestone
gravel by thigmoconstriction, where tubular exten-
sions of the rhizoid wrapped tightly around the sub-
strate and changed morphology to fit tightly into
crevices in the limestone, and (ii) through adhesion
pads that formed in contact with the limestone gran-
ules. Flattened rhizoidal pads were observed to
secrete a fibrillar material that contained vitronec-
tin-like proteins identified through immunolocializa-
tion and that facilitated binding of the rhizoid to
the substrate.

Key index words: biofouling; Caulerpa; coenocytic
green algae; psammophytic alga; Q-dots; rhizoid
attachment; thigmotropic; vitronectin-like
proteins

Abbreviations: B, blade; DMP, 2,2 dimethoxypro-
pane; FM, fibrillar material; G, gravel; HEPES,
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid;
P, adhesion pad; R, rhizoid; S, stolon-like stipe;
Vn, vitronectin; Vn-C, vitronectin-like proteins
Caulerpa

Bioadhesion is almost universal among prokary-
otic and eukaryotic organisms and involves a variety
of biocomposites that facilitate cell-to-cell and cell-
to-non-cell adhesion (Vreeland and Epstein 1996).
In most macroalgae, attachment to the substrate is
essential for plants to grow, reproduce, and to
invade new aquatic habitats (Norton and Mathieson

1983, Wetherbee et al. 1998). Caulerpa, a tropi-
cal ⁄ subtropical coenocytic, acellular genus of green
algae in the phylum Chlorophyta and order Bryopsi-
dales, is one of a number of psammophytic (rhizo-
phytic) green algal genera that can be a significant
component of the marine communities it inhabits
in Florida (Dawes and Mathieson 2008). The rhi-
zoids of Caulerpa, Udotea, Halimeda, and other rhizo-
phytic green algal genera usually anchor in
unconsolidated sediments such as sand and mud
(Dawes 1988) and function in nutrient uptake
(Williams 1984, Chisholm et al. 1996) similar to the
roots of seagrasses (Littler et al. 1988). Little is
known about the importance of psammophytic sea-
weeds in terms of productivity. However, their bio-
mass and that of associated drift algae can reach
85% of the total biomass in subtropical seagrass
communities and can equal or surpass the total
organic mass of the seagrasses distributed on the
west coast of Florida (Dawes et al. 1985, 2004, Mattson
2000). Coenocytic species of Caulerpa, Udotea, and
Halimeda also serve in a facultative role in succession
of seagrass communities (Williams 1990). One mem-
ber of the genus Caulerpa, C. taxifolia, is an invasive
plant that has displaced the seagrass Posidonia ocea-
nica in the Mediterranean (Boudouresque et al.
1995, de Villele and Verlaque 1995) and is an inva-
sive species in Australia (Millar 2004) and southern
California (Jousson et al. 2000).

Like other species of Caulerpa, the acellular
C. mexicana Sonder ex Kützing (Vroom and Smith
2003, Fagerberg et al. 2010) and C. prolifera (Dawes
and Rhamstine 1967, Dawes and Barilotti 1969) lack
internal cell walls or plasma membranes that sepa-
rate individual nuclei. The stolons of some Caulerpa
species can exceed 1 m in length (e.g., C. ashmeadii),
and most have erect blades, horizontal stolon-like
stipes, and downward-growing rhizoids that branch,
penetrate the sediments, and bind to particles
(Jacobs 1994). To deal with the aquatic environ-
ment, various types of substrata and the physical
characteristics of water itself (e.g., water motion,
density) necessitate rapid attachment of plants to
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the substrate (Dawes 1988). Caulerpa and other mar-
ine organisms have evolved a variety of bioglues or
algal adhesives with unique qualities that function
in attachment to deal with these conditions and
habitats (Comyn 1981). Many of these bioglues have
generated considerable commercial interest because
of their role in biofouling and the potential for
development of these adhesives into effective glues
that could be used in the marine environment (Levi
and Friedlander 2004).

In eukaryotes, not only cell-to-substrate but also
cell-to-cell adhesion events are mediated by a group
of extracellular matrix molecules often consisting of
glycoproteins (Diamond and Springer 1994, Yamada
and Geiger 1997). These molecules may be
anchored directly or indirectly to integrin proteins
in the plasma membrane to form the cell-to-sub-
strate attachment and are, in turn, often linked to
components of the cytoskeleton (Hay 1991, Wether-
bee et al. 1998). Reports of macroalgal adhesion
describe a carbohydrate-glycoprotein-containing
mucilage present on the adhesive surface of cells or
on the attachment structure (Fletcher and Callow
1992). Acidic carbohydrates and glycoproteins have
been located in the outermost layer of the extracel-
lular matrix in rhizoids and holdfasts of several mac-
roalgae (Vreeland et al. 1998). The brown algal
genus Fucus develops adhesion sites between rhizoid
and substratum that include the highly sulfated
fucan polysaccharide fucoidan (F2) and a protein
containing heparin-binding epitopes, similar to
those of human vitronectin (Quatrano et al. 1991,
Wagner et al. 1992, Shaw and Quatrano 1996).
These epitopes appeared to be required for adhe-
sion and are localized at the attachment site (Quatr-
ano et al. 1991, Wagner et al. 1992, Shaw and
Quatrano 1996). The F2-bound protein appears to
be secreted into the cell wall at the growth site
(Wetherbee et al. 1998). Vitronectin proteins are
part of the extracellular matrix in animal systems
(Diamond and Springer 1994, Yamada and Geiger
1997) and have been identified in a number of
plant species (Zhu et al. 1994). These proteins have
been implicated in pollen tube movement, bacte-
ria ⁄ plant interactions, extracellular adhesion, bind-
ing of the plasma membrane to the cell wall
(Sanders et al. 1991, Zhu et al. 1994), and substrate
adhesion in the coenocytic green alga Caulerpa (Levi
and Friedlander 2004).

Caulerpa adheres to the substrate through its rhi-
zoidal system. Rhizoids are remarkable because they
can arise from all parts of the plant (Friedlander
et al. 2006) and attach to a wide variety of wet
unconsolidated substrates under constant strong
physical forces from currents and wave action.
These substrates include clay sand, limestone, and
smooth surfaces including glass surfaces (Levi and
Friedlander 2004). Levi and Friedlander (2004)
reported finding vitronectin-like proteins in C. prolifera,
which they postulated could act as a bioglue

attaching the rhizoids to the substrate for this spe-
cies. Levi and Friedlander (2004) also demonstrated
that the rhizoids of C. prolifera produce two approxi-
mately 60–70 Kd polypeptides with heparin-binding
domain epitopes (termed Vn-Cs) similar to human
vitronectin.

The current study addresses two questions associ-
ated with the presence of vitronectin-like proteins in
C. mexicana: (i) Are vitronectin-like proteins distrib-
uted in both the adhesion pads of attached and
nonattached rhizoids? (ii) Are vitronectin-like pro-
teins found elsewhere in the plant other than at
sites of attachment?

MATERIALS AND METHODS

Collection and culture. C. mexicana collections from the
Florida Keys were purchased from the Gulf Specimen Marine
Lab (Panacea, FL, USA) and taken from jetties in south Tampa
Bay (27�35¢31¢¢ N, 82�36¢01¢¢ W). All collections were shipped
overnight to the University of New Hampshire. Samples were
grown at 22�C in 57 L culture tanks with a crushed limestone
bed (granules, 2–4 mm in diam.) at a salinity of 35–40 ppt
(Instant OceanTM, Aquarium Systems Inc., Mentor, OH, USA).
All cultures were supplemented with 15 mL of 10 mM sodium
nitrate and 50 lM potassium phosphate nutrient solution on a
weekly basis. Experimental plants were cultured for � 1 month
prior to fixation to allow acclimation to the new environment
and grown under 14:10 light:dark at � 100 lmols pho-
tons Æ m)2 Æ s)2.

Preparation and fixation. Plant regions to be examined were
double pinched to form wound plugs (Friedlander et al. 2006,
Fagerberg et al. 2010), then bisected between the induced
wound plugs producing 15 mm pieces. Rhizoids were removed
intact along with the CaCO3 substrate to which they were
attached. Tissues were fixed in Karnovsky’s fixative (Dawes
1988) buffered with 0.2 M HEPES [4-(2-hydroxyethyl)-1-pipe-
razineethanesulfonic acid] buffer made up in 160 ⁄ 00 sea water
(pH 7.4) for 4 h, then dissected into 5 mm pieces and fixed for
an additional 2 h. Tissues were then rinsed with the same
buffer and used as whole mount or dehydrated in a graded
ethanol series for embedding in polyacrylate resin (Ted Pella

TM

,
Redding, CA, USA).

Attached rhizoids were carefully removed from the lime-
stone gravel, and pliers were used to crush the attached
limestone gravel into small (1–2 mm) pieces. Dissecting nee-
dles were used to gently separate the attached rhizoid ⁄ adhe-
sions pad from the gravel. Adhesion pads were then placed in
1% acetic acid solution for 3–4 h to dissolve away the CaCO3

substrate.
Embedding: Following fixation and dissection, some tissues

were embedded in resin for light microscopic study, whereas
others were set aside as whole mounts. Embedded tissues were
dehydrated through a series of ethanol rinses up to 100%, then
placed in acidified 2,2 dimethoxypropane (DMP) overnight.
Tissues were rinsed in 100% ethanol twice for 20–30 min, and
infiltrated with a 50% ethanol ⁄ 50% polyacrylic resin mixture
for 2 h on a rotator followed by two more changes in 100%
polyacrylic resin, (overnight and 2 h, respectively). Tissues
were placed into gel capsules with 100% polyacrylic resin and
polymerized overnight in a 60�C oven. Tissue blocks were
trimmed, sectioned, and mounted on glass microscope slides.

Immunolocalization: Vitronectin-like proteins were localized
using anti-vitronectin monoclonal antibodies (Invitrogen,
Carlsbad, CA, USA) directly conjugated to quantum dots
(Q-dots 655tm Invitrogen). Fixed whole mounts and sections of
C. mexicana were permeabilized in equal amounts of methanol
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and acetone or with PBS containing 0.5% Triton X-100.
Undifferentiated background staining was blocked using PBS
containing 0.05% Triton X-100 and 2% BSA. Conjugated Q
dot-vitronectin antibodies were applied in different concentra-
tion levels: 1:50, 1:100, and 1:200 in PBS and incubated in a
hydration chamber 24–96 h for whole mounts and slides.
Whole mounts and slides were rinsed with PBS and examined
on the Zeiss Axioplan II microscope with epifluorescence.
Photographs were taken with an AxioCam MR Camera and
AxioVision 4.3 software (Carl Zeiss Inc., Thornwood, NJ, USA).

Negative antibody controls. Background staining was reduced
by preblocking the tissues with BSA, and autofluorescence was
checked in tissues that were not exposed to anti-vitronectin Q
dot conjugates. Tissues were also exposed to solutions contain-
ing Q-dots but no antibodies against vitronectin and examined
with a fluorescence microscope.

RESULTS

C. mexicana attached to the substrate by branched
tubular outgrowths from the stipe called rhizoids
(Fig. 1). Rhizoids were observed attached to the sub-
strate through two distinct processes: (i) Thigmo-
constriction involved the rhizoid segment wrapping
tightly around irregularities and crevices in the sub-
strate particles (Fig. 2a). The constricting elements
of the rhizoid were tightly appressed to the contours
and irregularities of the gravel particles (G), and
often their morphology was distorted to match the
shape of the indentation in the substrate particle
(Fig. 2a). (ii) The rhizoid tips formed an adhesion
pad with associated fibrous adhesion material
(Fig. 2, b–d). Adhesion pads formed when rhizoid
tips came into contact with the substrate and the
tubular rhizoid flattened to form a pad. These pads
were amorphously shaped and appeared to provide
increased surface area for adhesion (Fig. 2b).

Large amounts of fibrous material occurred at
the tips of attached adhesive pads (Fig. 2, c and d)
and bound readily to antibodies against human
vitronectin (Vn) conjugated with Q-dots

TM

(Fig. 3, a–d).
This material corresponded to the fibrous material

observed with SEM (Fig. 2, c and d). Compared to
rhizoids that had developed adhesion pads, nonat-
tached rhizoids and thigmoconstricted rhizoids did
not contain significant amounts of Vn-like protein
based on the low level of Vn antibody binding
(Fig. 4a). Blades and other parts of the plant also
showed no external Vn antibody binding (Fig. 4b).

DISCUSSION

Psammophytic (rhizophytic) green algae in the
coenocytic green algal order Bryopsidales anchor in
soft sediments by means of individual rhizoidal clus-
ters as in species of Caulerpa or by a massive rhizoi-
dal holdfast as found in the genera Avrainvillea,
Cladocephalus, Halimeda, Penicillus, Rhipocephalus, or
Udotea in Florida (Dawes and Mathieson 2008). In
both groups of coenocytic seaweeds, the rhizoidal
system forms densely branched holdfasts that bind
to large amounts of particulate sediment (Multer
and Votava 1992, Bedinger and Bell 2006). The
fine, colorless rhizoids are siphonous extensions of
the thallus that not only anchor the plant and stabi-
lize sediments, but also function in nutrient uptake,
as shown for C. cupressoides (Williams 1984) and
C. taxifolia (Chisholm et al. 1996), and thus are simi-
lar to the function of marine angiosperm roots (Littler
et al. 1988).

The highly branched, morphologically variable
rhizoids of Caulerpa sp. (Fig. 1) penetrate the sub-
strate, attach the plant to the rocks and sand, and
are the least studied part of the plant (Friedlander
et al. 2006, Fagerberg et al. 2010). Considerable
progress has recently been made in our understand-
ing of substrate attachment in several animal and
plant systems, although no attachment process has
been fully characterized (Kamino et al. 2000, Wiege-
mann 2005). Two methods of attachment by C. mexi-
cana rhizoids were described in this study:
thigmoconstriction (Fig. 2a) and pad adhesion
(Fig. 2, b–d).

Thigmotropic responses have been studied and
described for land plants (Esmon et al. 2005).
These responses involve membrane-bound touch
receptors, Ca2 + signal cascades, unequal growth
responses, and changes in cell wall elasticity (Esmon
et al. 2005). It is likely that many of those facets are
involved in the thigmotropic response of Caulerpa.
However, the response mechanisms have not yet
been described in this plant. In the thigmotropic
response of Caulerpa, there is morphological remod-
eling of the rhizoid to fit more precisely the surface
of the object to which the plant is attaching
(Fig. 2a), which involves a localized change in cell
wall plasticity. The mechanism(s) for localized
increases in cell wall plasticity have not been investi-
gated for Caulerpa sp. and whether they follow mod-
els described for vascular plant wall softening
(VanVolkenburgh 1999, Cosgrove et al. 2002) is not
known.

FIG. 1. Habit photograph of Caulerpa mexicana showing blades
(B), stolon-like stipe (S), and downward-growing rhizoids (R).
Scale bar = 5.0 mm.
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The formation of adhesion pads also involves
localized morphological remodeling (Fig. 2b),
which likely follows similar pathways to that of the
thigmotropic remodeling. Fibrous material pro-
duced by the adhesion pads bound vitronectin anti-
bodies, indicating that vitronectin-like proteins were
part of the adhesion material, as surmised by Levi

and Friedlander (2004). Other components are
likely present as well, such as those described in
other algal adhesion systems (Quatrano et al. 1991,
Fletcher and Callow 1992, Wagner et al. 1992, Shaw
and Quatrano 1996, Vreeland and Epstein 1996).
Most reports of macroalgal adhesion describe a muci-
lage-containing carbohydrate ⁄ glycoprotein adhesive

(a)

(c) (d)

(b)

FIG. 2. Scanning electron micro-
graphs of rhizoids of Caulerpa
mexicana. (a) A thigmotropic
attachment by a rhizoid (R) to a
gravel particle (G) shows tightly
appressed rhizoid filaments (R)
following the contours in the par-
ticle. Scale bar = 100 lm. (b)
Sites of adhesion pad formation
(arrows) on gravel particle.
R = Rhizoid. Scale bar = 10 lm.
(c) The base of an adhesion pad
consists of filamentous material
(FM), which adheres to the sub-
strate surface. Scale bar = 10 lm.
(d) The adhesion pad base has a
central clear area (P) and a
peripheral area of filamentous
material (FM). Scale bar = 10 lm.

(a) (c) (d)(b)

FIG. 3. (a–d) Light micrographs consisting of an overlay of a bright-field and fluorescent micrographs of adhesion pads of rhizoids (R)
showing fibrillar material (dark material, arrowheads) and location of clusters (arrows) of vitronectin (Vn)-Qdot binding. Scale
bars = 100 lm.

(a) (b)

FIG. 4. (a) Bright-field micrograph and fluorescent overlay of a rhizoid (R) showing a thigmoconstrictive attachment site (arrow). Note
no detectable Vn-Qdot binding. Scale bar = 100 lm. (b) The bright-field micrograph and fluorescent overlay of a blade tip (B) showing
no detectable binding of Vn-Qdot antibodies. Scale bar = 1 mm.
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present on the surface of cells of the attachment
structure (Fletcher and Callow 1992). Acidic carbo-
hydrates and glycoproteins were located in the out-
ermost layer of the extracellular matrix in rhizoids
and holdfasts of several macroalgae (Vreeland et al.
1998). Following initial adhesion, algae may eventu-
ally become tightly bound to the substrate by a
range of processes involving the complex extracellu-
lar polymeric substances or extracellular matrix,
including cross-linking mechanisms that have been
proposed for brown algae (Wang et al. 1997, Wust-
man et al. 1997, Vreeland et al. 1998). Secondary
adhesion may enhance the initial binding through a
number of common processes, including a fiber-
phenolic-catalyst mechanism that cross-links extra-
cellular matrix components, including those of the
adhesion complex (Vreeland and Epstein 1996,
Wang et al. 1997, Wustman et al. 1997, Vreeland
et al. 1998). It is not clear whether or not those sec-
ondary binding reactions are features of rhizoid
adhesion in C. mexicana.

In summary, we describe two types of attachment
by the rhiozids of C. mexicana, thigmotropic binding
and production of a vitronectin-like carbohy-
drate ⁄ glycoprotein adhesive. In a number of cases,
we observed both types of attachment on the same
rhizoidal filament as well as single filaments utilizing
only one or the other type. We did not find vitro-
nectin present in regions of the plant where attach-
ment did not occur.

The authors thank the Undergraduate Research Opportuni-
ties Program (UROP) University of New Hampshire for sup-
port to Jennifer Towle for this project and Dr. Charles
Walker (UNH) for the use of the Zeiss Axioplan microscope.
Partial funding was provided by the New Hampshire Agricul-
tural Experiment Station. This is Scientific Contribution
number 2453.
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