On a class of backward McKean-Vlasov stochastic equations in Hilbert space: Existence and convergence properties

Nazim I. Mahmudov
Eastern Mediterranean University - Turkey
Mark A. McKibben
West Chester University of Pennsylvania, mmckibben@wcupa.edu

Follow this and additional works at: http://digitalcommons.wcupa.edu/math_facpub
Part of the Partial Differential Equations Commons

Recommended Citation

Mahmudov, N. I., \& McKibben, M. A. (2007). On a class of backward McKean-Vlasov stochastic equations in Hilbert space: Existence and convergence properties. Dynamic Systems and Applications, 16, 643-664. Retrieved from http://digitalcommons.wcupa.edu/ math_facpub/7

Elsevier Editorial System(tm) for Nonlinear Analysis Series A: Theory, Methods \& Applications

Manuscript Draft

Manuscript Number: NA-D-05-00322R1

Title: On Backward Stochastic Evolution Equations in Hilbert Spaces and Optimal Control

Article Type: Research Paper

Keywords: Stochastic evolution equations, stochastic backward equations, existence and uniqueness, maximum principle

Corresponding Author: Prof. Nazim I. Mahmudov,

Corresponding Author's Institution: Eastern Mediterranean University

First Author: Nazim I. Mahmudov

Order of Authors: Nazim I. Mahmudov; Mark A McKibben, Prof.Dr.

Abstract: In this paper a new result on the existence and uniqueness of the adapted solution to a backward stochastic evolution equation in

Hilbert spaces under non Lipschitz condition is established. The applicability of this result is then illustrated in a discussion of some concrete backward stochastic partial differential equation. Furthermore,
stochastic maximum principle for optimal control problems of stochastic systems governed by backward stochastic evolution equations in Hilbert spaces is obtained.

On Backward Stochastic Evolution Equations in Hilbert Spaces and Optimal Control

N.I. Mahmudov ${ }^{\text {a,* }}$ and M.A. McKibben ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Eastern Mediterranean University, Gazimagusa, TRNC, Mersin 10, TURKEY
${ }^{\mathrm{b}}$ Goucher College, Mathematics and Computer Science Department Baltimore, MD 21204, U S A

Abstract

In this paper a new result on the existence and uniqueness of the adapted solution to a backward stochastic evolution equation in Hilbert spaces under non Lipschitz condition is established. The applicability of this result is then illustrated in a discussion of some concrete backward stochastic partial differential equation. Furthermore, stochastic maximum principle for optimal control problems of stochastic systems governed by backward stochastic evolution equations in Hilbert spaces is obtained.

Key words: Stochastic evolution systems, semilinear systems, maximum principle

1 Introduction

Backward stochastic differential equations (BSDEs for short) have important applications in stochastic control and financial markets. Since the publication of the work of Pardoux and Peng ([13]), many papers have been dedicated to the study of backward stochastic differential equations. Several of these papers (see [7], [8], [9], [18], [17]) have been devoted to the case of BSDE in infinite dimensional spaces. Hu and Peng [7], [8] have considered two cases of semi-linear backward stochastic evolution equations (BSEEs): in the first case the existence of a so-called "mild solution" was established, and in the second case semi-linear backward stochastic partial differential equations (BSPDEs)

[^0]were considered. This kind of equation appears, for example, in the theory of optimal control and controllability for stochastic partial differential equations (see [2]). Maximum principles for stochastic control systems in infinite dimensional spaces were studied by Bensoussan [1], [2], Mahmudov [4], Hu and Peng [8]. Maximum principles for backward stochastic equations in finite dimensional space were studied by Dokuchaev and Zhou [5]. In the present paper, we first establish a result concerning the existence and uniqueness of a mild solution for a class of BSEEs with non-Lipschitzian coefficients in Hilbert space that generalizes some of the results in [7], [18], [8]. Secondly, we formulate a stochastic maximum principle for optimal control problems of stochastic systems governed by BSEEs in Hilbert spaces and solve a backward linear quadratic stochastic control.

2 Preliminaries

In this section we introduce notations needed to establish our results.
$\left(\Omega, \mathfrak{F}_{T}, \mathbf{P}\right)$ is a probability space together with a normal filtration $\left\{\mathfrak{F}_{t}, 0 \leq t \leq T\right\}$, X, U and E are three separable Hilbert spaces. W is a Q-Wiener process on $\left(\Omega, \mathfrak{F}_{T}, \mathbf{P}\right)$ with the linear bounded covariance operator such that $\operatorname{tr} Q<\infty$. We assume that there exists a complete orthonormal system $\left\{e_{k}\right\}$ in E, a bounded sequence of nonnegative real numbers λ_{k} such that $Q e_{k}=\lambda_{k} e_{k}$, $k=1,2, \ldots$ and a sequence $\left\{\beta_{k}\right\}$ of independent Brownian motions such that

$$
\langle w(t), e\rangle=\sum_{k=1}^{\infty} \sqrt{\lambda_{k}}\left\langle e_{k}, e\right\rangle \beta_{k}(t), e \in E, t \in[0, T]
$$

where $\langle\cdot, \cdot\rangle$ is the inner product in E. Moreover we assume that \mathfrak{F}_{t} is generated by $w(t)$. Let $L_{2}^{0}=L_{2}\left(Q^{1 / 2} E, X\right)$ be the space of all Hilbert-Schmidt operators from $Q^{1 / 2} E$ to X with the inner product $\langle\Psi, \Phi\rangle_{L_{2}^{0}}=\operatorname{tr}\left[\Psi Q \Phi^{*}\right]$. $L^{2}\left(\Omega, \mathfrak{F}_{T}, X\right)$ is the Hilbert space of all \mathfrak{F}_{T}-measurable square integrable variables with values in a Hilbert space $X . L_{\mathfrak{F}}^{2}([0, T], X)$ is the Hilbert space of all square integrable and \mathfrak{F}_{t}-adapted processes with values in X. We recall that f is said to be \mathfrak{F}_{t}-adapted if $f(t, \cdot): \Omega \rightarrow X$ is \mathfrak{F}_{t}-measurable, a.e. $t \in[0, T]$.

For any $\beta \in \mathbb{R}$, define $M_{\beta}[t, T]$ to be the Banach space

$$
M_{\beta}[t, T]=L_{\mathfrak{F}}^{2}(\Omega, C([t, T], X)) \times L_{\mathfrak{F}}^{2}\left([t, T], L_{2}^{0}\right)
$$

equipped with the norm

$$
\|(y, z)\|_{\beta, t}^{2}=\mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\|y(s)\|^{2}+\mathbf{E} \int_{t}^{T} e^{2 \beta s}\|z(s)\|^{2} d s
$$

Since $0<T<\infty$, all the norms $\|\cdot\|_{\beta, t}$ with different $\beta \in \mathbb{R}$ are equivalent. $M[0, T]=M_{0}[0, T]$ is the Banach space endowed with the norm

$$
\|(y, z)\|^{2}=\mathbf{E} \sup _{0 \leq s \leq T}\|y(s)\|^{2}+\mathbf{E} \int_{0}^{T}\|z(s)\|^{2} d s
$$

3 Backward Stochastic Evolution Equations

In this section we study the existence and uniqueness of solution to the following class of backward stochastic evolution equations in a Hilbert space X

$$
\left\{\begin{array}{l}
d y(t)=-[A y(t)+F(t, y(t), z(t))] d t-[G(t, y(t))+z(t)] d w(t) \tag{1}\\
y(T)=\xi
\end{array}\right.
$$

where $A: D(A) \subset X \rightarrow X$ is a linear operator which generates a $C_{0^{-}}$ semigroup $\{S(t), 0 \leq t \leq T\}$ on $X, F:[0, T] \times X \times L_{2}^{0} \rightarrow X$ and $G:$ $[0, T] \times X \rightarrow L_{2}^{0}$ are given measurable mappings, and $\xi \in L^{2}\left(\Omega, \mathfrak{F}_{T}, X\right)$.

Definition 1 A pair of adapted processes $(y, z) \in L_{\mathfrak{F}}^{2}(\Omega, C([0, T], X)) \times$ $L_{\mathfrak{F}}^{2}\left(\Omega \times[0, T], L_{2}^{0}\right)$ is a mild solution of (1) if for all $t \in[0, T]$ they satisfy

$$
\begin{aligned}
y(t) & =S(T-t) \xi+\int_{t}^{T} S(s-t) F(s, y(s), z(s)) d s \\
& +\int_{t}^{T} S(s-t)[G(s, y(s))+z(s)] d w(s), \quad P-a . s .
\end{aligned}
$$

3.1 Lipschitz case

In this subsection we study existence and uniqueness of mild solution to the equation

$$
\begin{align*}
y(t) & =S(T-t) \xi+\int_{t}^{T} S(s-t) F(s, y(s), z(s)) d s \\
& +\int_{t}^{T} S(s-t)[g(s)+z(s)] d w(s), \quad P \text {-a.s. } \tag{2}
\end{align*}
$$

We make the following assumptions on the function $F:[0, T] \times X \times L_{2}^{0} \rightarrow X$.
(L1) There exists an $L>0$ such that

$$
\|F(t, y, z)-F(t, \bar{y}, \bar{z})\| \leq L(\|y-\bar{y}\|+\|z-\bar{z}\|),
$$

for all $t \in[0, T], y, \bar{y} \in X, z, \bar{z} \in L_{2}^{0}$.
(L2) $F(\cdot, 0,0) \in L^{2}([0, T], X)$.
Lemma 2 For any $(f, g) \in L_{\mathfrak{F}}^{2}([0, T], X) \times L_{\mathfrak{F}}^{2}\left([0, T], L_{2}^{0}\right)$ the equation

$$
\begin{align*}
y(t) & =S(T-t) \xi+\int_{t}^{T} S(s-t) f(s) d s \\
& +\int_{t}^{T} S(s-t)[g(s)+z(s)] d w(s), \quad P \text {-a.s. } \tag{3}
\end{align*}
$$

has a unique solution in $M_{\beta}[0, T]$, and moreover

$$
\begin{align*}
& \mathbf{E} \sup _{0 \leq s \leq t} e^{2 \beta s}\|y(s)\|^{2}+\mathbf{E} \int_{t}^{T} e^{2 \beta s}\|z(s)\|^{2} d s \\
& \leq 24 M_{S}^{2}\left(e^{2 \beta T} \mathbf{E}\|\xi\|^{2}+\frac{1}{2 \beta} \int_{t}^{T} e^{2 \beta r} \mathbf{E}\|f(r)\|^{2} d r\right) \tag{4}\\
& +2 \mathbf{E} \int_{t}^{T} e^{2 \beta r}\|g(r)\|^{2} d r
\end{align*}
$$

where $M_{S}=\sup \left\{\|S(t)\|_{\mathfrak{B}(X)}, 0 \leq t \leq T\right\}$ and $\mathfrak{B}(X)$ is the space of bounded, linear operators on X.

Proof. Equation (3) is a linear BSEE. As such, by Lemma 2.1 [7], it admits a unique mild solution $(y, z) \in M_{\beta}[0, T]$ given by

$$
\begin{align*}
& y(t)=S(T-t) \mathbf{E}\left\{\xi \mid F_{t}\right\}+\int_{t}^{T} S(s-t) \mathbf{E}\left\{f(s) \mid \mathfrak{F}_{t}\right\} d s \tag{5}\\
& \widetilde{z}(t)=S(T-t) L(t)-\int_{t}^{T} S(s-t) K(t, s) d s, \quad z(t)=\widetilde{z}(t)-g(t) \tag{6}
\end{align*}
$$

where, by the martingale representation theorem (see [7], [4]) the processes $L \in$ $L_{\mathfrak{F}}^{2}\left([0, T], L_{2}^{0}\right)$ and $K \in L_{\overparen{F}}^{2}\left([0, T] \times[0, T], L_{2}^{0}\right)$ satisfy the following relations

$$
\begin{aligned}
\mathbf{E}\left\{\xi \mid \mathfrak{F}_{t}\right\} & =\mathbf{E} \xi+\int_{0}^{t} L(\theta) d w(\theta), \\
\mathbf{E}\left\{f(s) \mid \mathfrak{F}_{t}\right\} & =\mathbf{E} f(s)+\int_{0}^{t} K(s, \theta) d w(\theta) .
\end{aligned}
$$

Now, we estimate the solution (y, z) given by (5)-(6) in $M_{\beta}[t, T]$ for $\beta>0$. From (5) it follows that

$$
\begin{align*}
& \mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\|y(s)\|^{2} \leq 2 M_{S}^{2} \mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\left\|\mathbf{E}\left\{\xi \mid \mathfrak{F}_{s}\right\}\right\|^{2} \\
& +2 M_{S}^{2} \mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\left(\int_{s}^{T} \mathbf{E}\left\{\|f(r)\| \mid \mathfrak{F}_{s}\right\} d r\right)^{2}=I_{1}+I_{2} . \tag{7}
\end{align*}
$$

Standard computations yield:

$$
\begin{aligned}
I_{2} & \leq 2 M_{S}^{2} \mathbf{E} \sup _{t \leq s \leq T}\left(\mathbf{E}\left\{e^{\beta s} \int_{s}^{T}\|f(r)\| d r \mid \mathfrak{F}_{s}\right\}\right)^{2} \\
& \leq 2 M_{S}^{2} \mathbf{E} \sup _{t \leq s \leq T}\left(\mathbf{E}\left\{\sup _{t \leq \tau \leq T} e^{\beta \tau} \int_{\tau}^{T}\|f(r)\| d r \mid \mathfrak{F}_{s}\right\}\right)^{2} \\
& \leq 8 M_{S}^{2} \mathbf{E}\left(\sup _{t \leq \tau \leq T} e^{\beta \tau} \int_{\tau}^{T}\|f(r)\| d r\right)^{2} \\
& \leq 8 M_{S}^{2} \mathbf{E} \sup _{t \leq \tau \leq T} e^{2 \beta \tau} \int_{\tau}^{T} e^{-2 \beta r} d r \int_{\tau}^{T} e^{2 \beta r}\|f(r)\|^{2} d r \\
& \leq 8 M_{S}^{2} \mathbf{E} \sup _{t \leq \tau \leq T} e^{2 \beta \tau} \frac{1}{2 \beta}\left[e^{-2 \beta \tau}-e^{-2 \beta T}\right] \int_{\tau}^{T} e^{2 \beta r}\|f(r)\|^{2} d r \\
& \leq 8 M_{S}^{2} \frac{1}{2 \beta} \int_{t}^{T} e^{2 \beta r} \mathbf{E}\|f(r)\|^{2} d r .
\end{aligned}
$$

Consequently, by (7)

$$
\begin{equation*}
\mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\|y(s)\|^{2} \leq 8 M_{S}^{2} e^{2 \beta T} \mathbf{E}\|\xi\|^{2}+8 M_{S}^{2} \frac{1}{2 \beta} \int_{t}^{T} e^{2 \beta r} \mathbf{E}\|f(r)\|^{2} d r \tag{8}
\end{equation*}
$$

Next, we estimate z. We have

$$
\|\widetilde{z}(s)\|^{2} \leq 2 M_{S}^{2}\|L(s)\|^{2}+2 M_{S}^{2} \frac{e^{-2 \beta s}}{2 \beta} \int_{s}^{T} e^{2 \beta \theta}\|K(\theta, s)\|^{2} d \theta
$$

From here it follows that

$$
\begin{align*}
\mathbf{E} \int_{t}^{T} e^{2 \beta s}\|\widetilde{z}(s)\|^{2} d s & \leq 2 M_{S}^{2} \mathbf{E} \int_{t}^{T} e^{2 \beta s}\|L(s)\|^{2} d s \\
& +2 M_{S}^{2} \frac{1}{2 \beta} \mathbf{E} \int_{t}^{T} \int_{s}^{T} e^{2 \beta \theta}\|K(\theta, s)\|^{2} d \theta d s \\
& \leq 8 M_{S}^{2} e^{2 \beta T} \mathbf{E}\|\xi\|^{2}+2 M_{S}^{2} \frac{1}{2 \beta} \mathbf{E} \int_{t}^{T} \int_{0}^{\theta} e^{2 \beta \theta}\|K(\theta, s)\|^{2} d s d \theta \\
& \leq 8 M_{S}^{2} e^{2 \beta T} \mathbf{E}\|\xi\|^{2}+4 M_{S}^{2} \frac{1}{\beta} \int_{t}^{T} e^{2 \beta \theta} \mathbf{E}\|f(\theta)\|^{2} d \theta \tag{9}
\end{align*}
$$

The inequalities (8) and (9), together, imply that

$$
\begin{aligned}
& \mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\|y(s)\|^{2}+2 \mathbf{E} \int_{t}^{T} e^{2 \beta s}\|\widetilde{z}(s)\|^{2} d s \\
& \leq 24 M_{S}^{2}\left(e^{2 \beta T} \mathbf{E}\|\xi\|^{2}+\frac{1}{2 \beta} \int_{t}^{T} e^{2 \beta r} \mathbf{E}\|f(r)\|^{2} d r\right)
\end{aligned}
$$

which in turn implies (4).

Lemma 3 For any $(f, g) \in L_{\overparen{F}}^{2}([0, T], X) \times L_{\overparen{F}}^{2}\left([0, T], L_{2}^{0}\right)$, the associated mild solution of (3) satisfies the following estimate

$$
\begin{align*}
& \mathbf{E} \sup _{0 \leq s \leq t}\|y(s)\|^{2}+\mathbf{E} \int_{t}^{T}\|z(s)\|^{2} d s \\
& \leq 24 M_{S}^{2}\left(\mathbf{E}\|\xi\|^{2}+(T-t) \int_{t}^{T} \mathbf{E}\|f(r)\|^{2} d r\right)+2 \mathbf{E} \int_{t}^{T}\|g(r)\|^{2} d r . \tag{10}
\end{align*}
$$

Proof. See [7].
Theorem 4 BSEE (2) admits a unique solution $(y, z) \in M_{\beta}[0, T]$.
Proof. For any fixed $(\bar{y}, \bar{z}) \in M_{\beta}[0, T]$, it follows from (L2) that

$$
f(\cdot)=F(\cdot, \bar{y}(\cdot), \bar{z}(\cdot)) \in L_{\mathfrak{F}}^{2}([0, T], X) .
$$

By Lemma 2, the equation

$$
\begin{align*}
y(t) & =S(T-t) \xi+\int_{t}^{T} S(s-t) F(s, \bar{y}(s), \bar{z}(s)) d s \\
& +\int_{t}^{T} S(s-t)[g(s)+z(s)] d w(s), \quad P \text {-a.s. } \tag{11}
\end{align*}
$$

has a unique solution in $M_{\beta}[0, T]$.
Thus, the operator $\Phi: M_{\beta}[0, T] \rightarrow M_{\beta}[0, T]$ defined by

$$
\Phi(\bar{y}, \bar{z})=(y, z),
$$

where (y, z) is the solution of (11), is well-defined. Moreover, the inequality (4) implies that

$$
\begin{aligned}
& \|\Phi(\bar{y}, \bar{z})-\Phi(\widetilde{y}, \widetilde{z})\|_{0}^{2} \leq 12 M_{S}^{2} \frac{1}{\beta} \int_{0}^{T} e^{2 \beta s} \mathbf{E}\|F(s, \bar{y}(s), \bar{z}(s))-F(s, \widetilde{y}(s), \widetilde{z}(s))\|^{2} d s \\
& \leq 12 M_{S}^{2} L \frac{1}{\beta} \int_{0}^{T} e^{2 \beta s} \mathbf{E}\left(\|\bar{y}(s)-\widetilde{y}(s)\|^{2}+\|\bar{z}(s)-\widetilde{z}(s)\|^{2}\right) d s \\
& =12 M_{S}^{2} L \frac{1}{\beta} T\|(\bar{y}, \bar{z})-(\widetilde{y}, \widetilde{z})\|_{0}^{2} .
\end{aligned}
$$

We can choose $\beta>0$ large enough to get the contractivity of the operator Φ on $M_{\beta}[0, T]$, which in turn implies the existence and uniqueness of the solution to (2).

3.2 Approximation

We now construct an approximate sequence using a Picard-type iteration. Let $y_{0}(t)=0$, and let $\left\{y_{n}, z_{n}\right\}$ be a sequence in $L_{\mathfrak{F}}^{2}([0, T], X) \times L_{\mathfrak{F}}^{2}\left([0, T], L_{2}^{0}\right)$ defined recursively by

$$
\begin{align*}
y_{n}(t) & =S(T-t) \xi+\int_{t}^{T} S(s-t) F\left(s, y_{n-1}(s), z_{n}(s)\right) d s \\
& +\int_{t}^{T} S(s-t)\left[G\left(s, y_{n-1}(s)\right)+z_{n}(s)\right] d w(s) \tag{12}
\end{align*}
$$

on $0 \leq t \leq T$. We remark that by Theorem 4 the equation (12) has a unique solution $\left(y_{n}, z_{n}\right)$.

To state our main result, we impose the following assumptions on the functions F and G.
(N1) $F(\cdot, 0,0) \in L^{2}([0, T], X), G(\cdot, 0) \in L^{2}\left([0, T], L_{2}^{0}\right)$.
(N2) There exists an $l>0$ such that

$$
\begin{aligned}
\|F(t, y, z)-F(t, \bar{y}, \bar{z})\|^{2} & \leq \rho\left(\|y-\bar{y}\|^{2}\right)+l\|z-\bar{z}\|^{2} \\
\|G(t, y)-G(t, \bar{y})\|^{2} & \leq \rho\left(\|y-\bar{y}\|^{2}\right)
\end{aligned}
$$

for all $t \in[0, T], y, \bar{y} \in X, z, \bar{z} \in L_{2}^{0}$. Here ρ is a concave increasing function from $[0, \infty)$ to $[0, \infty)$ such that $\rho(0)=0, \rho(u)>0$ for $u>0$ and

$$
\int_{0^{+}} \frac{d u}{\rho(u)}=\infty
$$

Since ρ is concave and $\rho(0)=0$, there is a pair of positive numbers a and b such that

$$
\begin{equation*}
\rho(u) \leq a+b u \tag{13}
\end{equation*}
$$

for all $u \geq 0$. Therefore, under assumptions (N1) and (N2), $F(\cdot, y(\cdot), z(\cdot)) \in$ $L_{\mathfrak{F}}^{2}([0, T], X)$ and $G(\cdot, y(\cdot)) \in L_{\mathfrak{F}}^{2}\left([0, T], L_{2}^{0}\right)$, whenever $y(\cdot) \in L_{\mathfrak{F}}^{2}([0, T], X)$ and $z(\cdot) \in L_{\mathfrak{F}}^{2}\left([0, T], L_{2}^{0}\right)$.

Now we introduce some important constants used throughout the paper.

$$
\begin{align*}
C_{1} & =24 M_{S}^{2}\left(e^{2 \beta T} \mathbf{E}\|\xi\|^{2}+\frac{1}{2 \beta} \int_{0}^{T} e^{2 \beta s}\left(2\|F(s, 0,0)\|^{2}+2 a\right) d s\right) \\
& +2 \int_{0}^{T} e^{2 \beta s}\left(2\|G(s, 0)\|^{2}+2 a\right) d s, C_{1} \geq 4 a T \tag{14}\\
C_{2} & =24 M_{S}^{2} \frac{1}{\beta} b+4 b, \\
C_{3} & =\left(12 M_{S}^{2} \frac{1}{\beta}+2\right) e^{2 \beta T}, \quad C_{4}=C_{3} \rho\left(4 C_{1} \exp \left(C_{2} T\right)\right) .
\end{align*}
$$

Lemma 5 Under hypotheses (N1) and (N2), for all $0 \leq t \leq T$ and $n \geq 1$,

$$
\begin{align*}
& \mathbf{E}\left(\sup _{t \leq s \leq T} e^{2 \beta s}\left\|y_{n}(s)\right\|^{2}\right) \leq C_{1} \exp \left(C_{2}(T-t)\right) \tag{15}\\
& \quad \mathbf{E} \int_{t}^{T} e^{2 \beta s}\left\|z_{n}(s)\right\|^{2} d s \leq 2 C_{1}\left(1+C_{2}(T-t) \exp \left(C_{2}(T-t)\right)\right), \tag{16}
\end{align*}
$$

where C_{1} and C_{2} are both positive constants defined in (14).
Proof. It follows from Lemma 2 that

$$
\begin{align*}
& \mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\left\|y_{n}(s)\right\|^{2}+\mathbf{E} \int_{t}^{T} e^{2 \beta s}\left\|z_{n}(s)\right\|^{2} d s \\
& \leq 24 M_{S}^{2}\left(e^{2 \beta T} \mathbf{E}\|\xi\|^{2}+\frac{1}{2 \beta} \int_{t}^{T} e^{2 \beta r} \mathbf{E}\left\|F\left(r, y_{n-1}(r), z_{n}(r)\right)\right\|^{2} d r\right) \\
& +2 \mathbf{E} \int_{t}^{T} e^{2 \beta r}\left\|G\left(r, y_{n-1}(r)\right)\right\|^{2} d r . \tag{17}
\end{align*}
$$

Using hypotheses (N1) and (N2) with (13) yields

$$
\begin{aligned}
\left\|F\left(s, y_{n-1}(s), z_{n}(s)\right)\right\|^{2} & \leq 2\|F(s, 0,0)\|^{2}+2 a+2 b\left\|y_{n-1}(s)\right\|^{2}+2 l\left\|z_{n}(s)\right\|^{2} \\
\left\|G\left(s, y_{n-1}(s)\right)\right\|^{2} & \leq 2\|G(s, 0)\|^{2}+2 a+2 b\left\|y_{n-1}(s)\right\|^{2}
\end{aligned}
$$

Substituting these into (17) gives

$$
\begin{aligned}
& \mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\left\|y_{n}(s)\right\|^{2}+\mathbf{E} \int_{t}^{T} e^{2 \beta s}\left\|z_{n}(s)\right\|^{2} d s \\
& \leq 24 M_{S}^{2} e^{2 \beta T} \mathbf{E}\|\xi\|^{2} \\
& +24 M_{S}^{2} \frac{1}{2 \beta} \mathbf{E} \int_{t}^{T} e^{2 \beta s}\left(2\|F(s, 0,0)\|^{2}+2 a+2 b\left\|y_{n-1}(s)\right\|^{2}+2 l\left\|z_{n}(s)\right\|^{2}\right) d s \\
& +2 \mathbf{E} \int_{t}^{T} e^{2 \beta s}\left(2\|G(s, 0)\|^{2}+2 a+2 b\left\|y_{n-1}(s)\right\|^{2}\right) d s .
\end{aligned}
$$

Thus

$$
\begin{align*}
& \mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\left\|y_{n}(s)\right\|^{2}+\left(1-24 M_{S}^{2} \frac{1}{\beta} l\right) \mathbf{E} \int_{t}^{T} e^{2 \beta s}\left\|z_{n}(s)\right\|^{2} d s \\
& \leq C_{1}+C_{2} \mathbf{E} \int_{t}^{T} \sup _{s \leq r \leq T}\left(e^{2 \beta r}\left\|y_{n-1}(r)\right\|^{2}\right) d s, \tag{18}
\end{align*}
$$

where C_{1} and C_{2} are defined in (14). Choosing $\beta>0$ such that $1-24 M_{S}^{2} \frac{1}{\beta} l=\frac{1}{2}$, we obtain

$$
\sup _{1 \leq n \leq m} \mathbf{E}\left(\sup _{t \leq s \leq T} e^{2 \beta s}\left\|y_{n}(s)\right\|^{2}\right) \leq C_{1}+C_{2} \int_{t}^{T} \sup _{1 \leq n \leq m} \mathbf{E} \sup _{s \leq r \leq T}\left(e^{2 \beta r}\left\|y_{n-1}(r)\right\|^{2}\right) d s .
$$

An application of the Gronwall inequality now implies

$$
\sup _{1 \leq n \leq m} \mathbf{E}\left(\sup _{t \leq s \leq T} e^{2 \beta s}\left\|y_{n}(s)\right\|^{2}\right) \leq C_{1} \exp \left(C_{2}(T-t)\right)
$$

Since m was arbitrary, the inequality (15) follows. Finally it follows from (18) that for $\beta=48 M_{S}^{2} l$ we have

$$
\begin{aligned}
\mathbf{E} \int_{t}^{T} e^{2 \beta s}\left\|z_{n}(s)\right\|^{2} d s & \leq 2 C_{1}+2 C_{2} \int_{t}^{T} C_{1} \exp \left(C_{2}(T-s)\right) d s \\
& \leq 2 C_{1}\left(1+C_{2}(T-t) \exp \left(C_{2}(T-t)\right)\right)
\end{aligned}
$$

Lemma 6 Under hypotheses (N1) and (N2), there exists a constant $C_{3}>0$ defined in (14) such that

$$
\mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\left\|y_{n+m}(s)-y_{n}(s)\right\|^{2} \leq C_{3} \int_{t}^{T} \rho\left(\mathbf{E} \sup _{s \leq r \leq T} e^{2 \beta r}\left\|y_{n+m-1}(r)-y_{n-1}(r)\right\|^{2}\right) d s
$$

for all $0 \leq t \leq T$ and $n, m \geq 1$.
Proof. Applying Lemma 2 we have

$$
\begin{aligned}
& \mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\left\|y_{n+m}(s)-y_{n}(s)\right\|^{2}+\mathbf{E} \int_{t}^{T} e^{2 \beta s}\left\|z_{n+m}(s)-z_{n}(s)\right\|^{2} d s \\
& \leq 12 M_{S}^{2} \frac{1}{\beta} \mathbf{E} \int_{t}^{T} e^{2 \beta s}\left\|F\left(s, y_{n+m-1}(s), z_{n+m}(s)\right)-F\left(s, y_{n-1}(s), z_{n}(s)\right)\right\|^{2} d s \\
& +2 \mathbf{E} \int_{t}^{T} e^{2 \beta s}\left\|G\left(s, y_{n+m-1}(s)\right)-G\left(s, y_{n-1}(s)\right)\right\|^{2} d s \\
& \leq\left(12 M_{S}^{2} \frac{1}{\beta}+2\right) e^{2 \beta T} \mathbf{E} \int_{t}^{T} \rho\left(e^{2 \beta s}\left\|y_{n+m-1}(s)-y_{n-1}(s)\right\|^{2}\right) \\
& +12 M_{S}^{2} \frac{1}{\beta} \mathbf{E} \int_{t}^{T} e^{2 \beta s}\left\|z_{n+m}(s)-z_{n}(s)\right\|^{2} d s .
\end{aligned}
$$

For sufficiently large $\beta>0$ we have

$$
\begin{align*}
& \mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\left\|y_{n+m}(s)-y_{n}(s)\right\|^{2}+\left(1-12 M_{S}^{2} \frac{1}{\beta}\right) \mathbf{E} \int_{t}^{T} e^{2 \beta s}\left\|z_{n+m}(s)-z_{n}(s)\right\|^{2} d s \\
& \leq C_{3} \int_{t}^{T} \rho\left(\mathbf{E} \sup _{s \leq r \leq T} e^{2 \beta r}\left\|y_{n+m-1}(r)-y_{n-1}(r)\right\|^{2}\right) d s \tag{19}
\end{align*}
$$

Lemma 7 Under hypotheses (NI) and (N2), there exists a constant $C_{4}>0$
defined in (14) such that

$$
\mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\left\|y_{n+m}(s)-y_{n}(s)\right\|^{2} \leq C_{4}(T-t)
$$

for all $0 \leq t \leq T$ and for all $n, m \geq 1$.
Proof. By Lemmas 5 and 6 we have

$$
\begin{aligned}
\mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\left\|y_{n+m}(s)-y_{n}(s)\right\|^{2} & \leq C_{3} \int_{t}^{T} \rho\left(\mathbf{E} \sup _{s \leq r \leq T} e^{2 \beta r}\left\|y_{n+m-1}(r)-y_{n-1}(r)\right\|^{2}\right) d s \\
& \leq C_{3} \int_{t}^{T} \rho\left(4 C_{1} \exp \left(C_{2}(T-s)\right)\right) d s \\
& \leq C_{3} \rho\left(4 C_{1} \exp \left(C_{2} T\right)\right)(T-t)=C_{4}(T-t)
\end{aligned}
$$

The proof is complete.
Define

$$
\begin{aligned}
\varphi_{1}(t) & =C_{4}(T-t) \\
\varphi_{n+1}(t) & =C_{3} \int_{t}^{T} \rho\left(\varphi_{n}(s)\right) d s, n \geq 1 \\
\widetilde{\varphi}_{n, m}(t) & =\mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\left\|y_{n+m}(s)-y_{n}(s)\right\|^{2}, \quad n \geq 1, m \geq 1
\end{aligned}
$$

Lemma 8 There exists $0 \leq T_{1}<T$ such that for all $n, m \geq 1$

$$
\begin{equation*}
0 \leq \widetilde{\varphi}_{n, m}(t) \leq \varphi_{n}(t) \leq \varphi_{n-1}(t) \leq \cdots \leq \varphi_{1}(t) \quad \text { for all } t \in\left[T_{1}, T\right] \tag{20}
\end{equation*}
$$

Proof. We prove this lemma by induction in n.
By Lemma 7, we have

$$
\widetilde{\varphi}_{1, m}(t)=\mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\left\|y_{1+m}(s)-y_{1}(s)\right\|^{2} \leq C_{4}(T-t)=\varphi_{1}(t)
$$

By Lemma 6

$$
\begin{aligned}
\widetilde{\varphi}_{2, m}(t) & =\mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\left\|y_{2+m}(s)-y_{2}(s)\right\|^{2} \\
& \leq C_{3} \int_{t}^{T} \rho\left(\mathbf{E} \sup _{s \leq r \leq T} e^{2 \beta r}\left\|y_{1+m}(r)-y_{1}(r)\right\|^{2}\right) d s \\
& =C_{3} \int_{t}^{T} \rho\left(\widetilde{\varphi}_{1, m}(s)\right) d s \leq C_{3} \int_{t}^{T} \rho\left(\varphi_{1}(s)\right) d s=\varphi_{2}(t)
\end{aligned}
$$

We must show that there exists $T_{1}>0$ such that for all $t \in\left[T_{1}, T\right]$ the inequality

$$
\begin{equation*}
\varphi_{2}(t)=C_{3} \int_{t}^{T} \rho\left(C_{4}(T-s)\right) d s \leq C_{4}(T-t)=\varphi_{1}(t) \tag{21}
\end{equation*}
$$

holds.

To this end, note that this inequality holds provided that

$$
C_{3} \rho\left(C_{4}(T-t)\right) \leq C_{4}=C_{3} \rho\left(4 C_{1} \exp \left(C_{2} T\right)\right)
$$

or

$$
C_{3} \rho\left(4 C_{1} \exp \left(C_{2} T\right)\right)=C_{4}(T-t) \leq 4 C_{1} \exp \left(C_{2} T\right)=4 A
$$

On the other hand, this holds if

$$
C_{3}\{A+4 b A\}(T-t) \leq 4 A .
$$

Since $A=C_{1} \exp \left(C_{2} T\right) \geq C_{1} \geq 4 a T$ the above inequality holds if

$$
T-t \leq \frac{4}{C_{3}\left[\frac{1}{4 T}+4 b\right]} \leq \frac{4}{C_{3}\left[\frac{a}{A}+4 b\right]}
$$

Thus, (21) holds for any t satisfying

$$
T-t \leq \frac{4}{C_{3}\left[\frac{1}{4 T}+4 b\right]}
$$

Clearly, such t does not depend on the final value ξ. Thus, there exists $T_{1}>0$ such that

$$
\varphi_{2}(t) \leq \varphi_{1}(t)
$$

for all $t \in\left[T_{1}, T\right]$. Now, assume that (20) holds for some $n \geq 2$. Then, using the same inequalities as above yields

$$
\begin{aligned}
\widetilde{\varphi}_{n+1, m}(t) & \leq C_{3} \int_{t}^{T} \rho\left(\mathbf{E} \sup _{s \leq r \leq T} e^{2 \beta r}\left\|y_{n+m}(r)-y_{n}(r)\right\|^{2}\right) d s \\
& =C_{3} \int_{t}^{T} \rho\left(\widetilde{\varphi}_{n, m}(s)\right) d s \leq C_{3} \int_{t}^{T} \rho\left(\varphi_{n}(s)\right) d s=\varphi_{n+1}(t)
\end{aligned}
$$

for all $t \in\left[T_{1}, T\right]$. On the other hand, we have

$$
\varphi_{n+1}(t)=C_{3} \int_{t}^{T} \rho\left(\varphi_{n}(s)\right) d s \leq C_{3} \int_{t}^{T} \rho\left(\varphi_{n-1}(s)\right) d s=\varphi_{n}(t)
$$

for all $t \in\left[T_{1}, T\right]$. This completes the proof.
Theorem 9 Assume that (N1) and (N2) hold. Then, there exists a unique mild solution (y, z) to the equation (1).

Proof. Uniqueness: To show the uniqueness, let both (y, z) and $(\widetilde{y}, \widetilde{z})$ be
solutions of the equation (1). Then, Lemma 2 implies

$$
\begin{aligned}
& \mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\|y(s)-\widetilde{y}(s)\|^{2}+\mathbf{E} \int_{t}^{T} e^{2 \beta s}\|z(s)-\widetilde{z}(s)\|^{2} d s \\
& \leq 12 M_{S}^{2} \frac{1}{\beta} \int_{t}^{T} e^{2 \beta s}\|F(s, y(s), z(s))-F(s, \widetilde{y}(s), \widetilde{z}(s))\|^{2} d s \\
& +2 \mathbf{E} \int_{t}^{T} e^{2 \beta s}\|G(s, y(s))-G(s, \widetilde{y}(s))\|^{2} d s \\
& \leq C \int_{t}^{T} \rho\left(\mathbf{E} \sup _{s \leq r \leq T} e^{2 \beta r}\|y(r)-\widetilde{y}(r)\|^{2}\right) d s+12 M_{S}^{2} \frac{1}{\beta} \mathbf{E} \int_{t}^{T} e^{2 \beta s}\|z(s)-\widetilde{z}(s)\|^{2} d s
\end{aligned}
$$

Therefore, one can apply the Bihari inequality to (4) to obtain

$$
\mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\|y(s)-\widetilde{y}(s)\|^{2}=0 .
$$

So, $y(t)=\widetilde{y}(t)$ for all $0 \leq t \leq T$ almost surely. It then follows from (4) that $z(t)=\widetilde{z}(t)$ for all $0 \leq t \leq T$ almost surely as well. This establishes the uniqueness.

Existence: We claim that

$$
\begin{equation*}
\mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\left\|y_{n+m}(s)-y_{n}(s)\right\|^{2} \rightarrow 0, \text { for } \operatorname{all} T_{1} \leq t \leq T, \tag{22}
\end{equation*}
$$

as $n, m \rightarrow \infty$. Note that, by definition φ_{n} is continuous on $\left[T_{1}, T\right]$. Note also that for each $n \geq 1, \varphi_{n}(\cdot)$ is decreasing on $\left[T_{1}, T\right]$, and for each $t, \varphi_{n}(t)$ is a nonincreasing sequence. Therefore, we can define the function $\varphi(t)$ by $\varphi_{n}(t) \downarrow \varphi(t)$. It is easy to verify that $\varphi(t)$ is continuous and nonincreasing on $\left[T_{1}, T\right]$. By the definitions of $\varphi_{n}(t)$ and $\varphi(t)$ we get

$$
\varphi(t)=\lim _{n \rightarrow \infty} C_{3} \int_{t}^{T} \rho\left(\varphi_{n}(s)\right) d s=C_{3} \int_{t}^{T} \rho(\varphi(s)) d s
$$

for each $t \in\left[T_{1}, T\right]$. Since

$$
\int_{0^{+}} \frac{d u}{\rho(u)}=\infty
$$

the Bihari inequality implies $\varphi(t)=0$ for all $t \in\left[T_{1}, T\right]$. Consequently, $\lim _{n \rightarrow \infty} \varphi_{n}\left(T_{1}\right)=0$. By Lemma 8

$$
\begin{aligned}
\mathbf{E} \sup _{t \leq s \leq T} e^{2 \beta s}\left\|y_{n+m}(s)-y_{n}(s)\right\|^{2} & \leq \sup _{T_{1} \leq t \leq T} \widetilde{\varphi}_{n, m}(t) \\
& \leq \sup _{T_{1} \leq t \leq T} \varphi_{n}(t)=\varphi_{n}\left(T_{1}\right) \xrightarrow{n \rightarrow \infty} 0 .
\end{aligned}
$$

So, (22) must hold. Applying (22) to (19) we see that $\left\{y_{n}, z_{n}\right\}$ is a Cauchy (hence convergent) sequence in $M_{\beta}\left[T_{1}, T\right]$; denote the limit by (y, z). Now
letting $n \rightarrow \infty$ in (12) we obtain

$$
\begin{aligned}
y(t) & =S(T-t) \xi+\int_{t}^{T} S(s-t) F(s, y(s), z(s)) d s \\
& +\int_{t}^{T} S(s-t)[G(s, y(s))+z(s)] d w(s)
\end{aligned}
$$

on $\left[T_{1}, T\right]$. Since the value of T_{1} depends only on the function ρ, one can deduce by iteration the existence on $\left[T-k\left(T-T_{1}\right), T\right]$ for each k, and therefore the existence on the entire interval $[0, T]$.

The theorem has been proved.
As an illustration of the applicability of this general existence and uniqueness result, we consider examples of concrete backward stochastic partial differential equations.

Example A Let \mathcal{D} be a bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \mathcal{D}$. Consider the following initial boundary value problem.

$$
\begin{gather*}
\partial y(t, z)=\left(\Delta_{z} z(t, x)+F(t, x, y(t, x), z(t, x))\right) \partial t \\
+[G(t, x, y(t, x))+z(t, x)] d \beta(t) \text {, a.e. on }(0, T) \times \mathcal{D} \\
y(t, x)=0, \text { a.e. on }(0, T) \times \partial \mathcal{D}, \tag{23}\\
y(T, x)=\xi(T, x), \text { a.e. on } \mathcal{D},
\end{gather*}
$$

where $y:[0, T] \times \mathcal{D} \rightarrow \mathbb{R}, z:[0, T] \times \mathcal{D} \rightarrow L_{2}^{0}\left(\mathbb{R}^{N} ; L^{2}(\mathcal{D})\right) F:[0, T] \times \mathcal{D} \times \mathbb{R} \times$ $L_{2}^{0}\left(\mathbb{R}^{N} ; L^{2}(\mathcal{D})\right) \rightarrow \mathbb{R}, G:[0, T] \times \mathcal{D} \times \mathbb{R} \rightarrow L_{2}^{0}\left(\mathbb{R}^{N}, L^{2}(\mathcal{D})\right), \beta$ is a standard N-dimensional Brownian motion (equipped with a normal filtration $\left\{\mathfrak{F}_{t}\right\}$, and $\xi:[0, T] \times \mathcal{D} \rightarrow \mathbb{R}$ is an \mathfrak{F}_{T}-measurable random variable.

We impose the following conditions:
(E1) F satisfies the Caratheodory conditions (i.e., measurable in (t, x, y) and continuous in the fourth variable) and there exists $M_{F}>0$ such that

$$
\left|F\left(t, x, w_{1}, y_{1}\right)-F_{1}\left(t, x, w_{2}, y_{2}\right)\right| \leq M_{F}\left[\left|w_{1}-w_{2}\right|+\left\|y_{1}-y_{2}\right\|_{L_{2}^{0}\left(\mathbb{R}^{N}, L^{2}(\mathcal{D})\right)}\right]
$$

for all $0 \leq t \leq T, x \in \mathcal{D}, w_{1}, w_{2} \in \mathbb{R}, y_{1}, y_{2} \in L_{2}^{0}\left(\mathbb{R}^{N}, L^{2}(\mathcal{D})\right)$.
(E2) G satisfies the Caratheodory conditions and there exists $M_{G}>0$ such that

$$
\left\|G\left(t, x, w_{1}\right)-G\left(t, x, w_{2}\right)\right\|_{L_{2}^{0}\left(\mathbb{R}^{N}, L^{2}(\mathcal{D})\right)} \leq M_{G}\left|w_{1}-w_{2}\right|
$$

for all $0 \leq t \leq T, z \in \mathcal{D}, w_{1}, w_{2} \in \mathbb{R}$.
We have the following theorem:

Theorem 10 If (E1) and (E2)) are satisfied, then (23) has a unique mild solution $(y, z) \in L^{2}\left(0, T ; L^{2}\left(\Omega, L^{2}(\mathcal{D})\right)\right) \times L_{F}^{2}\left(0, T ; L^{2}\left(\mathbb{R}^{N}, L^{2}\left(\Omega, L^{2}(\mathcal{D})\right)\right)\right)$.

Proof. Let $X=L^{2}(\mathcal{D})$ and $K=\mathbb{R}^{N}$. Also, denote $\frac{\partial y}{\partial t}$ by $y^{\prime}(t)$, and define the operator A by

$$
\begin{equation*}
A y(t, \cdot)=\Delta_{x} y(t, \cdot), \quad y \in H^{2}(\mathcal{D}) \cap H_{0}^{1}(\mathcal{D}) \tag{24}
\end{equation*}
$$

It is known that A generates a strongly continuous semigroup $\{S(t)\}$ on $L^{2}(\mathcal{D})$ (see [15]). Define the maps $f:[0, T] \times X \times L_{2}^{0}(K ; X) \rightarrow X$ and $g:[0, T] \times X \rightarrow$ $L_{2}^{0}(K, X)$ by

$$
\begin{align*}
f(t, y(t), z(t))(x) & =F(t, x, y(t, x), z(t, x)) \tag{25}\\
g(t, y(t))(x) & =G(t, x, y(t, x)) \tag{26}
\end{align*}
$$

for all $0 \leq t \leq T, x \in \mathcal{D}$. With these identifications, we observe that (23) can be written in the abstract form (1). Clearly, f and g as defined in (25) and (26) satisfy (N1) and (N2), respectively. Hence, we can invoke Theorem 9 to conclude that (23) has a unique mild solution $(y, z) \in L^{2}\left(0, T ; L^{2}\left(\Omega, L^{2}(\mathcal{D})\right)\right) \times$ $L_{F}^{2}\left(0, T ; L^{2}\left(\mathbb{R}^{N}, L^{2}\left(\Omega, L^{2}(\mathcal{D})\right)\right)\right)$.

4 Stochastic Maximum Principle

In this section we consider the following stochastic controlled system

$$
\begin{align*}
& y(t)+\int_{t}^{T} S(s-t) f(s, y(s), z(s), u(s)) d s \\
& \quad+\int_{t}^{T} S(s-t) z(s) d w(s)=S(T-t) \xi \tag{27}
\end{align*}
$$

with the cost functional

$$
\begin{equation*}
J(u)=\mathbf{E} h(y(0))+\mathbf{E} \int_{0}^{T} l(t, y(t), z(t), u(t)) d t \tag{28}
\end{equation*}
$$

Here, $f:[0, T] \times X \times L_{2}^{0} \times U \rightarrow X, h: X \rightarrow X, l:[0, T] \times X \times L_{2}^{0} \times U \rightarrow \mathbb{R}$ are measurable functions, $\xi \in L^{2}\left(\Omega, \mathfrak{F}_{T}, X\right)$ and $u:[0, T] \times \Omega \rightarrow U$.

We impose the following assumptions.
(A1) f, l, h are continuously differentiable with respect to (y, z).
(A2) The derivatives of f with respect to y, z are uniformly bounded

$$
\left\|f_{y}\right\|+\left\|f_{z}\right\| \leq C
$$

and

$$
\left\|h_{y}\right\|+\left\|l_{y}\right\| \leq C(1+\|y\|), \quad\left\|l_{z}\right\| \leq C(1+\|z\|)
$$

where C is a positive constant.
Now we define

$$
U_{a d}=\left\{u \in L_{\mathfrak{F}}^{2}([0, T], U): u(t, \omega) \in U\right\} .
$$

It is clear that under (A1)-(A2) for any $u \in U_{a d}$ the state equation (27) admits a unique solution $(y, z)=(y(\cdot, u(\cdot)), z(\cdot, u(\cdot)))$ and the cost functional (28) is well-defined. We call (y, z, u) an admissible triple, and (y, z) and an admissible state process. An optimal control problem can be stated as follows.

Problem A. Find a control $u^{0}(\cdot) \in U_{a d}$ such that

$$
\begin{equation*}
J\left(u^{0}\right)=\inf _{u \in U_{a d}} J(u) \tag{29}
\end{equation*}
$$

Any control u^{0} satisfying the equality (29) is called an optimal control. The corresponding $\left(y^{0}, z^{0}\right)=\left(y\left(\cdot, u^{0}(\cdot)\right), z\left(\cdot, u^{0}(\cdot)\right)\right)$ and $\left(y^{0}, z^{0}, u^{0}\right)$ are called an optimal state process and optimal triple, respectively.

Assume that

$$
\left(y^{0}(\cdot), z^{0}(\cdot), u^{0}(\cdot)\right)
$$

is an optimal solution of the control problem (28) and (27). Consider the following forward stochastic equation

$$
\begin{align*}
\psi(t)=S & (t) h_{y}\left(y^{0}(0)\right)+\int_{0}^{t} S(s-t)\left\{f_{y}^{*}[s] \psi(s)+l_{y}[s]\right\} d s \\
& +\int_{0}^{t} S(s-t)\left\{f_{z}^{*}[s] \psi(s)+l_{z}[s]\right\} d w(s) \tag{30}
\end{align*}
$$

In what follows we shall use the following notations.

$$
\begin{gathered}
F[t]=F\left(t, y^{0}(t), z^{0}(t), u^{0}(t)\right), \\
\Delta_{u} F(t)=F\left(t, y^{0}(t), z^{0}(t), u(t)\right)-F[t], \\
\Delta_{y} F(t)=F\left(t, y(t), z^{0}(t), u^{0}(t)\right)-F[t], \\
\Delta_{z} F(t)=F\left(t, y^{0}(t), z(t), u^{0}(t)\right)-F[t] .
\end{gathered}
$$

Let H be a Hamiltonian function given by

$$
H(t, v)=\left\langle f\left(t, y^{0}(t), z^{0}(t), v\right), \psi(t)\right\rangle-l\left(t, y^{0}(t), z^{0}(t), v\right) .
$$

For any given

$$
v \in U_{a d}, t_{0} \in[0, T), 0<\varepsilon \leq T-t_{0}
$$

define a spike variational control by

$$
u^{\varepsilon}(t)=\left\{\begin{array}{cc}
v, \quad t \in\left[t_{0}, t_{0}+\varepsilon\right] \\
u^{0}(t), & \text { otherwise }
\end{array}\right.
$$

Let $\left(y^{\varepsilon}(\cdot), z^{\varepsilon}(\cdot)\right)$ be the solution of (27) corresponding to the admissible control $u^{\varepsilon}(\cdot)$, and let $\left(p^{\varepsilon}(\cdot), q^{\varepsilon}(\cdot)\right)$ be the solution of the following linear BSDE

$$
\begin{align*}
& p^{\varepsilon}(t)+\int_{t}^{T} S(s-t) f_{y}[s] p^{\varepsilon}(s) d s+\int_{t}^{T} S(s-t) f_{z}[s] q^{\varepsilon}(s) d s \\
& \quad+\int_{t}^{T} S(s-t) q^{\varepsilon}(s) d w(s)+\int_{t}^{T} S(s-t) \Delta_{u^{\varepsilon}} f[s] d s=0 . \tag{31}
\end{align*}
$$

We have the following theorem.
Theorem 11 Let (A1) and (A2) hold. Then

$$
\begin{gather*}
\sup _{0 \leq t \leq T} \mathbf{E}\left\|p^{\varepsilon}(t)\right\|^{2}+\mathbf{E} \int_{0}^{T}\left\|q^{\varepsilon}(t)\right\|^{2} d t=O\left(\varepsilon^{2}\right), \tag{32}\\
\sup _{0 \leq t \leq T} \mathbf{E}\left\|p^{\varepsilon}(t)\right\|^{4}+\mathbf{E} \int_{0}^{T}\left\|q^{\varepsilon}(t)\right\|^{4} d t=O\left(\varepsilon^{4}\right), \tag{33}\\
\sup _{0 \leq t \leq T} \mathbf{E}\left\|y^{\varepsilon}(t)-y^{0}(t)-p^{\varepsilon}(t)\right\|^{2}+\mathbf{E} \int_{0}^{T}\left\|z^{\varepsilon}(t)-z^{0}(t)-q^{\varepsilon}(t)\right\|^{2} d t=o\left(\varepsilon^{2}\right) . \tag{34}
\end{gather*}
$$

Moreover, the following formula holds

$$
\begin{align*}
& J\left(u^{\varepsilon}\right)-J\left(u^{0}\right) \\
& =\mathbf{E}\left\langle h_{y}\left(y^{0}(0)\right), p^{\varepsilon}(0)\right\rangle+\mathbf{E} \int_{0}^{T}\left\langle l_{y}[s], p^{\varepsilon}(s)\right\rangle d s \tag{35}\\
& +\mathbf{E} \int_{0}^{T}\left\langle l_{z}[s], q^{\varepsilon}(s)\right\rangle d s+\mathbf{E} \int_{0}^{T} \Delta l_{u}[s] d s+o(\varepsilon) .
\end{align*}
$$

Proof. By the Taylor formula we have

$$
\begin{aligned}
& J\left(u^{\varepsilon}\right)-J\left(u^{0}\right) \\
& =\mathbf{E}\left[h\left(y^{\varepsilon}(0)\right)-h\left(y^{0}(0)\right)\right] \\
& +\mathbf{E} \int_{0}^{T}\left[l\left(s, y^{\varepsilon}(s), z^{\varepsilon}(s), u^{\varepsilon}(s)\right)-l\left(s, y^{0}(s), z^{0}(s), u^{0}(s)\right)\right] d s \\
& =\mathbf{E} \int_{0}^{1}\left\langle h_{y}\left(y^{0}(0)+\theta\left(y^{\varepsilon}(0)-y^{0}(0)\right)\right), \Delta y^{0}(0)\right\rangle d \theta \\
& +\mathbf{E} \int_{0}^{T}\left\langle l_{y}\left(s, y^{0}(s)+\theta\left(y^{\varepsilon}(s)-y^{0}(s)\right), z^{\varepsilon}(s), u^{\varepsilon}(s)\right), \Delta y^{0}(s)\right\rangle d s \\
& +\mathbf{E} \int_{0}^{T}\left\langle l_{z}\left(s, y^{0}(s), z^{0}(s)+\theta\left(z^{\varepsilon}(s)-z^{0}(s)\right), u^{\varepsilon}(s)\right), \Delta z^{0}(s)\right\rangle d s,
\end{aligned}
$$

where $\Delta y^{0}(s)=y^{\varepsilon}(s)-y^{0}(s)$ and $\Delta z^{0}(s)=z^{\varepsilon}(s)-z^{0}(s)$. Let $Y^{\varepsilon}(t)=$ $y^{\varepsilon}(t)-y^{0}(t)-p^{\varepsilon}(t)$ and $Z^{\varepsilon}(t)=z^{\varepsilon}(t)-z^{0}(t)-q^{\varepsilon}(t)$. Then

$$
\begin{aligned}
& J\left(u^{\varepsilon}\right)-J\left(u^{0}\right) \\
& =\mathbf{E}\left\langle h_{y}\left(y^{0}(0)\right), p^{\varepsilon}(0)\right\rangle+\mathbf{E}\left\langle h_{y}\left(y^{0}(0)\right), Y^{\varepsilon}(0)\right\rangle \\
& +\mathbf{E} \int_{0}^{1}\left\langle h_{y}\left(y^{0}(0)+\theta\left(y^{\varepsilon}(0)-y^{0}(0)\right)\right)-h_{y}\left(y^{0}(0)\right), p^{\varepsilon}(0)+Y^{\varepsilon}(0)\right\rangle d \theta \\
& +\mathbf{E} \int_{0}^{T}\left\langle l_{y}[s], p^{\varepsilon}(s)+Y^{\varepsilon}(s)\right\rangle d s \\
& +\mathbf{E} \int_{0}^{T}\left\langle l_{z}[s], q^{\varepsilon}(s)+Z^{\varepsilon}(s)\right\rangle d s+\mathbf{E} \int_{0}^{T} \Delta l_{u}[s] d s \\
& +\mathbf{E} \int_{0}^{T}\left\langle l_{y}\left(s, y^{0}(s)+\theta\left(y^{\varepsilon}(s)-y^{0}(s)\right), z^{\varepsilon}(s), u^{\varepsilon}(s)\right)-l_{y}[s], p^{\varepsilon}(s)+Y^{\varepsilon}(s)\right\rangle d s \\
& +\mathbf{E} \int_{0}^{T}\left\langle l_{z}\left(s, y^{0}(s), z^{0}(s)+\theta\left(z^{\varepsilon}(s)-z^{0}(s)\right), u^{\varepsilon}(s)\right)-l_{z}[s], q^{\varepsilon}(s)+Z^{\varepsilon}(s)\right\rangle d s .
\end{aligned}
$$

Then by Theorem 11, we can obtain (35).
Theorem 12 (Stochastic Maximum Principle) Assume that (A1) and (A2) hold, and let $\left(y^{0}, z^{0}, u^{0}\right)$ be an optimal triple of Problem A. Then, there is a process ψ satisfying (30) such that

$$
\begin{equation*}
H(t, v) \leq H\left(t, u^{0}(t)\right) \tag{36}
\end{equation*}
$$

for all $v \in U$, a.e. $t \in[0, T], P$-a.s.
Proof. By the formula (35) we have

$$
\begin{aligned}
& J\left(u^{\varepsilon}\right)-J\left(u^{0}\right) \\
& =\mathbf{E}\left\langle h_{y}\left(y^{0}(0)\right), p^{\varepsilon}(0)\right\rangle+\mathbf{E} \int_{0}^{T}\left\langle l_{y}[s], p^{\varepsilon}(s)\right\rangle d s \\
& +\mathbf{E} \int_{0}^{T}\left\langle l_{z}[s], q^{\varepsilon}(s)\right\rangle d s+\mathbf{E} \int_{0}^{T} \Delta l_{u}[s] d s+o(\varepsilon) .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\mathbf{E}\left\langle h_{y}\left(y^{0}(0)\right), p^{\varepsilon}(0)\right\rangle & +\mathbf{E} \int_{0}^{T}\left\langle l_{y}[s], p^{\varepsilon}(s)\right\rangle d s+\mathbf{E} \int_{0}^{T}\left\langle l_{z}[s], q^{\varepsilon}(s)\right\rangle d s \\
= & \mathbf{E} \int_{0}^{T}\left\langle\Delta_{u^{\varepsilon}} f[s], p^{\varepsilon}(s)\right\rangle d s .
\end{aligned}
$$

Thus

$$
0 \leq J\left(u^{\varepsilon}\right)-J\left(u^{0}\right)=\mathbf{E} \int_{0}^{T}\left\langle\Delta_{u^{\varepsilon}} f[s], p^{\varepsilon}(s)\right\rangle d s+\mathbf{E} \int_{0}^{T} \Delta l_{u}[s] d s+o(\varepsilon)
$$

and from here we can easily obtain the variational inequality (36).

5 A backward linear quadratic problem

In this section we apply Theorem 12 to a linear quadratic problem as a particular case of the Problem A.

Consider the following problem

$$
\begin{equation*}
J(u)=\mathbf{E}\langle G y(0), y(0)\rangle+\mathbf{E} \int_{0}^{T}\langle\Gamma(t) u(t), u(t)\rangle d t \rightarrow \min \tag{37}
\end{equation*}
$$

subject to

$$
\left\{\begin{align*}
d y(t)= & {[A y(t)+B u(t)+C z(t)] d t } \tag{38}\\
& \quad+z(t) d w(t) \\
y(T)= & \xi
\end{align*}\right.
$$

Here $B: U \rightarrow X, C: L_{2}^{0} \rightarrow X, \Gamma:[0, T] \rightarrow L(U)$. We assume that $G=G^{*}$, $\Gamma(t)=\Gamma^{*}(t) \geq \gamma I$.

Let u^{0} be an optimal control, and $\left(y^{0}, z^{0}\right)$ be the corresponding state process. The adjoint process ψ is the solution of

$$
\begin{align*}
-d \psi(t) & =A^{*} \psi(t) d t+C^{*} \psi(t) d w(t) \\
\psi(0) & =G z^{0}(0) \tag{39}
\end{align*}
$$

Theorem 13 There exists a unique optimal control u^{0} for the problem (37)(38) in the class $U_{\text {ad }}$. Moreover, u^{0} has the following representation

$$
\begin{equation*}
u^{0}(t)=\Gamma^{-1}(t) B^{*} \psi(t) \tag{40}
\end{equation*}
$$

Proof. It is clear that (37) is a positive quadratic functional of control because of the assumptions on G and $\Gamma(t)$. Hence an optimal control exists.

Furthermore, the BSDE has the form (39). By Theorem 12

$$
\left\langle B u^{0}(t), \psi(t)\right\rangle-\left\langle\Gamma(t) u^{0}(t), u^{0}(t)\right\rangle \geq\langle B v, \psi(t)\rangle-\langle\Gamma(t) v, v\rangle
$$

for all $v \in U$.This in turn implies (40). Hence the control (40) is the only control which satisfies the stochastic maximum principle. It then must be the optimal control. This completes the proof.

Theorem 14 The optimal control u^{0} for the problem (37)-(38) can be represented as

$$
\begin{equation*}
u^{0}(t)=\Gamma^{-1}(t) B^{*} P(t) y(t) \tag{41}
\end{equation*}
$$

where $y(t)$ is the solution of

$$
\begin{align*}
y^{\prime}(t) & =\left[A+B \Gamma^{-1}(t) B^{*} P(t)\right] y(t) \\
y(0) & =y^{0}(0) \tag{42}
\end{align*}
$$

and $P(t)$ is the mild solution of

$$
\begin{aligned}
d P(t) & =-\left(P(t) A+A^{*} P(t)+P(t) B \Gamma^{-1} B^{*} P(t)\right) d t \\
& +C^{*} P(t) d w(t)
\end{aligned}
$$

Proof. Let $\tilde{\psi}(t)=P(t) y(t)$. We have

$$
\begin{aligned}
d \tilde{\psi}(t) & =d P(t) y(t)+P(t) d y(t) \\
& =-\left(P(t) A+A^{*} P(t)+P(t) B \Gamma^{-1}(t) B^{*} P(t)\right) y(t) d t \\
& -C^{*} P(t) d w(t) y(t) \\
& +P(t)\left(A+B \Gamma^{-1}(t) B^{*}\right) y(t) d t \\
& =-\left(A^{*} P(t)-C^{*} P(t) d w(t)\right) y(t) \\
& =-A^{*} \tilde{\psi}(t) d t-C^{*} \widetilde{\psi}(t) d w(t)
\end{aligned}
$$

So $\widetilde{\psi}(t)$ satisfies the same equation as $\psi(t)$. Hence $\widetilde{\psi}(t)=\psi(t)$ by the uniqueness. The theorem is proved.

References

[1] Bensoussan A. Stochastic maximum principle for distributed parameter systems, Journal Franklin Institute, 315 (1983), 387-406.
[2] Bensoussan A. Lectures on Stcohastic Control, in: Nonlinear Filtering and Stochastic Control, S.K. Mitter and A. Moro (Eds.) Lecture Notes in Mathemtics 972, Springer, 1982.
[3] DaPrato, G., Zabczyk, J. (1992) Stochastic Equations in Infinite Dimensions, Cambridge University Press: Cambridge.
[4] Dauer, J. P.; Mahmudov, N. I. Controllability of stochastic semilinear functional differential equations in Hilbert spaces. J. Math. Anal. Appl. 290 (2004), no. 2, 373-394.
[5] Dokuchaev, N., Zhou, X.Y., Stochastic controls with terminal contingent conditions. J. Math. Anal. Appl. 238 (1999), no. 1, 143-165.
[6] Hassani, M., Ouknine, Y. Infinite dimensional BSDE with jumps (2002) Stoch. Anal. Appl. 20 (3) pp. 519-565.
[7] Y. Hu \& S. Peng, Adapted solutions of a backward semilinear stochastic evolution equation, Stochastic Analysis and Applications, 9 (4), 445 - 459, 1991.
[8] Y. Hu \& S. Peng, Maximum principle for semilinear stochastic evolution control systems, Stochastics and Stochastic Reports, 33, 159 - 180, 1990.
[9] Hu, Y., Ma, J., Yong, J. On semi-linear degenerate backward stochastic partial differential equations (2002) Probab. Theory Relat. Fields 123 (3) pp. 381-411.
[10] Ma, J., Yong, J. On linear degenerate backward stochastic partial differential equations (1999) Probab. Theory Relat. Fields 113 (2) pp. 135-170.
[11] Mahmudov, N. I. The maximum principle for stochastic evolution systems in Hilbert spaces. Int. J. Pure Appl. Math. 2 (2002), no. 3, 287-298.
[12] X. Mao, Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients, Stochastic Processes and their Applications, 58, 281 - 292, 1995.
[13] E. Pardoux \& S. Peng, Adapted solution of a backward stochastic differential equation, Systems and Control Letters, 14, 1990, $55-61$.
[14] Pardoux, E., Rascanu, A. Backward stochastic variational inequalities (1999) Stoch. Stoch. Rep. 67 (3-4) pp. 159-167.
[15] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, N.Y., 1983.
[16] S. Peng, Backward stochastic differential equations and applications to optimal control, Appl. Math. Optim., 27, 1993, 125 - 144.
[17] Rong, S. On solutions of backward stochastic differential equations with jumps and with non-Lipschitzian coefficients in Hilbert spaces and stochastic control (2002) Statist. Probab. Lett. 60 (3) pp. 279-288.
[18] G. Tessitore, Existence, uniqueness, and space regularity of the adapted solutions of a backward SPDE, Stochastic Analysis and Applications, 14 (4), 461 - 486, 1996.

Response to the reviewer's comments on NA-D-05-00322

First, we would like to sincerely thank the reviewer for carefully reading the manuscript and providing valuable comments that have led to improved results. In addition, we would like to address each of the reviewer's comments individually to explain how we modified the paper accordingly.

Comment 1. In view of the interdisciplinary nature of the journal $N A$ TMA, it would be better if the authors would explain with some details the role of the generator A in $E q(1)$ and its connection with semigroup $S(t)$.

Role of the generater in $\mathrm{Eq}(1)$ is explained in the example A of the section 3.

Comment 2. Before the definition 1 it would be better to describe clearly the domain and the range of functions F and G.

The following sentence is inserted before definition 1: " where $A: D(A) \subset$ $X \rightarrow X$ is a linear operator which generates a C_{0}-semigroup $\{S(t), 0 \leq t \leq T\}$ on $X, F:[0, T] \times X \times L_{2}^{0} \rightarrow X$ and $G:[0, T] \times X \rightarrow L_{2}^{0}$ are given mappings, and $\xi \in L^{2}\left(\Omega, \mathfrak{F}_{T}, X\right)$."

Comment 3. The constant Ms in inequality (7) (p. 4) should be described precisely.

In order to describe M_{S} the following sentence is inserted to Lemma 2: "where $M_{S}=\sup \left\{\|S(t)\|_{\mathfrak{B}(X)}, 0 \leq t \leq T\right\}$ and $B(X)$ is the space of bounded, linear operators on X."

Comment 4. In connection with remark "...by Theorem 4..." about recurrsive equation (12) ($p .7$), I think that it woud be better to consider Theorem 4 with equation:
$y(t)=S(T-t) \xi>+\int_{t}^{T} S(s-t) F(s, y(s), z(s)) d s++\int_{t}^{T} S(s-t)(g(s)+z(s)) d w(s)$
instead of BSEE (2). The proof seems to remain the same.
We have changed Equations (2) and (12) by the equation suggested by reviewer. The reviewer is right the proof remains same.

[^0]: * Corresponding author.

 Email addresses: nazim.mahmudov@emu.edu.tr (N.I. Mahmudov), mmckibben@goucher.edu (M.A. McKibben).

