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On state-dependent delay partial neutral
functional–differential equations

Eduardo Hernández M. a,*, Mark A. McKibben b

a Departamento de Matemática, ICMC, Universidade de São Paulo, Caixa Postal 668, 13560-970 São Carlos SP, Brazil
b Department of Mathematics and Computer Science, Goucher College, 1021 Dulaney Valley Road, Baltimore, MD 21204, USA

Abstract

In this paper, we study the existence of mild solutions for a class of abstract partial neutral functional–differential equa-
tions with state-dependent delay.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Abstract Cauchy problem; Neutral equations; State-dependent delay; Semigroup of linear operators; Unbounded delay

1. Introduction

The purpose of this article is establish the existence of mild solutions for a class of abstract neutral func-
tional–differential equations with state-dependent delay described by the form

d

dt
DðutÞ ¼ ADðutÞ þ F ðt; xqðt;xtÞÞ; t 2 I ¼ ½0; a�; ð1:1Þ

x0 ¼ u 2 B; ð1:2Þ

where A is the infinitesimal generator of a compact C0-semigroup of bounded linear operators (T(t))tP0 on a
Banach space X; the function xs : (�1, 0]! X, xs(h) = x(s + h), belongs to some abstract phase space B de-
scribed axiomatically; F, G are appropriate functions; and Dw = w (0) � G(t,w), where w is in B.

Functional–differential equations with state-dependent delay appear frequently in applications as model of
equations and for this reason the study of this type of equation has received a significant amount of attention
in the last years, see for instance [1–11] and the references therein. We also cite [12,9,13] for the case of neutral
differential equations with dependent delay. The literature related to partial functional–differential equations
with state-dependent delay is limited, to our knowledge, to the recent works [14,15].

Abstract neutral differential equations arise in many areas of applied mathematics. For this reason, they
have largely been studied during the last few decades. The literature related to ordinary neutral differential
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equations is very extensive, thus, we refer the reader to [16] only, which contains a comprehensive description
of such equations. Similarly, for more on partial neutral functional–differential equations and related issues we
refer to Adimy and Ezzinbi [17], Hale [18], Wu and Xia [19] and [20] for finite delay equations, and Hernández
and Henriquez [21,22] and Hernández [23] for unbounded delays.

2. Preliminaries

Throughout this paper, A :D(A) � X! X is the infinitesimal generator of a compact C0-semigroup of lin-
ear operators (T(t))tP0 on a Banach space X and eM is a positive constant such that kT ðtÞk 6 eM for every
t 2 I = [0, a]. For background information related to semigroup theory, we refer the reader to Pazy [24].

In this work we will employ an axiomatic definition for the phase space B which is similar to those intro-
duced in [25]. Specifically, B will be a linear space of functions mapping (�1, 0] into X endowed with a semi-
norm k � kB, and satisfies the following axioms:

(A) If x : (�1,r + b]! X, b > 0, is such that xj[r, r+b] 2 C([r,r + b] :X) and xr 2 B, then for every
t 2 [r,r + b] the following conditions hold:
(i) xt is in B,
(ii) kxðtÞk 6 HkxtkB,
(iii) kxtkB 6 Kðt � rÞ supfkxðsÞk : r 6 s 6 tg þMðt � rÞkxrkB,

where H > 0 is a constant; K,M : [0,1)! [1,1), K is continuous, M is locally bounded, and H, K,
M are independent of x(Æ).

(A1) For the function x(Æ) in (A), the function t! xt is continuous from [r,r + b] into B.
(B) The space B is complete.

Example 2.1 (The phase spaces Cg, C0
g). Let g : (�1, 0]! [1,1) be a continuous, non-decreasing function

with g(0) = 1, which satisfies conditions (g-1), (g-2) of [25]. Briefly, this means that the function cðtÞ :¼
sup�1<h6�t

gðtþhÞ
gðhÞ is locally bounded for t P 0 and that g(h)!1 as h!�1.

Let Cg(X) be the vector space consisting of the continuous functions u such that u
g is bounded on (�1, 0],

and let C0
gðX Þ be the subspace of Cg(X) containing precisely those functions u for which uðhÞ

gðhÞ ! 0 as h!�1.
The spaces Cg and C0

g, endowed with the norm kukg :¼ suph60
kuðhÞk

gðhÞ , are both phases spaces which satisfy
axioms (A), (A-1), (B), see [25, Theorem 1.3.6] for details. Moreover, in this case K(t) = 1, for every t P 0.

Example 2.2 (The phase space Cr · Lp(g;X)). Assume that g : ð�1;�rÞ ! R is a Lebesgue integrable func-
tion and that there exists a non-negative and locally bounded function c such that g(n + h) 6 c(n) g(h), for
all n 6 0 and h 2 (�1,�r) nNn, where Nn � (�1,�r) is a set with Lebesgue measure zero. The space
Cr · Lp(g;X) consists of all classes of functions u : (�1, 0]! X such that u is continuous on [�r, 0] and
g

1
pkuk 2 Lpðð�1;�rÞ; X Þ. The seminorm in Cr · Lp(g;X) is defined by

kukB :¼ supfkuðhÞk : �r 6 h 6 0g þ
Z �r

�1
gðhÞkuðhÞkp dh

� �1=p

:

If g(Æ) satisfies the conditions (g-5), (g-6) and (g-7) in the nomenclature of [25], then B ¼ Cr � Lpðg; X Þ satisfies
axioms (A), (A1), (B) (see [25, Theorem 1.3.8] for details). Moreover, when r = 0 and p = 2, we have that
H = 1, M(t) = c(�t)1/2, and KðtÞ ¼ 1þ ð

R 0

�t gðhÞdhÞ1=2 for t P 0.

Remark 2.1. Let u 2 B and t 6 0. The notation ut represents the function ut : (�1, 0]! X defined by
ut(h) = u(t + h). Consequently, if the function x(Æ) in axiom (A) is such that x0 = u, then xt = ut. We observe
that ut is well defined for every t < 0 since the domain of u(Æ) is (�1, 0].

We also note that, in general, ut 62 B; consider, for example, the characteristic function X½l;0�, l < �r < 0, in
the space Cr · Lp(g;X).
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The terminology and notations are those generally used in functional analysis. In particular, for Banach
spaces (Z,k ÆkZ), (W,k ÆkW), the notation LðZ; W Þ stands for the Banach space of bounded linear operators
from Z into W, and we abbreviate this notation to LðZÞ when Z = W. Moreover, Br(x,Z) denotes the closed
ball with center at x and radius r > 0 in Z and for a bounded function n : I! Z and t 2 [0,a] we employ the
notation knkZ,t for

knkZ;t ¼ supfknðsÞkZ : s 2 ½0; t�g: ð2:3Þ

We will simply write knkt when no confusion arises.
The remainder of the paper is divided into two sections. The existence of mild solutions for the abstract

Cauchy problem (1.1)–(1.2) is studied in Section 3, and Section 4 is devoted to a discussion of some applica-
tions. To conclude the current section, we recall the following well-known result, referred to as the Leray
Schauder Alternative, for convenience.

Theorem 2.1. [26, Theorem 6.5.4] Let D be a convex subset of a Banach space X and assume that 0 2 D. Let

G:D! D be a completely continuous map. Then, either the set {x 2 D:x = kG(x), 0 < k < 1} is unbounded or the

map G has a fixed point in D.

3. Existence results

In this section we discuss the existence of mild solutions for the abstract system (1.1)–(1.2). We begin by
introducing the following conditions:

(Hu) Let Rðq�Þ ¼ fqðs;wÞ : ðs;wÞ 2 I �B; qðs;wÞ 6 0g. The function t! ut is well defined and continuous
from Rðq�Þ into B, and there exists a continuous and bounded function Ju : Rðq�Þ ! ð0;1Þ such that
kutkB 6 JuðtÞkukB for every t 2 Rðq�Þ.

(H1) The function F : I �B! X satisfies the following properties:
(a) The function F(Æ,w) : I! X is strongly measurable, for every w 2 B.
(b) The function F ðt; �Þ : B! X is continuous, for each t 2 I.
(c) There exist a continuous non decreasing function W : [0,1)! (0,1) and an integrable function

m : I! [0,1) such that

kF ðt;wÞk 6 mðtÞW ðkwkBÞ; ðt;wÞ 2 I �B:

(H2) The function G : R�B! X is continuous and there exists LG > 0 such that

kGðt;w1Þ � Gðt;w2Þk 6 LGkw1 � w2kB; ðt;wiÞ 2 I �B:

(H3) Let S(a) = {x : (�1,a]! X :x0 = 0;x 2 C([0,a] :X)} endowed with the norm of uniform convergence on
[0,a] and y : (�1,a]! X be the function defined by y0 = u on (�1, 0] and y(t) = T(t)u(0) on [0, a].
Then, for every bounded set Q such that Q � S (a), the set of functions {t! G(t,xt + yt) :x 2 Q} is equi-
continuous on [0,a].

Remark 3.2. We remark that condition Hu is frequently satisfied by functions that are continuous and
bounded. In fact, if the space B satisfies axiom C2 in [25], then there exists a constant L > 0 such that
kukB 6 Lsuph60kuðhÞk for every u 2 B that is continuous and bounded, see [25, Proposition 7.1.1] for details.
Consequently,

kutkB 6 L
sup
h60

kuðhÞk

kukB
kukB

for every u 2 B n f0g continuous and bounded and every t 6 0. We also observe that Cr · Lp(g;X) satisfies
axiom C2 if g(Æ) is integrable on (�1, r], see [25, p. 10].

Motivated by general semigroup theory, we adopt the following concept of mild solution.
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Definition 3.1. A function x : (�1,a]! X is a mild solution of the abstract Cauchy problem (1.1)–(1.2) if
x0 = u, xqðs;xsÞ 2 B, for every s 2 I, and

xðtÞ ¼ T ðtÞðuð0Þ � Gð0;uÞÞ þ Gðt; xtÞ þ
Z t

0

T ðt � sÞF ðs; xqðs;xsÞÞds; t 2 I :

The proof of Lemma 3.1 is routine; the details are left to the reader.

Lemma 3.1. Let x : (�1, a]! X be a function such that x0 = u and xj½0;a� 2 Cð½0; a� : X Þ. Then

kxskB 6 ðMa þ Ju
0 ÞkukB þ Ka supfkxðhÞk; h 2 ½0;maxf0; sg�g; s 2 Rðq�Þ [ ½0; a�;

where Ju
0 ¼ supt2Rðq�ÞJ

uðtÞ and the notation in (2.3) has been used.

Now, we can prove our first existence result.

Theorem 3.2. Let u 2 B and assume that conditions H1, H2, Hu hold. If

Ka LG þ eM lim inf
n!1þ

W ðnÞ
n

Z a

0

mðsÞds
� �

< 1;

then there exists a mild solution of (1.1)–(1.2).

Proof. Consider the space Y = {u 2 C(I :X) :u(0) = u(0)} endowed with the uniform convergence topology,
and define the operator C :Y! Y by

CxðtÞ ¼ T ðtÞðuð0Þ � Gð0;uÞÞ þ Gðt;�xtÞ þ
Z t

0

T ðt � sÞF ðs;�xqðs;�xsÞÞds; t 2 I ;

where �x : ð�1; a� ! X is the extension of x to (�1,a] such that �x0 ¼ u. From our assumptions it is easy to see
that Cx 2 Y.

Let �u : ð�1; a� ! X be the extension of u to (�1,a] such that �uðhÞ ¼ uð0Þ on I. We claim that there exists
r > 0 such that CðBrð�ujI ; Y ÞÞ � Brð�ujI ; Y Þ. Indeed, suppose to the contrary that this assertion is false. Then, for
every r > 0 there exist xr 2 Brð�ujI ; Y Þ and tr 2 I such that r < kCxr(tr) � u(0)k. Then, from Lemma 3.1 we find that

r < kCxrðtrÞ � uð0Þk
6 kT ðtrÞuð0Þ � uð0Þk þ kT ðtrÞGð0;uÞ � Gð0;uÞk þ kGðtr; ðxrÞtrÞ � Gð0;uÞk

þ
Z tr

0

kT ðtr � sÞkkF ðs; ðxrÞqðs;ðxrÞsÞÞkds

6 ð eM þ 1ÞHkukB þ kT ðtrÞGð0;uÞ � Gð0;uÞk þ LGðKakxr � uð0Þktr þ ðMa þ HKa þ 1ÞkukÞ

þ eM Z tr

0

mðsÞW ððMa þ Ju
0 ÞkukB þ Kaðkxr � uð0Þka þ kuð0ÞkÞÞds

6 ðð eM þ 1ÞHÞkukB þ kT ðtrÞGð0;uÞ � Gð0;uÞk þ LGðKar þ ðMa þ HKa þ 1ÞkukÞ

þ eM Z tr

0

mðsÞW ððMa þ Ju
0 þ HÞkukB þ KarÞds

and hence

1 6 Ka LG þ eM lim inf
n!1

W ðnÞ
n

Z a

0

mðsÞds
� �

;

which contradicts our assumption.
Let r > 0 be such that CðBrð�ujI ; Y ÞÞ � Brð�ujI ; Y Þ and consider the decomposition C = C1 + C2 where

C1xðtÞ ¼ T ðtÞðuð0Þ � Gð0;uÞÞ þ Gðt;�xtÞ; t 2 I ;

C2xðtÞ ¼
Z t

0

T ðt � sÞF ðs;�xqðs;�xsÞÞds; t 2 I :
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From the proof of [14, Theorem 2.2], we know that C2 is completely continuous. Moreover, using the phase
space axioms we find that

kC1uðtÞ � C1vðtÞk 6 LGKaku� vka; t 2 I ;

which proves that C1 is a contraction on Brð�ujI ; Y Þ, so that C is a condensing operator on Brð�ujI ; Y ÞÞ.
The existence of a mild solution for (1.1)–(1.2) is now a consequence of [27, Theorem 4.3.2]. This completes

the proof. h

Theorem 3.3. Let conditions Hu, H1, H3 be satisfied. Assume that q(t,w) 6 t for every ðt;wÞ 2 I �B, that G is

completely continuous, and that there exist positive constants c1, c2 such that kGðt;wÞk 6 c1kwkB þ c2 for every

ðt;wÞ 2 I �B. If l = 1 � Kac1 > 0 andeM Ka

l

Z a

0

mðsÞds <
Z 1

C

ds
W ðsÞ ;

where

C ¼ Ma þ Ju
0 þ eM HKa

� �
kuk þ Ka

l
eMkGð0;uÞk þ c1ðMa þ eM HKaÞkukB þ c2

h i
;

then there exists a mild solution of (1.1)–(1.2).

Proof. On the space BC ¼ fu : ð�1; a� ! X ; u0 ¼ 0; ujI 2 CðI ; X Þg endowed with the norm
kuka = sups2[0, a]ku(s)k, we define the operator C : BC ! BC by

CxðtÞ ¼
0; t 2 ð�1; 0�;
T ðtÞGð0;uÞ � Gðt;�xtÞ þ

R t
0

T ðt � sÞF ðs;�xqðs;�xsÞÞds; t 2 I ;

�
where �x : ð�1; a� ! X is defined by the relation �x ¼ y þ x on (�1,a]. In preparation for using Theorem 2.1,
we establish a priori estimates for the solutions of the integral equation z = kCz, k 2 (0,1). Let xk be a solution
of z = kCz, k 2 (0,1). If ak(s) = suph2[0, s]kxk(h)k, then from Lemma 3.1 and the fact that qðs; ðxkÞsÞ 6 s, we find
that

kxkðtÞk 6 kT ðtÞGð0;uÞk þ c1k�xtkB þ c2 þ eM Z t

0

mðsÞW ððMa þ Ju þ eM HKaÞkukB þ Kaa
kðsÞÞds

6 eMkGð0;uÞk þ c1ððMa þ eM HKaÞkukB þ KaaðtÞÞ þ c2

þ eM Z t

0

mðsÞW ððMa þ Ju þ eM HKaÞkukB þ Kaa
kðsÞÞds:

Consequently,

kakðtÞk 6 eMkGð0;uÞk þ c1ððMa þ eM HKaÞkukB þ KaaðtÞÞ þ c2

þ eM Z t

0

mðsÞW ððMa þ Ju þ eM HKaÞkukB þ Kaa
kðsÞÞds

and so

kakðtÞk 6 1

l
½ eMkGð0;uÞk þ c1ðMa þ eM HKaÞkukB þ c2�

þ
eM
l

Z t

0

mðsÞW ððMa þ Ju þ eM HKaÞkukB þ Kaa
kðsÞÞds:

By denoting nkðtÞ ¼ ðMa þ Ju
0 þ eM HKaÞkukB þ KaaðtÞ, we obtain after a rearrangement of terms that

nkðtÞ 6 ðMa þ Ju
0 þ eM HKaÞkuk þ

Ka

l
½ eMkGð0;uÞk þ c1ðMa þ eM HKaÞkukB þ c2�

þ
eM Ka

l

Z t

0

mðsÞW ðnkðsÞÞds: ð3:4Þ
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Denoting by bk(t) the right-hand side of (3.4), it follows that

b0kðtÞ 6
eM Ka

l
mðtÞW ðbkðtÞÞ

and henceZ bkðtÞ

bkð0Þ¼C

ds
W ðsÞ 6

eM Ka

l

Z a

0

mðsÞds <
Z 1

C

ds
W ðsÞ ;

which implies that the set of functions {bk(Æ) :k 2 (0,1)} is bounded in CðI : RÞ. Thus, the set {xk(Æ) :k 2 (0, 1)}
is bounded on I.

To prove that C is completely continuous, we consider the decomposition C = C1 + C2 introduced in the
proof of Theorem 3.2. From the proof of [14, Theorem 2.2] we know that C2 is completely continuous and
from the assumptions on G we infer that C1 is a compact map. It remains to show that C1 is continuous. Let
ðunÞn2N be a sequence in BC and u 2 BC such that un! u. From the phase space axioms we infer that

ðunÞs ! us uniformly on [0,a] as n!1 and that U ¼ ½0; a� � fðunÞs; us : s 2 ½0; a�; n 2 Ng is relatively compact
in ½0; a� �B. Thus, G is uniformly continuous on U, so that Gðs; ðunÞsÞ ! Gðs; usÞ uniformly on [0,a] as
n!1, which shows that C1 is continuous.

These remarks, in conjunction with Theorem 2.1, enable us to conclude that there exists a mild solution for
(1.1) and (1.2). The proof is complete. h

4. Examples

We conclude this work with two applications of our previous abstract results. In the sequel, X = L2([0,p])
and A :D(A) � X! X is the operator Af = f00 with domain D(A) :¼ {f 2 X : f00 2 X, f(0) = f(p) = 0}. It is well
known that A is the infinitesimal generator of a compact C0-semigroup of bounded linear operators
(T(t))tP0 on X. Moreover, A has discrete spectrum, the eigenvalues are �n2, n 2 N, with corresponding nor-
malized eigenvectors znðnÞ :¼ ð2p Þ

1=2 sinðnnÞ, the set fzn : n 2 Ng is an orthonormal basis of X, and
T ðtÞx ¼

P1
n¼1e�n2t < x, zn > zn for x 2 X. Consider the differential system

d

dt
uðt; nÞ þ

Z t

�1
a1ðs� tÞuðs; nÞds

� �
¼ o

2

on2
uðt; nÞ þ

Z t

�1
a1ðs� tÞuðs; nÞds

� �
þ
Z t

�1
a2ðs� tÞuðs� q1ðtÞq2ðkuðtÞkÞ; nÞds; t 2 I ¼ ½0; a�; n 2 ½0; p�; ð4:5Þ

together with the initial conditions

uðt; 0Þ ¼ uðt; pÞ ¼ 0; t P 0; ð4:6Þ
uðs; nÞ ¼ uðs; nÞ; s 6 0; 0 6 n 6 p: ð4:7Þ

In the sequel, B ¼ C0 � L2ðg; X Þ is the space introduced in Example 2.2; u 2 B with the identification
u(s)(s) = u(s,s); the functions ai : R! R, qi : [0,1)! [0,1), i = 1,2, are continuous; and

Li ¼
Z 0

�1

ðaiðsÞÞ2

gðsÞ ds

 !1=2

< 1; i ¼ 1; 2:

By defining the operators D;G; F : I �B! X and q : I �B! R by

DðwÞ ¼ wð0; nÞ � GðwÞðnÞ

GðwÞðnÞ ¼ �
Z 0

�1
a1ðsÞwðs; nÞds;
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F ðt;wÞðnÞ ¼
Z 0

�1
a2ðsÞwðs; nÞds;

qðs;wÞ ¼ s� q1ðsÞq2ðkwð0ÞkÞ;

we can transform system (4.5)–(4.7) into the abstract system (1.1)–(1.2). Moreover, G, F are bounded linear
operators, kGkLðB;X Þ 6 L1 and kF kLðB;X Þ 6 L2.

The next result is an immediate consequence of Theorem 3.2.

Theorem 4.4. Let u 2 B be such that condition Hu holds and assume that

1þ
Z 0

�a
gðhÞdh

� �1=2
 !

L1 þ aL2ð Þ < 1: ð4:8Þ

Then there exists a mild solution of (4.5)–(4.7).

The proof of Corollary 4.1 follows directly from Theorem 4.4 and Remark 3.2.

Corollary 4.1. Let u 2 B continuous and bounded, and assume that (4.8) holds. Then, there exists a mild solution

of (4.5)–(4.7) on I.

To conclude this section, we briefly consider the differential system

d

dt
½uðt; nÞ þ uðt � r; nÞ� ¼ o

2

on2
½uðt; nÞ þ uðt � r; nÞ� þ a1ðtÞb1ðuðt � rðkuðtÞkÞ; nÞÞ;

t 2 I ¼ ½0; a�; n 2 ½0; p�; ð4:9Þ
uðt; 0Þ ¼ uðt; pÞ ¼ 0; ð4:10Þ
uðs; nÞ ¼ uðs; nÞ; s 6 0; n 2 ½0; p�: ð4:11Þ

For this system, we take u 2 B ¼ C0
gðX Þ and assume that the functions a1 : I ! R, b1 : R� J ! R,

r : R! Rþ are continuous and that there exist positive constants d1, d2 such that jb1(t)j 6 d1jtj + d2 for every
t 2 R.

Let D, G : B! X , F : ½0; a� �B! X and q : ½0; a� �B! R be the operators defined by D(w)(n) =
w(0,n) � G(w)(n), G(w)(n) = �w(�r,n), F(t,w)(n) = a1(t)b1(w(0,n)) and q(t,w) = t � r(kw(0)k). Using these
definitions, we can represent the system (4.8)–(4.10) in the abstract form (1.1) and (1.2). Moreover, G is a
bounded linear operator on B with kGðwÞkLðB;X Þ 6 gð�rÞ; F is continuous and kF ðt;wÞk 6
a1ðtÞ½d1kwkB þ d2p� for all ðt;wÞ 2 I �B. As such, the following results follow from Theorem 3.2 and Remark
3.2.

Theorem 4.5. If u 2 B satisfies condition Hu and gð�rÞ þ d1

R a
0 a1ðsÞds < 1, then there exists a mild solution of

(4.9)–(4.11).

Corollary 4.2. If u is continuous and bounded on (�1, 0] and gð�rÞ þ d1

R a
0

a1ðsÞds < 1, then there exists a mild

solution of (4.9)–(4.11).
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