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Abstract second-order damped

McKean-Vlasov stochastic evolution

equations

N.I. Mahmudov aand M.A. McKibben b,∗
aDepartment of Mathematics, Eastern Mediterranean University, Gazimagusa,

TRNC, Mersin 10, TURKEY
bGoucher College, Mathematics and Computer Science Department, Baltimore,

MD 21204, U S A

Abstract

We establish results concerning the global existence, uniqueness, approximate and
exact controllability of mild solutions for a class of abstract second-order stochastic
evolution equations in a real separable Hilbert space in which we allow the nonlin-
earities at a given time t to depend not only on the state of the solution at time t,
but also on the corresponding probability distribution at time t. First-order equa-
tions of McKean-Vlasov type were first analyzed in the finite dimensional setting
when studying diffusion processes, and then subsequently extended to the Hilbert
space setting. The current manuscript provides a formulation of such results for
second-order problems. Examples illustrating the applicability of the general theory
are also provided.

Key words: Stochastic evolution equation; McKean-Vlasov equation;
Approximate and exact controllability; Cosine family
AMS Subject Classification: 34K30, 34F05, 60H10

1 Introduction

The focus of this investigation is the global existence, uniqueness, approximate
and exact controllability of mild solutions for a class of abstract second-order
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Preprint submitted to JSAA



stochastic evolution equations of the general form

dx′(t) + (Bx′(t) + Ax(t)) dt = f (t, x(t), µ(t)) dt

+ g (t, x(t), µ(t)) dW (t),

x(0) = x0, x′(0) = x1, 0 ≤ t ≤ T, (1)

µ(t) = probability distribution of x(t),

in a real separable Hilbert space H. Here, W is a given K-valued Wiener
process having a positive, nuclear covariance operator Q defined on a complete
probability space (Ω,F, P ) equipped with a normal filtration {Ft}t≥0 generated
by W ; the linear operator A : D(A) ⊂ H → H generates a strongly continuous
cosine family on H; B : H → H is a bounded linear operator; f : [0, T ]×H ×
Pλ2(H) → H and g : [0, T ] × H ×Pλ2(H) → BL(K; H) (where K is a real
separable Hilbert space and Pλ2(H)denotes a particular subset of probability
measures on H) are given mappings; and x0, x1 are F0−measurable H-valued
random variables independent of W with finite second moment. (The function
spaces are made precise in Section 2.)

Stochastic partial functional differential equations arise naturally in the math-
ematical modeling of phenomena in the natural sciences (see [9], [19], [20], [23],
[28]). It is known that if the nonlinearities f and g do not depend on the prob-
ability distribution µ(t) of the state process, then the process described by (1)
is a standard Markov process [1]. Numerous papers and books devoted to the
formulation of theory of such equations have been written during the past two
decades (see [9], [28]). We mention that allowing for the dependence of the
nonlinearities on µ(t) is not artificial and, in fact, such problems arise nat-
urally in the study of diffusion processes and have been studied extensively
in the finite dimensional setting (see [13], [14], [24]). Regarding the infinite-
dimensional setting, Ahmed and Ding [1] established an abstract formulation
of such problems in a Hilbert space, and subsequently, Keck and McKibben
[20] extended this theory to a class of integro-differential stochastic evolu-
tion equations. The purpose, in part, of the current manuscript is to continue
this work for a class of abstract second-order equations, as well as to study
approximate and exact controllability concepts for these equations.

From a theoretical standpoint, the results presented in the current manuscript
constitute an extension and generalization of the theory presented in [2], [5],
[6], [11], [21], [26], [29] in that we now allow for dependence of the nonlinear-
ities on the probability distribution of the state process in (1). As such, the
corresponding results in these papers can be viewed as corollaries of the main
results of this manuscript.

Now, from a practical viewpoint, we remark that the physical motivation
for the study of (1) is related to the partial differential equation governing
the dynamical buckling of a hinged extensible beam which is stretched or
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compressed by an axial force. Mathematical models of this phenomenon have
been studied extensively in the deterministic setting. Indeed, Fitzgibbon [17]
considered the hyperbolic equation given by

∂2z

∂t2
+ κ

∂4z

∂x4
−


α + β

∫ L

0

∣∣∣∣∣
∂z(ξ, t)

∂ξ

∣∣∣∣∣
2

dξ


 ∂2z

∂x2
= 0, (2)

where z(x, t) gives the deflection of the beam at point x at time t, L is the
length of the beam, and α, β, κ > 0are given parameters. He developed a
general existence result for (2) coupled with the boundary conditions corre-
sponding to the ends of the beam being hinged, namely

z(0, t) = z(L, t) = zxx(0, t) = zxx(L, t) = 0. (3)

Prior to this investigation, several authors (see [2], [7], [21], [29]) used various
approaches to study the existence of weak and classical solutions of (2), as
well as the asymptotic behavior of these solutions. Then, Patcheu [26] estab-
lished the existence, uniqueness, and asymptotic behavior of the variant of (2)
obtained by incorporating a nonlinear friction force term into the model to
account for dissipation – this was done by replacing the right-hand-side of (2)

with the term ω

(∣∣∣∣∣
∂z

∂t

∣∣∣∣∣

)
, where ω is a bounded linear operator. More recently,

Balachandran, et. al [2] studied a generalization of the initial-boundary value

problem in [26] by further incorporating the term −λ
∂4z

∂t2∂x2
to account for the

fact that during vibration, the elements of a beam not only perform a transla-
tory motion, but also rotate. Upon converting this partial integro-differential
equation into a deterministic version of (1), they established an existence re-
sult under the assumption that the cosine family is compact. However, as
mentioned in Travis and Webb [29], [30], this assumption renders the under-
lying space H finite dimensional (and so, the result only applies to ordinary
differential equations), so that the example used to motivate their study can-
not be recovered as a special case of the main result of their paper.

All results in the aforementioned papers were established for the deterministic
case (without accounting for noise). As pointed out in Kannan [19], if experi-
mentally there is variance in measurements, then it is advantageous to study
a stochastic version of the model to better understand the effects of so-called
noise on the behavior of the phenomenon. This is precisely the principal goal
of the present manuscript.

Before we begin our study, we briefly mention why we have chosen to use
cosine function theory rather than viewing (1) as a first-order system. Indeed,
one can readily transform (1) into a first-order system in H × H, but doing
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so for equations arising in certain applications results in a first-order system
in which the matrix operator does not generate a C0-semigroup on H × H.
In such case, there is little advantage in studying the problem in this form
(especially since one can make direct use of the theory of cosine families).
More formally, Travis and Webb [30] provide precise criterion in which this is
the case; we outline their discussion below.

Consider the following condition:

Condition 1.1. Let A be the infinitesimal generator of a strongly continuous
cosine family {C (t) : t ∈ R} on H. If there exists an operator B ⊂ D (B) :
H → H such that B2 = A, then the following are true of the corresponding
sine family:

(i) S (t) maps H into D (B), for all t ∈ R,

(ii) BS (t) is bounded in H, for all t ∈ R,

(iii) BS (t) is continuous in t on R, for each fixed h ∈ H.

The following proposition is proved in [30]:

Proposition 1.2. Let A and B be linear operators from H into itself, and
assume that B commutes with every bounded linear operator inH which also
commutes with A, 0 ∈ ρ (B) (the resolvent of B), and B2 = A. Then, the
following are equivalent:

(i) A is the infinitesimal generator of a strongly continuous cosine family
{C (t) : t ∈ R} in H satisfying Condition 1.1.

(ii) B =




0 B

B 0


 with D (B) = D (B)×D (B) is the infinitesimal generator

of a strongly continuous group in H ×H.

(ii) A =




0 I

A 0


 with D (A) = D (A)×D (B) is the infinitesimal generator

of a strongly continuous group in [D (B)] × H, where [D (B)] is the space
D (B) equipped with the graph norm.

Now, as pointed out in Theorem 3 of [25], examples of strongly continuous
cosine families which do not satisfy Condition 1.1, even after a suitable trans-
lation, exist. Consequently, depending on the choice of the operator A (as
dictated in the context of the application), the reduction of (1) to a first-order
system is not always advantageous. Moreover, as Fattorini remarks in [16],
even in some cases where Proposition 1.2 applies, the determination of the
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principal root B is not easily done, but rather it can be tedious and subtle. As
such, for the purpose of the present manuscript, we find it to be more prac-
tical to employ the use of cosine function theory to study (1) in its present
second-order form. In essence, doing so allows us to recover applications of
our general results to concrete partial differential equations in which the main
operator is known to generate a strongly continuous cosine family, regardless
of whether Condition 1.l is satisfied or not.

The following is the outline of the paper. First, we make precise the neces-
sary notation, function spaces, and definitions, and gather certain preliminary
results in Section 2. We then establish the existence and uniqueness of mild
solutions to (1) under the classical Lipschitz growth conditions in Section 3,
and establish the approximate and exact controllability of mild solutions to
(1) in Section 4. Finally, we discuss three examples in Section 5 in order to
illustrate the abstract theory.

2 Preliminaries

For details of this section, we refer the reader to [8], [9], [15], [16], [27],
[28] and the references therein. Throughout this paper, H and K shall de-
note real separable Hilbert spaces with respective norms ‖·‖ and ‖·‖K , while
BL(K; H)denotes the space of all bounded, linear operators from K into H
(the norm will be denoted as ‖·‖BL). Let (Ω,F, P ) be a complete probability
space equipped with a normal filtration {Ft}t≥0 generated by K-valued Wiener
process W having a positive, nuclear covariance operator Q and F = FT . For
brevity, we suppress the dependence of all mappings on ω throughout the
manuscript.

The function spaces needed in this manuscript coincide with those used in [1],
[20]; we recall them here for convenience. First, P(H) stands for the Borel class
on H and B(H) represents the space of all probability measures defined on
P(H) equipped with the weak convergence topology. Let λ(x) = 1 + ‖x‖ , x ∈
H and define the space

Cρ(H) = {ϕ : H → H : ϕ is continuous and

‖ϕ‖Cρ
= sup

x∈H

‖ϕ(x)‖
λ2(x)

+ sup
x6=y in H

‖ϕ(x)− ϕ(y)‖
‖x− y‖ < ∞

}
.

For p ≥ 1, we let
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Ps
λp(H) = {m : H → R : m is a signed measure on H

such that ‖m‖λp =
∫

H
λp(x) |m| (dx) < ∞

}
,

where m = m+−m− is the Jordan decomposition of m and |m| = m+ + m−.
Then, we can define the space

Pλ2(H) = Ps
λ2(H) ∩ P(H)

equipped with the metric ρ given by

ρ (ν1, ν2) = sup
{∫

H
ϕ(x) (ν1 − ν2) (dx) : ‖ϕ‖Cρ

≤ 1
}

.

It has been shown that (Pλ2(H), ρ) is a complete metric space. The space of
all continuous Pλ2(H)- valued measures defined on [0, T ], denoted by Cλ2 , is
complete when equipped with the metric

DT (ν1, ν2) = sup
t∈[0,T ]

ρ (ν1(t), ν2(t)) , ν1, ν2 ∈ Pλ2 . (4)

Throughout the paper, H2 is the closed subspace of C (0, T ; L2 (Ω, F, H)) con-
sisting of measurable and Ft-adapted processes and endowed with the norm
given by

‖x‖2
H2

= sup
0≤t≤T

E ‖x (t)‖2 .

Next, we recall some facts about cosine families of operators.

Definition 1 (i) The one-parameter family {C(t) : t ∈ R} ⊂ BL(H) satis-
fying
(a) C(0) = I,
(b) C(t)x is continuous in t on R, ∀x ∈ H,
(c) C(t + s) + C(t− s) = 2C(t)C(s), for all t, s ∈ R,

is called a strongly continuous cosine family.
(ii) The corresponding strongly continuous sine family {S(t) : t ∈ R} ⊂ BL(H)

is defined by S(t)x =
∫ t
0 C(s)xds, ∀t ∈ R, ∀x ∈ H.

Definition 2 The (infinitesimal) generator A : H → H of {C(t) : t ∈ R} is
given by

Ax =
d2

dt2
C(t)x |t=0,

for all x ∈ D(A) = {x ∈ H : C(·)x ∈ C2(R; H)}.
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It is known that the infinitesimal generator A is a closed, densely-defined
operator on H (see [16]). Such cosine, and corresponding sine, families and
their generators satisfy the following properties:

Proposition 3 Suppose that A is the infinitesimal generator of a cosine fam-
ily of operators {C(t) : t ∈ R} (cf. Definition 1). Then, the following hold:

(1) There exist MA ≥ 1 and ω ≥ 0such that ‖C(t)‖ ≤ MAeω|t| and hence,
‖S(t)‖ ≤ MAeω|t|,

(2) A
∫ r
s S(u)xdu = [C(r)− C(s)] x, for all 0 ≤ s ≤ r < ∞,

(3) There exists N ≥ 1 such that ‖S(s)− S(r)‖ ≤ N
∣∣∣
∫ r
s eω|s|ds

∣∣∣, for all 0 ≤
s ≤ r < ∞.

The Uniform Boundedness Principle, together with Proposition 3(i) above, im-
plies that both {C(t) : t ∈ [0, T ]} and {S(t) : t ∈ [0, T ]} are uniformly bounded
by some positive constants MC and MS, respectively.

Proposition 1.9 in [18], and variations thereof, is used throughout this manuscript.
We recall it here as a lemma for convenience.

Lemma 4 Let W be a K-valued Wiener process with nuclear covariance Q,
and G : [0, T ] × Ω → BL (K, H) be a strongly measurable mapping such that∫ T
0 E ‖G(t)‖p dt < ∞. Then,

E
∥∥∥∥
∫ t

0
G(s)dW (s)

∥∥∥∥
p

≤ LG

∫ t

0
E ‖G(s)‖p

BL(K,H) ds,

for all 0 ≤ t ≤ T and p ≥ 2, where LG is a positive constant involving p and
T .

In addition to the familiar Young, Hölder, and Minkowski inequalities, the
following inequality (which follows from the convexity of xm,m ≥ 1) is impor-
tant:

(
n∑

i=1

ai

)m

≤ nm−1
n∑

i=1

am
i ,

where ai is a nonnegative constant (i = 1, ...,m).

3 Existence and uniqueness

We begin by establishing the existence and uniqueness of mild solutions to (1).
We impose the following conditions on (1), which are assumed throughout this
section.
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(A1) A is the infinitesimal generator of a strongly continuous cosine family
{C(t) : t ≥ 0} on H,

(A2) f : [0, T ]×H ×Pλ2(H) → H satisfies
(i) ‖f (t, x, µ)‖ ≤ M f [1 + ‖x‖+ ‖µ‖λ2 ] ,
(ii) ‖f (t, x, µ)− f (t, y, ν)‖ ≤ Mf [‖x− y‖+ ρ(µ, ν)] , globally on [0, T ] ×
H ×Pλ2(H), for some positive constants Mf and M f ,

(A3) g : [0, T ]×H ×Pλ2(H) → BL(K, H) satisfies
(i) ‖g (t, x, µ)‖BL(K,H) ≤ M g [1 + ‖x‖+ ‖µ‖λ2 ] ,
(ii) ‖g (t, x, µ)− g (t, y, ν)‖BL(K,H) ≤ Mg [‖x− y‖+ ρ(µ, ν)] , globally on

[0, T ]×H ×Pλ2(H), for some positive constants Mg and M g,
(A4) B : H → H is a bounded linear operator,
(A5) W is a K-valued Wiener process with nuclear covariance Q, x0 and x1are
F0-measurable H-valued random variables independent of W with finite sec-
ond moment.

A mild solution to (1) is defined as follows:

Definition 5 A continuous stochastic process x : [0, T ] × Ω → H is a mild
solution of (1) if

(1) x(t) is Ft−adapted, for each 0 ≤ t ≤ T ,
(2)

∫ T
0 ‖x(s)‖2 ds < ∞, a.s. [P ],

(3)

x(t) = S(t)x1 + (C(t)− S(t)B)x0 +
∫ t

0
C(t− s)Bx(s)ds

+
∫ t

0
S(t− s)f (s, x(s), µ(s)) ds +

∫ t

0
S(t− s)g (s, x(s), µ(s)) dW (s),

for all 0 ≤ t ≤ T, a.s.[P ], where µ(t) is a probability distribution of x(t).

The first result is:

Theorem 6 If (A1) - (A5) hold, then (1) has a unique mild solution x ∈ H2

with corresponding probability law µ ∈ Cλ2.

Proof. Let µ ∈ Cλ2 be fixed and define the solution map Φ : H2 → H2 by

(Φx) (t) = S(t)x1 + (C(t)− S(t)B)x0 +
∫ t

0
C(t− s)Bx(s)ds

+
∫ t

0
S(t− s)f (s, x(s), µ(s)) ds

+
∫ t

0
S(t− s)g (s, x(s), µ(s)) dW (s), (5)

=
5∑

i=1

Ix
i (t), 0 ≤ t ≤ T.
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To show that Φ is well-defined, we first verify the L2-continuity of Φ on [0, T ].
Let x ∈ H2, 0 < t1 < T , and |h| be sufficiently small (so that all terms are
well-defined). Observe that

E ‖(Φx) (t1 + h)− (Φx) (t1)‖2 ≤ 5
5∑

i=1

E ‖Ix
i (t1 + h)− Ix

i (t1)‖2 . (6)

The strong continuity of C(t)and S(t) implies that

2∑

i=1

E ‖Ix
i (t1 + h)− Ix

i (t1)‖2 → 0 as |h| → 0, for all 0 ≤ t ≤ T. (7)

Next, using (A4), together with the Hölder inequality and properties of cosine
operators, we obtain

E ‖Ix
3 (t1 + h)− Ix

3 (t1)‖2

= E

∥∥∥∥
∫ t1

0
[C(t1 + h− s)− C(t1 − s)] Bx(s)ds

+
∫ t1+h

t1
C(t1 + h− s)Bx(s)ds

∥∥∥∥∥
2

≤ 2
[
t1

∫ t1

0
E ‖[C(t1 + h− s)− C(t1 − s)] Bx(s)‖2 ds (8)

+h
∫ t1+h

t1
E ‖C(t1 + h− s)Bx(s)‖2 ds

]

≤ 2
[
t1

∫ t1

0
E ‖[C(t1 + h− s)− C(t1 − s)] Bx(s)‖2 ds

+h2M2
CM2

B ‖x‖2
C

]
.

The strong continuity of C(t), along with the Lebesgue dominated convergence
theorem, then implies that the right-side of (8) goes to 0 as |h| → 0. Regarding
the fourth term of the sum in (5), note that similar computations involving
(A2) also yield

E ‖Ix
4 (t1 + h)− Ix

4 (t1)‖2

≤ 2
[
T

∫ t1

0
E ‖[S(t1 + h− s)− S(t1 − s)] f (s, x(s), µ(s))‖2 ds

+ h2M2
S

∫ t1+h

t1
E ‖f (s, x(s), µ(s))‖2 ds

]
. (9)

Since

E ‖f (s, x(s), µ(s))‖2 ≤ M2
f

[
1 + ‖x‖2

H2
+ sup

0≤s≤T
‖µ(s)‖2

λ2

]

and the right-side is independent of h, it readily follows from (A2) that the
right-side of (9) also goes to 0 as |h| → 0. Finally, an application of the Hölder
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inequality, together with Itó’s formula in conjunction with Lemma 4, yields

E ‖Ix
5 (t1 + h)− Ix

5 (t1)‖2

≤ 2LG

[∫ t1

0
E ‖[S(t1 + h− s)− S(t1 − s)] g (s, x(s), µ(s))‖2 ds

+ h2M2
S

∫ t1+h

t1
E ‖g (s, x(s), µ(s))‖2

BL(K;H) ds

]
, (10)

where LG is the constant of Lemma 4. Reasoning similarly, we can conclude
that the right-side of (10) goes to 0 as |h| → 0. Consequently, using (7)–(10)
in (6) enables us to conclude that Φ is indeed L2−continuous on [0, T ]. We
now assert that Φ (H2) ⊂ H2. To see this, let x ∈ H2 and t ∈ [0, T ]. For all
0 ≤ t ≤ T , standard computations involving the Hölder inequality, (A2) -
(A4), and Lemma 4 yield the following estimates:

sup
0≤t≤T

E ‖Ix
1 (t)‖2 ≤ M2

S ‖x1‖2
L2(Ω) , (11)

sup
0≤t≤T

E ‖Ix
2 (t)‖2 ≤ 2

(
M2

C + M2
SM2

B

)
‖x0‖2

L2(Ω) , (12)

sup
0≤t≤T

E
(
‖Ix

3 (t)‖2
)
≤ T 2M2

CM2
B ‖x‖2

C , (13)

sup
0≤t≤T

E
(
‖Ix

4 (t)‖2
)
≤ (TMSMf )

2

[
1 + ‖x‖2

H2
+ sup

0≤s≤T
‖µ(s)‖2

λ2

]
, (14)

sup
0≤t≤T

E
(
‖Ix

5 (t)‖2
)
≤ T (LgMSMg)

2

[
1 + ‖x‖2

H2
+ sup

0≤s≤T
‖µ(s)‖2

λ2

]
. (15)

Hence, (11)–(15) imply that

sup
0≤t≤T

E ‖(Φx) (t)‖2 < ∞. (16)

Thus, (16) enables us to conclude that Φ(x) ∈ H2. Since the Ft− measurability
of (Φx)(t) is easily verified, we conclude that Φ is well-defined. Next, we prove
that Φ has a unique fixed point. Indeed, for any x, y ∈ H2, using (A2) – (A4)
in (5) yields the following, for all 0 ≤ t ≤ T :

E ‖(Φx)(t)− (Φy)(t)‖2 ≤ 3
5∑

i=3

E ‖Ix
i (t)− Iy

i (t)‖2

≤ 3
[
T

(
M2

CM2
B + M2

SM2
f

)
+ M2

SM2
g L2

g

] ∫ t

0
E ‖x(s)− y(s)‖2 ds

= β
∫ t

0
E ‖x(s)− y(s)‖2 ds, (17)

where β = 3
[
T

(
M2

CM2
B + M2

SM2
f

)
+ M2

SM2
g L2

g

]
. For any natural number n,

it follows from successive iteration of (17) that, upon taking the supremum
over [0, T ], we arrive at

‖Φnx− Φny‖2
H2
≤ ((Tβ)n /n!) ‖x− y‖2

H2
. (18)
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Since ((Tβ)n /n!) < 1, for sufficiently large n, we can conclude from (18) that
Φn is a strict contraction on H2, so that the Banach contraction mapping
principle ensures that for a given µ ∈ Pλ2 and T > 0, Φ has a unique fixed
point xµ ∈ H2 which coincides with a mild solution of (1), as desired.

To complete the proof, we must show that µ is, in fact, the probability law of
xµ. Toward this end, let L (xµ) = {L (xµ(t)) : t ∈ [0, T ]} represent the proba-
bility law of xµ and define the map Ψ : Cλ2 → Cλ2 by Ψ(µ) = L(xµ). It is not
difficult to see that L (xµ(t)) ∈ Pλ2(H), for all t ∈ [0, T ] since xµ ∈ H2. Now,
in order to verify the continuity of the map t 7→ L (xµ(t)), let 0 ≤ c ≤ T and
observe that for sufficiently small |h| > 0,

E ‖xµ(c + h)− xµ(c)‖2 ≤ 5
5∑

i=1

E
∥∥∥Ixµ

i (c + h)− I
xµ

i (c)
∥∥∥
2
. (19)

An argument similar to the one used in verifying the continuity of Φ can be
used to then deduce from (19) that

lim
h→0

E ‖xµ(c + h)− xµ(c)‖2 = 0, for all 0 ≤ c ≤ T. (20)

Consequently, since for all c ∈ [0, T ] and ϕ ∈ Cλ2 , it is the case that

∣∣∣∣
∫

H
ϕ(x) (L(xµ(c + h))− L(xµ(c))) (dx)

∣∣∣∣
= |E [ϕ(xµ(c + h))− ϕ(xµ(c))]|
≤ ‖ϕ‖Cλ2

E ‖xµ(c + h)− xµ(c)‖ ,

and so, we can conclude that

ρ (L(xµ(c + h)), L(xµ(c)))

= sup
‖ϕ‖C

λ2
≤1

∫

H
ϕ(x) (L(xµ(c + h))− L(xµ(c))) (dx) → 0

as |h| → 0, for any c ∈ [0, T ]. Hence, t 7→ L (xµ(t)) is a continuous map, so
that L (xµ) ∈ Cλ2 , thereby showing that Ψ is well-defined. Finally, we show
that Ψ has a unique fixed point in Cλ2 . Let µ, ν ∈ Cλ2 and let xµ, xν be the
corresponding mild solutions of (1). Standard computations yield

E ‖xµ(t)− xν(t)‖2 ≤ 3
[
TM2

CM2
B

∫ t

0
E ‖xµ(s)− xν(s)‖2 ds

+ 2
(
TM2

SM2
f + M2

SM2
g L2

g

) ∫ t

0

[
E ‖xµ(s)− xν(s)‖2 + ρ2(µ(s), ν(s))

]
ds

]
.

(21)

Note that

ρ2(µ(s), ν(s)) ≤ D2
T (µ, ν)

11



(cf. (4)). So, continuing the inequality in (21) gives rise to

E ‖xµ(t)− xν(t)‖2 ≤ 3
[
TM2

CM2
B + 4

(
TM2

SM2
f + M2

SM2
g L2

g

)]

×
∫ t

0
E ‖xµ(s)− xν(s)‖2 ds

+5M2
ST

(
TM2

f + M2
g L2

g

)
D2

T (µ, ν).

An application of Gronwall’s lemma now yields

E ‖xµ(t)− xν(t)‖2 ≤ 5M2
ST

(
TM2

f + M2
g L2

g

)

× exp
(
3T

[
TM2

CM2
B + 2

(
TM2

SM2
f + M2

SM2
g L2

g

)])
D2

T (µ, ν)

= ς(T )D2
T (µ, ν).

We can choose 0 ≤ T ≤ T to ensure ς
(
T

)
< 1 and hence, taking supremum

above then yields

‖xµ − xν‖2
C([0,T̄ ];H) ≤ ς

(
T

)
D2

T (µ, ν).

As such, since

ρ (L(xµ(t)), L(xν(t))) ≤ E ‖xµ(t)− xν(t)‖ (22)

for all 0 ≤ t ≤ T , we further conclude that

‖Ψ(µ)−Ψ(ν)‖2
Cλ2

= D2
T

(Ψ(µ), Ψ(ν)) ≤ sup
t∈[0,T ]

E ‖xµ(t)− xν(t)‖2

= ‖xµ − xν‖2
H2

< ς
(
T

)
D2

T
(µ, ν) .

Hence, Ψis a strict contraction on Cλ2

([
0, T

]
; (Pλ2(H), ρ)

)
. Consequently,

(1) has a unique mild solution on
[
0, T

]
with probability distribution µ ∈

Cλ2

([
0, T

]
; (Pλ2(H), ρ)

)
. The solution can be extended, by continuity, to the

entire interval [0, T ] in finitely many steps, thereby completing the proof.

4 Approximate and Exact Controllability

In this section we study the approximate and exact controllability for the
second-order McKean-Vlasov equation

12



dx′(t) + (Bx′(t) + Ax(t)) dt =

[Du (t) + f (t, x(t), µ(t))] dt + g (t, x(t), µ(t)) dW (t), 0 ≤ t ≤ T,

x(0) = x0, x′(0) = x1, (23)

µ(t) = probability distribution of x(t),

where D ∈ BL (U,H) (U is a separable Hilbert space) and u (t) ∈ L2
F(0, T ; U)

is a control.

In addition to conditions (A1)-(A5), we assume the following:

(A6) For each 0 ≤ t < T, the operator α
(
αI + ΓT

t

)−1 → 0 in the strong

operator topology as α → 0+, where ΓT
t =

∫ T
t S (T − s) DD∗S∗ (T − s) ds is

the controllability Grammian. Observe that the linear deterministic system

x′′(t) + Ax(t) = Du (t) , 0 ≤ t ≤ T,

x(0) = x0, x′(0) = x1, (24)

corresponding to (23) is approximately controllable on [t, T ] if and only if the

operator α
(
αI + ΓT

t

)−1 → 0 strongly as α → 0+ (see [4], [10]). Moreover,

approximate controllability on [t, T ] is equivalent to strict positiveness of ΓT
t .

(A7) The linear stochastic system

x′′(t) + Ax(t) = Du (t) + σ (t) dW (t) , 0 ≤ t ≤ T,

x(0) = x0, x′(0) = x1, σ ∈ L2
F(0, T ; L0

2) (25)

corresponding to (23) is exactly controllable on [0, T ].

Note that in this case the operator

ΠT
0 =

∫ T

0
S (T − s) DD∗S∗ (T − s)E {· | Fs} ds

is boundedly invertible; that is, there exists γ > 0 such that E
∥∥∥∥
(
ΠT

0

)−1
∥∥∥∥
2

≤ γ2.

Definition 7 System (23) is approximately controllable (resp. exactly control-
lable) on [0, T ] if R(T ) = L2(Ω, F, H) (resp. R(T ) = L2(Ω,F, H)). Here,

R(T ) =
{
x(T ) = x(T, u) : u ∈ L2

=(0, T ; U)
}

,

where Lp
F(0, T ; U)is the closed subspace of Lp

F ([0, T ]× Ω; U) consisting of all
Ft-adapted, U-valued stochastic processes.

13



The following lemma is needed to define the control. The proof is provided in
[10].

Lemma 8 For any h ∈ L2(Ω, F, H), there exists ϕ ∈ L2
F (0, T ; BL(K; H))

such that

h = E(h) +
∫ T

0
ϕ(s)dW (s).

Now, for any (α, h, z, µ) ∈ (0,∞) × L2(Ω, F, H) × H2 × Cλ2 , we define the
control function by

uα (t, z, µ) = D∗S∗ (T − t)
(
αI + ΓT

0

)−1
(h− S(T )x1 − (C(T )− S(T )B)x0)

−D∗S∗ (T − t)
∫ t

0

(
αI + ΓT

s

)−1
C(T − s)B (z (s)) ds

−D∗S∗ (T − t)
∫ t

0

(
αI + ΓT

s

)−1
S(T − s)f (s, z(s), µ(s)) ds

−D∗S∗ (T − t)
∫ t

0

(
αI + ΓT

s

)−1
S(T − s)g (s, z(s), µ(s)) dW (s). (26)

Lemma 9 There exists a positive real constant M such that for all x, y ∈ H2

and µ, ν ∈ Cλ2

E ‖uα (t, x, µ)− uα (t, y, ν)‖2 ≤ 1

α2
M

∫ t

0

[
E ‖x(s)− y(s)‖2 + ρ2 (µ(s), ν(s))

]
ds,

(27)

E ‖uα (t, x, µ)‖2 ≤ 1

α2
M

(
1 +

∫ t

0

[
E ‖x(s)‖2 + ‖µ (s)‖2

λ2

]
ds

)
.

(28)

Proof. We only provide the details for the proof of (27) since (28) can be
verified in a similar manner. Let x, y ∈ H2 and µ, ν ∈ Cλ2 . Observe that stan-
dard calculations involving the Cauchy inequality, Lemma 8, and the Lipschitz

14



condition on the data yield

E ‖uα (t, x, µ)− uα (t, y, ν)‖2 ≤ 3E
∥∥∥∥D∗S∗ (T − t)

∫ t

0

(
αI + ΓT

s

)−1
C(T − s)×

× [B (x(s))−B (y(s))] ds‖2

+3E
∥∥∥∥D∗S∗ (T − t)

∫ t

0

(
αI + ΓT

s

)−1
S(T − s)

× [f (s, x(s), µ(s))− f (s, y(s), ν(s))] ds‖2

+3E
∥∥∥∥D∗S∗ (T − t)

∫ t

0

(
αI + ΓT

s

)−1
S(T − s)

× [g (s, x(s), µ(s))− g (s, y(s), ν(s))] dW (s)‖2

≤ 6

α2
‖D‖2 M2

S

[
M2

S (TMf + Mg) + M2
C ‖B‖2

] ∫ t

0

[
E ‖x(s)− y(s)‖2 + ρ2 (µ(s), ν(s))

]
ds

=
1

α2
M

∫ t

0

[
E ‖x(s)− y(s)‖2 + ρ2 (µ(s), ν(s))

]
ds,

where

M = 6 ‖D‖2 M2
S

[
M2

S (TMf + Mg) + M2
C ‖B‖2

]
.

This completes the proof.

We now present the result concerning the approximate controllability of (23).
Indeed, assuming the approximate controllability of the corresponding deter-
ministic system (under suitable conditions), we shall establish the approximate
controllability of (23). To this end, fix α > 0, µ ∈ Cλ2 and define the operator
Φα : H2 → H2 by

(Φαx) (t) = S(t)x1 + (C(t)− S(t)B)x0 +
∫ t

0
C(t− s)Bx(s)ds

+
∫ t

0
S(t− s)Buα (s, x, µ) ds +

∫ t

0
S(t− s)f (s, x(s), µ(s)) ds

+
∫ t

0
S(t− s)g (s, x(s), µ(s)) dW (s)

= S(t)x1 + (C(t)− S(t)B)x0 +
4∑

i=1

Ix
i (t). (29)

Theorem 10 If the assumptions (A1)-(A5) are satisfied, then the operator Φα

has a unique fixed point in H2 with the corresponding probability distribution
µ ∈ Cλ2.

Proof. As in the proof of Theorem 6 we may show that for each fixed α >
0, µ ∈ Cλ2 , the operator Φα is continuous and maps H2 into itself. Then, we can
use the Banach contraction mapping principle to argue that Φα has a unique
fixed point in H2. Specifically, we claim that there exists a natural number n
such that Φn

α is a contraction on H2. To see this, let x, y ∈ H2 and note that
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(29) implies that

E ‖(Φαx) (t)− (Φαy)(t)‖2 ≤ 4E
4∑

i=1

‖Ix
i (t)− Iy

i (t)‖2

≤ 4
[
TM2

C ‖B‖2 +
M

α2
M2

S ‖D‖2 T 2 + TM2
SMf + M2

SMg

]
×

×
∫ t

0
E ‖x(s)− y(s)‖2 ds, 0 ≤ t ≤ T.

Hence, we obtain a positive real constant β(α) such that

E ‖(Φαx) (t)− (Φαy)(t)‖ ≤ β(α)
∫ t

0
E ‖x(s)− y(s)‖p ds, (30)

for all 0 ≤ t ≤ Tand for any x, y ∈ H2. For any natural number n, it follows
from successive iteration of (30) that, upon taking the supremum over [0, T ],

‖Φn
αx− Φn

αy‖2
H2
≤ (Tβ(α))n

n!
‖x− y‖2

H2
. (31)

Since, for sufficiently large n, (Tβ(α))n/n! < 1, we can conclude from (31) that
so that Φn

α is a strict contraction, so that the Banach contraction mapping
principle ensures that Φαhas a unique fixed point xα in H2, as desired. To
complete the proof, it remains to show that µ is, in fact, the probability law
of xα. Since this is similar to the final part of the proof of Theorem 6, we omit
the details. This completes the proof.

Thus, by Theorem 10, for any α > 0, the operator Φαhas a unique fixed
point H2 with the corresponding probability µα ∈ Cλ2 , which is clearly a mild
solution of the following equation:

xα(t) = S(t)x1 + (C(t)− S(t)B)x0

+Γt
0S

∗ (T − t)
(
αI + ΓT

0

)−1
(Eh− S(T )x1 − (C(T )− S(T )B)x0)

+
∫ t

0

[
I − Γt

0S
∗ (T − t)

(
αI + ΓT

s

)−1
]
C(t− s)Bxα(s)ds

+
∫ t

0

[
I − Γt

0S
∗ (T − t)

(
αI + ΓT

s

)−1
]
S(t− s)f (s, xα(s), µα(s)) ds

+
∫ t

0

[
I − Γt

0S
∗ (T − t)

(
αI + ΓT

s

)−1
]
S(t− s)g (s, xα(s), µα(s)) dW (s)

+
∫ t

0
Γt

0S
∗ (T − t)

(
αI + ΓT

s

)−1
ϕ(s)dW (s) . (32)

Our main result in this section can now be stated as follows:
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Theorem 11 Assume that (A1)-(A6) hold. If B = 0, the functions f and
g are uniformly bounded on their respective domains, and the sine family
{S (t) : t > 0} is compact, then the system (23) is approximately controllable
on [0, T ].

Proof. It is easily follows from (32) that

xα(T ) = h− α
(
αI + ΓT

0

)−1
(Eh− S(T )x1 − C(T )x0)

+α
∫ T

0

(
αI + ΓT

s

)−1
S(T − s)f (s, xα(s), µα(s)) ds

α
∫ T

0

(
αI + ΓT

s

)−1
S(T − s) [g (s, xα(s), µα(s))− ϕ (s)] dW (s) . (33)

It follows from the properties of f and g that

‖f (s, xα(s), µα(s))‖2 + ‖g (s, xα(s), µα(s))‖2 ≤ N,

for all (s, ω) ∈ [0, T ]× Ω. Then, there exists a subsequence, still denoted by

{f (s, xα(s), µα(s)) , g (s, xα(s), µα(s))} ,

which converges weakly to, say, {f (s) , g (s))} in H × BL (K,H). The com-
pactness of {S (t) : t > 0} implies that





S (T − s) f (s, xα(s), µα(s)) → S (T − s) f (s) ,

S (T − s) g (s, xα(s), µα(s)) → S (T − s) g (s) ,

for all (s, ω) ∈ [0, T ] × Ω. On the other hand, by assumption (A6), for all

0 ≤ s < T, α
(
αI + ΓT

s

)−1 → 0 strongly as α → 0+. Moreover, recall that∥∥∥∥α
(
αI + ΓT

s

)−1
∥∥∥∥ ≤ 1. Thus, from (33), we conclude from the Lebesgue domi-

nated convergence theorem that

E ‖xα(T )− h‖ ≤ 4
∥∥∥∥α

(
αI + ΓT

0

)−1
(Eh− S(T )x1 − C(T )x0)

∥∥∥∥

+4T
∫ T

0

∥∥∥∥α
(
αI + ΓT

s

)−1
∥∥∥∥
2

‖S(T − s) [f (s, xα(s), µα(s))− f (s)]‖2 ds

+4
∫ T

0

∥∥∥∥α
(
αI + ΓT

s

)−1
∥∥∥∥
2

‖S(T − s) [g (s, xα(s), µα(s))− g (s)]‖2 ds

+4
∫ T

0

∥∥∥∥α
(
αI + ΓT

s

)−1
ϕ (s)

∥∥∥∥
2

ds

as α → 0+, thereby establishing the approximate controllability of (23).
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Theorem 12 Assume (A1)-(A5) and (A7). If

4T

[
TM2

C ‖B‖2 +
M

γ2
M2

S ‖D‖2 T 2 + TM2
SMf + M2

SMg

]
< 1,

then the system (23) is exactly controllable on [0, T ].

Proof. To prove the exact controllability, for any (h, z, µ) ∈ L2(Ω,F, H) ×
H2 × Cλ2 we define the control function by

u (t, z, µ) = D∗S∗ (T − t)E
{(

ΠT
0

)−1
(h− S(T )x1 − (C(T )− S(T )B)x0

−
∫ T

0
C(T − s)B (z (s)) ds−

∫ T

0
S(T − s)f (s, z(s), µ(s)) ds

−
∫ T

0
S(T − s)g (s, z(s), µ(s)) dW (s)

)
| Ft

}

and for fixed µ ∈ Cλ2 define the operator Φ : H2 → H2 by

(Φx) (t) = S(t)x1 + (C(t)− S(t)B)x0 +
∫ t

0
C(t− s)Bx(s)ds

+
∫ t

0
S(t− s)Bu (s, x, µ) ds +

∫ t

0
S(t− s)f (s, x(s), µ(s)) ds

+
∫ t

0
S(t− s)g (s, x(s), µ(s)) dW (s)

= S(t)x1 + (C(t)− S(t)B)x0 +
4∑

i=1

Ix
i (t).

As in the proof of Theorem 11 it follows that

E ‖(Φx) (t)− (Φy)(t)‖2 ≤ 4E
4∑

i=1

‖Ix
i (t)− Iy

i (t)‖2

≤ 4

[
TM2

C ‖B‖2 +
M

γ2
M2

S ‖D‖2 T 2 + TM2
SMf + M2

SMg

]

×
∫ T

0
E ‖x(s)− y(s)‖2 ds

≤ 4T

[
TM2

C ‖B‖2 +
M

γ2
M2

S ‖D‖2 T 2 + TM2
SMf + M2

SMg

]

×‖x− y‖2
H2

.

So, our assumption on the data enables us to conclude that Φ : H2 → H2 is
a contraction. Hence, by the Banach fixed point theorem, Φ has a fixed point
x ∈ H2. The fact that µ is the probability law of x is similar to the final part of
Theorem 6. Further, x (T ) = h. Thus, the system (23) is exactly controllable
on [0, T ].
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5 Examples

Example 5.1 Let D be a bounded domain in Rnwith smooth boundary ∂D.
Consider the following initial-boundary value problem

∂

(
∂x (t, z)

∂t

)
+

n∑

j,k=1

∂

∂zj

[
ajk (z)

∂x (t, z)

∂zj

]
∂t

+C (~z) x (t, z) ∂t + B

(
∂x (t, z)

∂t

)
∂t

=

(
f1 (t, z, x (t, z)) +

∫

L2(D)
f2(t, z, y)µ(t, z)(dy)

)
∂t

+f3 (t, z, x (t, z)) dβ (t) , a.e. on (0, T )×D,

x (0, z) = ξ1 (z) , a.e.on D, (34)

∂x (0, z)

∂t
= ξ2 (z) , a.e. on D,

x (t, z) = 0, a.e. on (0, T )× ∂D,

where z =< z1, . . . , zn >∈ D, ξ1(·) and ξ2(·) ∈ L2
0 (Ω; L2 (D)) , β is a stan-

dard n-dimensional Brownian motion, f1 : [0, T ] ×D × R → R, f2 : [0, T ] ×
D × L2(D) → L2(D), f3 : [0, T ] × D × R → BL (L2 (D)), ajk : D →
R (1 ≤ j, k ≤ n) ,C : D → R, B : L2(D) → L2(D), and µ(t, ·) ∈ Pλ2(L2(D))is
the probability law of x(t, ·).

We impose the following conditions:

(A8) f1satisfies the Caratheodory conditions (i.e., measurable in (t, z) and
continuous in the third variable) such that
(i) |f1(t, y, z)| ≤ M̄f1 [1 + |z|] , for all 0 ≤ t ≤ T, y ∈ D, z ∈ R, and some
M̄f1 > 0,

(ii) |f1(t, y, z1)− f1(t, y, z2)| ≤ Mf1 |z1 − z2| , for all 0 ≤ t ≤ T, y ∈
D, z1, z2 ∈ R,and some Mf1 > 0.

(A9) f2 satisfies the Caratheodory conditions and

(i) ‖f2(t, y, z)‖L2(D) ≤ M̄f2

[
1 + ‖z‖L2(D)

]
, for all 0 ≤ t ≤ T, y ∈ D, z ∈

L2(D), and some M̄f2 > 0,
(ii) f2(t, y, ·) : L2(D) → L2(D) is in Cρ, for each 0 ≤ t ≤ T, y ∈ D.

(A10) f3 satisfies the Caratheodory conditions and
(i) ‖f3(t, y, z)‖BL(RN ,L2(D)) ≤ M̄f3 [1 + |z|] , for all 0 ≤ t ≤ T, y ∈ D, z ∈
R, and some M̄f3 > 0,

(ii) ‖f3(t, y, z1)− g(t, y, z2)‖BL(RN ,L2(D)) ≤ Mf3 |z1 − z2| , for all 0 ≤ t ≤
T, y ∈ D, z1, z2 ∈ R, and some Mf3 > 0.

(A11) ajk : D → R (1 ≤ j, k ≤ n) and C : D → R are continuous on D
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and are defined as to ensure that the Gärding inequality is satisfied. (See
[12] for sufficient conditions guaranteeing this condition holds).

(A12) B : L2(D) → L2(D)is a bounded linear operator.
(A13) ξ1(·) and ξ2(·) ∈ L2

0 (Ω; L2 (D)).

We have the following theorem:

Theorem 13 If (A6)-(A13) are satisfied, then (34) has a unique mild solution
x ∈ C ([0, T ] ; L2(Ω, L2(D)))with probability law {µ(t, ·) : 0 ≤ t ≤ T} .

Proof. Let H = K = L2 (D) and define A : H → H by

Ax (t, ·) =
n∑

j,k=1

∂

∂zj

(
ajk (·) ∂x (t, ·)

∂zj

)
+ C (·) x (t, ·) . (35)

Using (A11), it follows that A is a uniformly elliptic, densely-defined, sym-
metric, self-adjoint operator which generates a strongly continuous cosine
family on H (see [6, 13, 25]). Next, define f : [0, T ] × H × Pλ2(H) → H,
g : [0, T ] × H × Pλ2(H) → BL(K, H), B : H → H, x0(·) and x1(·), respec-
tively, by

f(t, x(t), µ(t))(z) = f1 (t, z, x (t, z)) +
∫

L2(D)
f2(t, z, y)µ(t, z)(dy),

g(t, x(t), µ(t))(z) = f3 (t, x (t, z)) ,

B(x′(t))(z) = B

(
∂x (t, z)

∂t

)
,

x0(0)(z) = ξ1 (z) , (36)

x1(0)(z) = ξ2 (z) ,

for all 0 ≤ t ≤ T and z ∈ D. With these identifications, observe that (34)
can be written in the abstract form (1). Clearly, (A1) and (A4) – (A5) are
satisfied (thanks to the properties of the operator in (35) and (A12) – (A13)).
We claim that f and g (as defined in (36)) satisfy (A2) and (A3). To this end,
observe that from (A8)(i), we obtain

‖f1(t, ·, x(t, ·)‖L2(D) ≤ M f1

[∫

D
[1 + |x(t, z)|]2 dz

]1

2 (37)

≤ 2M f1

[
m(D) + ‖x(t, ·)‖2

L2(D)

]1

2

≤ 2M f1

[√
m(D) + ‖x‖H2

]

≤ M
∗
f1

[
1 + ‖x‖H2

]
,
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for all 0 ≤ t ≤ T, x ∈ H2, where

M∗
f1

=





2M̄f1

√
m(D), if m(D) > 1,

2M̄f1 , if m(D) ≤ 1.

(Here, m denotes Lebesgue measure in Rn.) Also, from (A8)(ii), we obtain

‖f1(t, ·, x(t, ·)− f1(t, ·, y(t, ·)‖L2(D) ≤ Mf1

[∫

D
|x(t, z)− y(t, z)|2 dz

]1

2

≤ Mf1

[
sup

0≤s≤t
‖x(s, ·)− y(s, ·)‖2

L2(D)

]1

2
= Mf1 ‖x− y‖H2

. (38)

Next, using (A9)(i), together with the Hölder inequality, yields

∥∥∥∥∥
∫

L2(D)
f2(t, ·, y)µ(t, ·)(dy)

∥∥∥∥∥
L2(D)

=




∫

D

[∫

L2(D)
f2(t, z, y)µ(t, z)(dy)

]2

dz




1

2

≤
[∫

D

∫

L2(D)
‖f2(t, z, y)‖2

L2(D) µ(t, z)(dy)dz

]1

2

≤ M̄f2

[∫

D

(∫

L2(D)
(1 + ‖y‖L2(D))

2µ(t, z)(dy)

)
dz

]1

2
(39)

≤ M̄f2

√
m(D)

√
‖µ(t)‖λ2 (cf. (4))

≤ M̄f2

√
m(D)(1 + ‖µ(t)‖λ2), for all 0 ≤ t ≤ T, µ ∈ Pλ2(H).

Also, invoking (A9)(ii) enables us to see that for all µ, ν ∈ Pλ2(H),

∥∥∥∥∥
∫

L2(D)
f2(t, ·, y)µ(t, ·)(dy)−

∫

L2(D)
f2(t, ·, y)ν(t, ·)(dy)

∥∥∥∥∥
L2(D)

=

∥∥∥∥∥
∫

L2(D)
f2(t, ·, y)(µ(t, ·)− ν(t, ·))(dy)

∥∥∥∥∥
L2(D)

≤ ‖ρ(µ(t), ν(t))‖L2(D) (cf. (4))

=
√

m(D)ρ(µ(t), ν(t)), for all 0 ≤ t ≤ T. (40)

Combining (37) and (39), we see that f satisfies (A2)(i) with

M̄f = 2 ·max
{
M̄f2

√
m(D),M∗

f1

}
,
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and combining (39) and (40) shows that f satisfies (A2)(ii) with

Mf = max
{
Mf1 ,

√
m(D)

}
.

It is easy to see that g satisfies (A3) with Mg = Mf3 and M̄g = M̄f3 . Thus,
we can invoke Theorem 6 to conclude that (34) has a unique mild solution
x ∈ C ([0, T ] ; L2(D, L2(D))) with probability law {µ(t, ·) : 0 ≤ t ≤ T}.

Example 5.2 Consider the following initial-boundary value problem





∂

(
∂x (t, z)

∂t

)
+

∂2x (t, z)

∂z2
∂t = [v (t, z) + f (t, x (t, z))] ∂t

+g (t, x (t, z)) dβ (t) , a.e. on (0, T )× [0, π] ,

x (0, z) = ξ1 (z) , a.e.on [0, π] ,

∂x (0, z)

∂t
= ξ2 (z) , a.e. on [0, π] ,

x (t, z) = 0, a.e. on (0, T )× {0, π} ,

(41)

where f, g are as in Theorem 12 with D = [0, π] and β (t) is one dimensional
Brownian motion.

Let H = K = L2 [0, π] and define A : H → H by

Ay = y′′, y ∈ D (A) ,

where

D (A) = {y ∈ H : y, y′ are absolutely continuous, y′′ ∈ H, y (0) = y (π) = 0} .

It is known that A is an infinitesimal generator of a strongly continuous cosine
family {C (t) : t ∈ R} in H and is given by

C (t) y =
∞∑

n=1

cos (nt) (y, en) en, y ∈ H,

where en (ξ) =
√

2/π sin nξ, i = 1, 2, ... is the orthogonal set of eigenvalues of

A. The associated sine family S (t) , t > 0 is compact, and is given by

S (t) y =
∞∑

n=1

1

n
sin (nt) (y, en) en, y ∈ H.

The problem (41) can be written in the following abstract form:

dx′ (t) + [Bx′ (t) + Ax (t)] dt = [u (t) + f (t, x (t))] dt + g (t, x (t)) dW (t) ,

x (0) = x0, x′ (0) = x1, 0 ≤ t ≤ T.
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Define

ΓT
t =

∫ T

t
S (T − s) S∗ (T − s) ds.

We claim that S∗ (T − s) y = 0, t ≤ s ≤ T implies that y = 0. Indeed,

S∗ (T − s) y = 0, t ≤ s ≤ T =⇒
∫ T

t
‖S∗ (T − s) y‖2 ds =

〈
ΓT

t y, y
〉

= 0

=⇒
∞∑

n=1

1

n2

∫ T

t
sin2 (n (T − s)) ds (y, en)2 = 0

=⇒
∞∑

n=1

1

2n2

[
1− sin 2 (n (T − s))

2n

]s=T

s=t

(y, en)2 = 0

=⇒
∞∑

n=1

1

2n2

[
T − t +

sin 2 (n (T − t))

2n

]
(y, en)2 = 0

=⇒ (y, en)2 = 0 for all n ≥ 1 =⇒ y = 0.

It follows that the operator α
(
αI + ΓT

t

)−1 → 0 in the strong operator topol-

ogy as α → 0+, see [4]. So Assumption (A6) is satisfied. By Theorem 11 the
system (41) is approximately controllable on [0, T ].

We complete our discussion by presenting a stochastic McKean-Vlasov version
of the deterministic damped nonlinear beam equations considered in [18], [3],
[22], and [27].

Example 5.3. Consider the following initial-boundary value problem:





∂

(
∂x(t, z)

∂t

)
+

[
∂4x(t, z)

∂z4
+ β

∂3x(t, z)

∂t∂z2

−

γ + α


∫ L

0

∣∣∣∣∣
∂x

∂z
(t, w)

∣∣∣∣∣
2

dw





 ∂2x(t, z)

∂z2


 ∂t

=
[
f1(t, z, x(t, z)) +

∫
L2(0,L) f2(t, z, y)µ(t, z)(dy)

]
∂t

+f3(t, z, x(t, z))dβ(t) a.e.on (0, T )× (0, L)

x(0, z) = ξ1(z) a.e.on (0, L)
∂x

∂t
(0, z) = ξ2(z) a.e.on (0, L)

x(t, 0) = x(t, L) =
∂2x(t, 0)

∂z2
=

∂2x(t, L)

∂z2
= 0 a.e.on (0, T )

(42)

Here, z ∈ [0, L] ; β is a one-dimensional Brownian motion; ξ1, ξ2, f1, f2, and f3

are as in Example 5.1 with D = (0, L); α, β are positive constants; γ ∈ R;
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and µ(t, ·) ∈ Pλ2(L2(0, L)) is the probability law of x(t, ·). We impose the
same conditions on the data as in Example 5.1. More specifically, we assume
(A8) – (A10) and (A13) hold with D = (0, L); we shall label these modified
hypotheses as (A8)− (A10) and (A13).

A determinisitic equation similar to this one was studied by Fitzgibbon [18];
variants of it have been subsequently investigated by others (see [3], [22],
and [27], for instance). Such equations govern the transverse motion of an
extensible beam in the plane whose ends are hinged and held at a fixed distance
apart. Various terms on the left-side of (42) account physically for different
quantities. For instance, the fourth term represents certain internal structural
damping, the damping term (i.e., the third term) accounts for the effect of
axial force on the beam, and the nonlinear fifth term represents the change
in tension of the beam. The current example introduces noise into the model,
as well as dependence of the nonlinearities on the probability law of the state
process governing the displacement of the beam.

We have the following theorem.

Theorem 14 If (A8)− (A10) and (A13) are satisfied, then (42) has a unique
mild solution x ∈ C ([0, T ] ; L2 (Ω, L2(0, L))) with probability law {µ(t, ·) : t ∈ [0, T ]}.

Proof. Let H = K = L2(0, L) and define the operator A : D(A) ⊂ H → H
by

Ax(t, ·) =
∂4x(t, ·)

∂z4
,

D(A) =
{
x ∈ H4(0, L) : x(0) = x(L) = x′′(0) = x′′(L) = 0

}
.

It has been shown in [18] that A is a positive, self-adjoint operator on H.
Consequently, A generates a strongly continuous cosine family on H. In order
to write (42) in the abstract form (1), we need to express the various terms
on the left-side of (42) using certain fractional powers of A, as outlined in
[18]; we recall the essential highlights of that discussion here for completeness.
To begin, the eigenvalues of A are {λn = (nπ)4 |n ∈ N} with corresponding

eigenvectors

{
zn(s) =

√
2

L
sin(nπs) |n ∈ N, s ∈ [0, L]

}
. Then, A has the spec-

tral representation

Ax =
∞∑

n=1

λn 〈x, zn〉 zn.

Furthermore, since the fractional powers of A are positive and self-adjoint, the

24



following are well-defined:

A
1
2 x =

∞∑

n=1

λ
1
2
n 〈x, zn〉 zn = −∂2x

∂z2

A
1
4 x =

∞∑

n=1

λ
1
4
n 〈x, zn〉 zn =

∂x

∂z
(43)

Also,

∥∥∥A 1
4 x

∥∥∥
2

H
=

〈
A

1
4 x, A

1
4 x

〉
=

∞∑

n=1

λ
1
2
n 〈x, zn〉2 =

∫ L

0

∥∥∥∥∥
∂x

∂z
(t, w)

∥∥∥∥∥
2

dw (44)

Next, we define g, x0, x1 exactly as in Example 5.1, while f and B are given
by:

f(t, x(t), µ(t))(z) = f1(t, z, x(t, z)) +
∫

L2(0,L)
f2(t, z, y)µ(t, z)(dy)

−

γ + α




∫ L

0

∣∣∣∣∣
∂x

∂z
(t, w)

∣∣∣∣∣
2

dw





 ∂2x(t, z)

∂z2

= f1(t, z, x(t, z)) +
∫

L2(0,L)
f2(t, z, y)µ(t, z)(dy)

−
(
γ + α

∥∥∥A 1
4 x(t)

∥∥∥
2

H

)
A

1
2 x(t),

B(x′(t))(z) = β
∂3x(t, z)

∂t∂z2
= βA

1
2

(
∂x(t, z)

∂t

)
,

for all z ∈ [0, L] , t ∈ [0, T ]. Using these identifications, (42) can be written in
the abstract form (1). Clearly, (A1) and (A5) are satisfied due to (A13)and
the properties of A. In addition, one can use standard computations (as in
[18]) involving the inner product and properties of the fractional powers of

A to show that
∥∥∥A 1

4 x(t)
∥∥∥
2

and
∥∥∥A 1

2 x(t)
∥∥∥
2
are uniformly bounded on [0, T ]. As

such, (A4) is satisfied, and only minor changes to the computations involving
(A8)− (A10) used to verify (10) – (13) are needed to show that (A2) and (A3)
are satisfied in the current setting. As such, we can again invoke Theorem 6 to
conclude that (42) has a unique mild solution x ∈ C ([0, T ] ; L2 (Ω, L2(0, L)))
with probability law {µ(t, ·) : t ∈ [0, T ]}, as desired.
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