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NANO EXPRESS Open Access

Electroless etching of Si with IO3
– and related

species
Kurt W Kolasinski1* and Jacob W Gogola2

Abstract

We have previously derived seven requirements for the formulation of effective stain etchants and have
demonstrated that Fe3+, Ce4+, and VO2

+ + HF solutions are highly effective at producing nanocrystalline porous
silicon. Here, we show that Cl2, Br2, I2, ClO3

–, BrO3
–, IO3

–, I–, and I3
– induce etching of silicon when added to HF.

However, using the strict definition that a pore is deeper than it is wide, we observe little evidence for porous
layers of significant thickness but facile formation of pits. Iodate solutions are extremely reactive, and by the
combined effects of IO3

–, I3
–, I2, and I–, these etchants roughen and restructure the substrate to form a variety of

structures including (circular, rectangular, or triangular) pits, pyramids, or combinations of pits and pyramids without
leaving a porous silicon layer of significant thickness.

Keywords: Porous silicon, Etching, Nanostructures, Thin films, Hydrofluoric acid, Iodate, Iodine, Iodide, Triiodide

PACS: 81.07.-b, 81.65.C, 68.55.ag

Background
Stain etching is potentially a fast, easy, and inexpensive
method of producing porous silicon (por-Si) on arbitrar-
ily shaped surfaces. When mixed with HF(aq), Fe3+, Ce4+,
and VO2

+ have all previously been shown [1-5] to be cap-
able of producing uniform layers of por-Si with thick-
nesses up to 20 μm. Perhaps more importantly for
applications, the ability to etch arbitrarily shaped sub-
strates means that stain etchants can also efficiently etch
powdered silicon. Loni et al. [6] have demonstrated that
inexpensive metallurgical-grade silicon powder can be
converted to high-surface-area por-Si powder. Porous
silicon powder may find applications as a high-energy
material [7], in drug delivery [8], biosensing [9], and as
an anode material in lithium-ion batteries [10].
When silicon is exposed to an aqueous fluoride solu-

tion, the morphology of the etched surface depends sen-
sitively on the balance of the surface reactions that
occur. Oxidation by water dissociation or step flow etch-
ing initiated by OH– both favor the formation of uni-
form surfaces, whereas direct Si atom dissolution via the

Gerischer mechanism [11,12] favors por-Si formation.
Surface chemistry alone does not lead to por-Si forma-
tion. The chemistry must be coupled to charge carrier
dynamics to form a porous film. In electroless etching to
form por-Si (stain etching), the quantum confinement-
related shift of the Si valence band causes fluoride etch-
ing of Si to be self-limiting, which is responsible for
nanostructure formation [13].
We have undertaken a series of experiments to de-

velop new stain etchants and better understand the dy-
namics of etching [1-5]. The seven requirements for the
formulation of an effective stain etchant are [13,14] (1)
an acidic fluoride solution, (2) sufficiently high fluoride
concentration compared to the oxidant concentration,
(3) the oxidant must be able to inject holes into the Si
valence band at an appreciable rate; thus, its electrode
potential should be more positive than approximately
+0.7 V, (4) oxide formation needs to be slow or nonexis-
tent, (5) the oxidant and all products are soluble, (6) film
homogeneity is enhanced if the oxidant's half-reaction
does not evolve gas, and finally, (7) the net etching reac-
tion from hole injection to Si atom removal (including
the reactions of any by-products) has to be sufficiently
anisotropic (attacking all kinds of sites but only at the
bottom of the pore) to support pore nucleation and
propagation.
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Previous work has shown that etching of silicon is
affected by the addition of halogens and halogenates to
fluoride solutions. Salem et al. [15] were able to increase
the rate of anodic groove formation caused by etching at
the contact of a Pt wire with a Si substrate by adding
1 mM I2 to the etchant. Seo and co-workers investigated
etching induced by KIO3 and KBrO3 [16-18]. However,
alkali metals precipitate readily with the etch product
SiF6

2– [19]. Precipitation hinders the reproducible forma-
tion of uniform layers, and no significant por-Si layers
were observed in these studies.
Adachi and co-workers have performed a number of

studies with iodates and other oxidants. Xu and Adachi
[20] investigated etching KIO3 +HF solutions with and
without illumination at ≥600 nm from a Xe lamp. They
found no formation of por-Si in the absence of illumin-
ation. When illuminated, they attributed observed
photoluminescence (PL) to microporous layers with a
thickness of ≤80 nm. However, it should be noted that
PL has previously been observed from the interface of
hexafluorosilicates with silicon [19] and that the lateral
size (20 to 100 nm) of features they observed by atomic
force microscopy was often larger than the reported film
thickness. They also report that por-Si emitting stable
red PL can be formed anodically in the presence of the
very low concentrations of I2 provided by a saturated I2/
50% HF solution [21]. During anodic etching of n-type
wafers [22], the addition of KIO3 increased the observed
pore size. Their report that 10–4 M KIO3 solutions do
not react with Si surfaces runs counter to the high re-
activity reported here for HIO3 solutions.
Halogenate +HF solutions can be made that meet all of

the criteria for stain etchants except the last. Therefore,
these species are not suitable for por-Si formation even
though they very effectively induce etching and restructur-
ing of the surface. On the other hand, we demonstrate
that HIO3+HF is quite capable of restructuring the sur-
face to produce other sorts of nano- and micro-structures.

Methods
Diffuse reflectance infrared spectroscopy, cross-sectional
scanning electron microscopy, photoluminescence, and
white light reflectometry have been used to measure the
thickness, surface area, and porosity of por-Si thin films
and restructured Si substrates made by oxidant +HF
etching in various solutions as a function of solution
composition and etch time. Scanning electron micros-
copy (SEM) was performed with an FEI Quanta 400
ESEM (Hillsboro, OR, USA). The SEM operates with
integrated Oxford INCA energy-dispersive X-ray spec-
troscopy (Abingdon, UK). Fourier transform infrared
spectroscopy was performed as described previously [2]
with a Nicolet Protégé 460 (Madison, WI, USA). Reflect-
ometry was performed on an Ocean Optics USB2000

spectrometer with a DH-2000 deuterium tungsten halo-
gen lamp from 360 to 1,100 nm (Dunedin, FL, USA).
Photoluminescence measurements were made on a Cary
Eclipse fluorescence spectrophotometer with excitation
at 350 nm (Agilent Technologies, Inc., Santa Clara, CA,
USA).
All etching was performed on either 0- to 100-Ω cm

or 14- to 20-Ω cm p-type test-grade Si(100) wafers, or
mechanical-grade n-type Si(111) wafers (University
Wafer, Boston, MA, USA). The wafers are cleaned by
ultrasonication in acetone then ethanol followed by rins-
ing in water prior to etching. Exposure of the samples to
air after cleaning is minimized. After etching, samples
are rinsed in water and ethanol, and then dried in a
stream of Ar gas.
Table 1 lists the standard electrochemical potentials of

a number of oxidants of interest. We have shown previ-
ously [1-5] that Fe3+, Ce4+, and VO2

+ are quite capable
for facile production por-Si but HCrO4

– and MnO4
– are

less reliable for por-Si formation. Both are capable of in-
ducing etching. Chromate is particularly effective at
etching defects in silicon [23]. Thus, its solutions may
exhibit too much anisotropy for uniform por-Si forma-
tion. Permanganate is usually supplied from a Na or K
salt, and as mentioned above [19], alkali metals precipi-
tate readily with the etch product SiF6

2–, which can lead
to interferences and inhomogeneities.
Two other oxidants that appear in Table 1 are IrCl2�6

and S2O2�
8 . We have found that IrCl2�6 is capable of

Table 1 Standard E° of oxidants of interest and
approximate positions of VBM at the silicon surface

Species E°/V Half-reaction

I2 0.5355 I2 þ 2e� ! 2I�

VBM (n, surface) 0.67

Fe3þ 0.771 Fe3þ þ e� ! Fe2

IrC12�6 0.8665 IrC12�6 þ e� ! IrC13�6
VBM (p, surface) 0.9

NO�
3 0.957 NO�

3 þ 4Hþ þ 3e� ! NOðgÞ þ H2O

VOþ
2 0.991 VOþ

2 þ 2Hþ þ e� ! VO2þ þ H2O

Br2 1.0873 Br2 þ 2e� ! 2Br�

IO�
3 1.195 IO�

3 þ 6Hþ þ 5e� ! 1
2 I2 þ 3H2O

HCrO�
4 1.350 HCrO�

4 þ 7Hþ þ 3e� ! Cr3þ þ 4H2O

Cl2 1.35827 C12 þ 2e� ! 2C1�

ClO�
3 1.47 ClO�

3 þ 6Hþ þ 5e� ! 1
2 C12 þ 3H2O

BrO�
3 1.482 BrO�

3 þ 6Hþ þ 5e� ! 1
2 Br2 þ 3H2O

MnO�
4 1.507 MnO�

4 þ 8Hþ þ 5e� ! Mn2þ þ 4H2O

Ce4þ 1.72 Ce4þ þ e� ! Ce3þ

S2O2�
8 2.0 S2O2�

8 þ 2e� ! 2SO2�
4

E°, electrode potentials; VBM, valence band maximum.
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forming por-Si films and will report on this in detail else-
where. We have attempted a few cursory etching experi-
ments with K2S2O8 or (NH4)2S2O8 in 48 wt.% HF. There
are signs of reaction, such as bubbling and waviness on
the surface during etching, but we have not observed por-
Si film formation. Grains of the solid dropped into HF
induced vigorous bubbling, which slows markedly once
they have dissolved. We are in the process of trying to
synthesize H2S2O8. This is a better candidate, as it will
not suffer from precipitation interferences.
Here, we concentrate on solutions made up from NaI

(Fisher certified; Pittsburgh, PA, USA), NaIO3 (Fischer
certified), HIO3 (Sigma-Aldrich ACS reagent, >99.5%;
St. Louis, MO, USA), I2 (Fisher USP resublimed), HI
(Sigma-Aldrich, 57 wt.% in water, unstabilized), NaBrO3

(Fisher certified), Br2, HBr, NaClO3 (Fisher certified),
Cl2, and HCl. These are added to 48 wt.% HF (Acros
Organics ACS reagent, Fair Lawn, NJ, USA).

Results and discussion
The iodate ion IO3

– very effectively injects charge into Si
through the five-electron process described in Table 1.
The induced etching is highly exothermic and rapid. HIO3

concentrations in the range of 5×10–4 to 1×10–2 M have
all been found to produce rapid etching.
Etching in fluoride solutions leads to the formation of

the hexafluorosilicate ion SiF6
2– and H2 bubbles by the

reaction scheme [1]

SiþOxþ ! Siþ þOx
Siþ þ 3HF ! HSiF3 þ 2Hþ þ e�
HSiF3 þ 3HF ! H2SiF6 þH2

SiðsÞ þOxþ þ 6HF ! H2SiF6 þOxþ 2Hþ þH2 gð Þ þ e�

Hþ þ e� ! 1
2
H2 gð Þ

:

8>>>>><
>>>>>:

ð1Þ
For brevity, (aq) is dropped. Thus, as mentioned

above, salts containing Na or K should be avoided as a
source of IO3

– to avoid precipitation. Using NaIO3, we
could easily induce precipitation of Na2SiF6 with suffi-
ciently extensive etching. Alkali metal hexafluorosilicates
are white powders.
Observing the etching of Si in HIO3 +HF, one sees

bubble formation on the crystal accompanied by the for-
mation of a rough-looking surface and dark particulates.
Rinsing the crystal in ethanol releases the particulates
and causes the solution to take on the typical red color-
ation of a tincture of iodine. Clearly, I2 is being formed
during etching. Figure 1 displays a typical SEM micro-
graph of a Si substrate etched in an aqueous solution of
HIO3/HF. The surface is rough and pitted with no indi-
cation of the formation of a nanoporous layer.
The precipitation of I2 can be avoided by the addition

of ethanol to the etchant. Ethanol addition significantly

reduced the etch rate of most stain etchants [2]; how-
ever, that was not a problem for the highly reactive iod-
ate system. Bubble formation and roughening were again
observed. In this case, the etchant gradually turned red,
reached a maximum intensity, and then became clear.
At this point, the bubbling also ceased. I2 was being pro-
duced by the reduction of IO3

–; however, it was also
being consumed by a secondary reaction. The dissol-
ution and etch rates can be enhanced by performing the
etching with simultaneous ultrasonic agitation.
As shown in Figure 2, significant surface restructuring

is possible with HIO3+ ethanol +HF etching. The surfaces
are extremely rough and have a gray to black appearance.
The lack of visible photoluminescence and the absence of
a significant Si-H peak in the infrared absorption
spectrum indicate the absence of a nanoporous layer. The
surface features are largely uncontrollable. The same sam-
ple can exhibit regions covered with pyramids, as shown
in Figure 2a when the substrate is (100) oriented. These
pyramids have smooth faces, but in between, there is sig-
nificant roughness and a significant number of circular
pits 45 to 110 nm in diameter. Other regions will exhibit
rectangular features as shown in Figure 2b. As the micro-
graph in panel (d) shows, these roughly 150-nm features
are pits rather than pores. If the substrate orientation is
switched to (111), triangular rather than rectangular pits
are found. This is to be expected for anisotropic etching
with etch rates that are dependent on surface orientation
as found in the alkaline etching of Si [24]. Other regions
exhibit corral-like structures (on both (111) and (100)
orientations) with nested pits within pits and significant
roughness, as shown in panel (c). Regions such as those
shown in panels (b) and (c) or the between-pyramid
regions might be labeled por-Si; however, because they do
not exhibit a depth significantly longer than their width,
large surface area (i.e., the lack of significant Si-H IR ab-
sorption), nor photoluminescence, we refrain from desig-
nating them as por-Si.
We believe that IO3

–-induced etching is capable of pro-
ducing nanoporous silicon. This generates a great deal of
surface area, which enhances the reactivity of the Si sub-
strate toward other species. This facilitates such major re-
structuring of the surface because the chemistry of
iodine-containing species in solution is extremely com-
plex, and it is impossible to separate IO3

–-induced chemis-
try from that induced by I–, I2, and I3

–. As we will show
below, all of these species are capable of etching Si. The
first two lead to smooth isotropic etching, and the last
leads to anisotropic etching. The combination and bal-
ance of these chemistries with IO3

–-induced etching leads
to the great variety of surface features observed.
There are two possible production paths for I2. The

first is the reduction of IO3
– listed in Table 1. The second

is reaction (2)
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IO�
3
þ 5I� þ 6Hþ ! 3I2 þ 3H2O E�

¼ 0:6595 V; ð2Þ
which occurs spontaneously when IO3

– and I– are mixed.
A relatively small amount of I2 can be lost to adsorption
on the surface [25]. Two possible sinks for I2, apart from
simple precipitation of I2(s), are a thermally initiated
etch reaction involving I2 as well as a fluoride species
(because I2 in solution by itself does not etch silicon in
solution at room temperature, see below),

Siþ xI2 þ yHF ! H2SiFyI2x þ 1
2

y� 2ð ÞH2 gð Þ; ð3Þ

(with x= 1 or 2 and y= 4 or 2) and the reaction with
iodide to form triiodide,

I2 þ I� ! I�3 : ð4Þ
The stoichiometry of reaction (3) is notional. By a

thermal reaction, we intend to imply that it is initiated
by the chemical reaction of I2 dissociative adsorption on
the surface of silicon as opposed to a hole injection step.
Subsequent steps involve some unidentified combination
of fluoride species. Because the first step does not in-
volve hole injection, this reaction would not be con-
strained by quantum confinement effects to be self-
limiting [13] and would, therefore, be capable of destroy-
ing por-Si. It should be noted that all silicon tetrahalides
are unstable in water and subject to reactions of the type

SiX4 þ 2HF ! H2SiX4F2: ð5Þ
Iodide production can occur from the reduction of I2

listed in Table 1 (though the rate of this should be low
based on the E° value), the reduction of triiodide,

I�3 þ 2e� ! 3I� E� ¼ 0:536 V; ð6Þ
or an alternative iodate reduction reaction,

IO�
3
þ 6Hþ þ 6e� ! I� þ 3H2O E�

¼ 1:085 V: ð7Þ

The chemical reactions of Cl2, Br2, and I2, when
exposed as gases to Si surfaces, are known to preferen-
tially attack step sites [26]. In semiconductor processing,
this reaction is carried out at high temperatures; none-
theless, an analogous reaction in solutions would be
expected to destroy por-Si. The high surface area and
defect-laden surfaces of por-Si would be much more sus-
ceptible to such reactions in comparison to a polished
silicon surface. Therefore, it is not surprising that the
production of halogens in solution should lead to the
destruction of por-Si. That Br2 destroys por-Si was previ-
ously reported by Kelly and co-workers [27].
Now, we turn to the etch chemistry of I–, I2, and I3

–

with polished Si and por-Si surfaces. To do so, we made
up a series of solutions from HI, I2, HI + I2, or NaI + I2.
These were dissolved either in water or in water/ethanol

Figure 1 SEM micrograph of Si(100) substrate etched in 0.002 M HIO3 in 48% HF for 30 min.
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solutions and exposed to mirror finish Si(100) and Si(111)
surfaces. The Si surfaces were hydrogen terminated as
their oxide layers were stripped by etching first in HF. Al-
ternatively, a layer of por-Si was produced with either a
FeCl3�6H2O+HF or a V2O5 +HF solution. The layer
exhibited a uniform blue or green color indicative of a
homogeneous por-Si film. Immediately after being made
and rinsed, these layers were exposed to this set of solu-
tions. No etching of either the polished Si surfaces or the

por-Si films was noted. Iodide, iodine, and triiodine solu-
tions do not react with either flat, defect-free surfaces or
the high-surface-area, defect-laden surfaces of por-Si
when HF is not also added to the solution. This result is
consistent with the work of Haber et al. [25] who showed
that I2/methanol solutions can lead to the formation of
Si-I and Si-OCH3 bonds; however, they gave no indication
for an increase in surface area or other signs of etching.
That iodide-containing but HF-free solutions can affect

Figure 2 SEM micrographs of Si(100) wafers etched in 0.07 M HIO3 in 3:5 ethanol/HF solutions. (a) Etch time= 300 s, 45° perspective. (b)
Etch time= 900 s, plan view. (c) Etch time= 1800 s, plan view. (d) Cross section of sample shown in (b).
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the surface of silicon or por-Si but do not etch the surface
is also consistent with other reports of solar cell charac-
teristics and flatband potentials [28,29] or photolumines-
cence properties [30] that shift upon exposure to iodide-
or triiodide-containing solutions.
We investigated the etch behavior of solutions con-

taining I–, I2, and I3
– to which HF has also been added.

Neither HI +HF nor I2 +HF solutions exhibit appre-
ciable reactivity with polished Si surfaces. We note no
bubbling on the faces of the crystals, and the surfaces re-
tain their mirror finishes after rinsing. Occasionally, a
few small bubbles may appear after many minutes on
scratches or the edges of the crystals. This indicates that
there is some reactivity with defects but very low reactiv-
ity with well-ordered terraces. An I3

–-containing solution
can roughen a polished Si surface. This is a slow process
requiring about half an hour or more. As shown in Fig-
ure 3, this etch process also exhibits a degree of crystal-
lographic anisotropy. We exposed a p-type Si(100)
crystal to, for example, a 0.005 M I2 + 0.04 M NaI in 3:1
ethanol/HF solution or an 0.004 M in I2, 0.02 M in NaI
in 25% HF. Most of the etch pits are circular. However,
as shown in Figure 3, some of the pits gradually convert
to inverted pyramids, often with approximately 100-nm
circular pits at their apex. The pyramids are 750 nm to
2 μm on a side. There is no evidence of nanoporous sili-
con on such samples. No bubbles formed during etch-
ing. This may be related to the slow etch rate.

Now, we address the etch chemistry of por-Si films
with solutions containing I–, I2, and I3

– to which HF has
also been added. HI +HF, I2 +HF+ ethanol, and HI + I2 +
HF solutions all remove por-Si layers accompanied by
the formation of bubbles. The rate at which the por-Si is
destroyed is dependent on the concentration of the iod-
ine species. Interestingly, when I– and I2 destroy por-Si,
they leave behind a nearly mirror-like Si substrate. These
two species, therefore, facilitate step flow etching in HF
solutions. This is consistent with their lack of reactivity
with the terraces of polished surfaces. I3

–-containing
solutions, on the other hand, remove por-Si to reveal a
rough and pitted surface much like the one shown in
Figure 3. Again, this is consistent with the more aggres-
sive and anisotropic nature of I3

–-induced etching. All
three of these species destroy nanoscale Si structures;
therefore, the initiation step and etch rate of each reac-
tion must not be constrained by quantum confinement.
These results are general for the other halogens and

halogenates. A 0.04-M Br2 +HF solution led to etching
of flat Si surfaces, which remained flat after etching. If
the solution was exposed to a por-Si layer, the por-Si
was removed. As mentioned above, this is consistent
with the work of Bressers et al. [27]. A solution of
0.07 M NaBrO3 +HF also etched Si. By the solution
color change observed, it was clear that the reaction of
BrO3

– generated Br2 in solution. As expected, the etching
of a polished Si surface led to a flat surface after etching.

Figure 3 SEM micrograph of 0- to 100-Ω cm p-type Si(100) etched in I2 +NaI + ethanol +HF for 25 min.
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Similarly, a 0.2-M KClO3 +HF solution led to the etch-
ing of polished silicon, which resulted in the formation
of Cl2 in solution and a flat final surface. Neither one of
these oxidants etched Si with the same degree of anisot-
ropy as observed with iodate. This may be due to the
more reactive nature of Br2 and Cl2 as compared to I2
and the lack of a species analogous to I3

–.

Conclusions
Etching of silicon in iodate solutions is extremely com-
plex and difficult to control. Surface structures including
pits (circular, triangular, or rectangular), pyramids (erect
or inverted), roughness, and pits within pits or pits be-
tween pyramids have been obtained. This complexity is
engendered by a competition of several isotropic and an-
isotropic chemical and electrochemical reactions of IO3

–,
I3
–, I2, and I–. Whereas I2 and I– much prefer to attack de-
fect and step sites leading to flat surfaces, I3

– is able to at-
tack terrace sites and exhibits a degree of crystallographic
anisotropy as evidenced by the production of crystallo-
graphically defined features. We believe that the ex-
tremely high etch rates induced in IO3

– solutions are
caused by IO3

– being able to increase the surface area and
defect density of the Si substrate through the formation
of porous silicon. Whereas a substantial porous layer
might be formed in a non-recirculating flow through etch
system, porous Si is subsequently destroyed by the actions
of I3

–, I2, and I– as these reaction by-products build up in
the etchant. Bromate and chlorate etching are not as
complex. However, these only lead to flat surfaces at least
in part due to the higher reactivity of Br2 and Cl2 in solu-
tion, both of which lead to step flow etching.
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