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Data collected for the investigation of the environmental and ecological characteristics of a river basin are often in the form
of a large three-way array; hence, a particular version of the Tucker model could be applied to gather more information
contained in such complex geochemical systems. Indeed, when the data are in compositional form, more attention must be
given to the analysis of the numerical data. Recently, the Tucker3 model has been proposed to analyze compositional data
characterized by a three-way structure. In this work, a particular version of the Tucker model, known as the weighted
principal component analysis, was used to analyze water samples collected from the Arno river (Tuscany, central Italy)
in order to evaluate the method’s effectiveness. Several graphical displays have been developed to allow an accurate and
complete interpretation of results. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Compositional data (CoDa) consist of vectors of positive values summing to a unit or, in general, to some fixed constant for all vectors. They
appear as proportions, percentages, concentrations, parts per million (ppm), or parts per billion. The CoDa are commonly present in all ex-
perimental fields, and the methods used to describe the chemical composition of the river water (mg L�1 or ppm) may be cited in this context.

The sample space for CoDa is the simplex with its natural geometry coherent with the concept of distance (Aitchison, 1986; Egozcue et al.
2003; Buccianti et al., 2006; Buccianti, 2011; Buccianti and Magli, 2011). Consequently, CoDa have important and particular properties that
preclude the application of standard statistical techniques to such data in their raw form (Pawlowsky-Glahn and Buccianti, 2002; Buccianti
and Pawlowsky-Glahn, 2005). Thus, several multidimensional techniques have been adapted to analyze CoDa, including principal compo-
nent analysis (PCA; Aitchison, 1983), partial least squares (Hinkle and Rayens, 1995; Gallo, 2003), discriminant partial least squares (Gallo,
2010), and hierarchical clustering (Martin-Fernandez et al., 1998), which are only some of the multivariate techniques proposed in literature.
Sometimes, the CoDa are arranged into three-way arrays, for instance, when the aim is to consider the changes in the composition of river
water chemistry monitored in space and time. In these cases, three-mode models such as the Tucker models (Kroonenberg and de Leeuw,
1980; Tucker, 1966; Lombardo et al., 1996) can be proposed to explore the interrelations between the elements but only if the particular
properties of CoDa are taken into account, that is, scale invariance and subcompositional coherence. Here, the scale invariance merely
reinforces the intuitive idea that CoDa provide the same information when a full composition or some of its subcompositions are investigated,
thus showing the same relations within the common parts. Gallo (2012a) has shown that centered log ratios are an adequate preprocessing
solution for analyzing CoDa by the Tucker3 model. Through these developments, it is possible to correlate the results already obtained
by means of other types of log-ratio transformations proposed in literature, such as the additive and isometric log-ratio transformations.
Furthermore, several versions of joint biplots can be suggested to represent data and to facilitate the interpretation.

Starting from Gallo’s (2012a, 2013) study, the aim of this paper was to analyze CoDa through a special version of the Tucker model that is
known as weighted PCA (wPCA; Ten Berge et al., 1987) and by using some graphical procedures such as one-mode plots, clr-joint biplot,
and trajectory plots to visualize data. To this purpose, an extensive matrix related to a sampling carried out along the Arno river (central-
northern Apennines, Italy) between May 2002 and October 2003 (Nisi et al., 2008b; Nisi et al., 2008a) was analyzed. The chemical com-
position of surficial water pertaining to the Arno river is affected by the lithological features of the area, but high perturbation as expected
is also due to the presence of urban, industrial, and agricultural–zootechnical contributions. To be noted here is that the anthropogenic pres-
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sure of the Arno basin is estimated to be equal to that of 8,500,000 inhabitants. A such complex system affected by several physical–
chemical processes, natural or attributable to anthropogenic phenomena, appears to be an adequate case study to evaluate the effec-
tiveness of wPCA.

This work has been developed by considering the following steps. The wPCA for CoDa and its graphical representations are instead in
Section 2. Therefore, after describing the physical–chemical processes that affect the geochemistry of the Arno river waters, the results that
have been obtained through the application of the wPCA can be seen in Section 3. The paper ends, in Section 4, with a brief summary and
some concluding remarks.

2. THEORY

2.1. Compositional data and preprocessing

Let v01, . . ., v0J be positive quantities with the same measurement scale K, the vector v
0 ¼ v

0
1; . . . ; v

0
J is the basis of CoDa, and v ¼ C v

0� � ¼
v
0
=
XJ

j¼1
v
0
j is a composition vector, where C is defined as the closure operation. In other words, the closure operation normalizes any vector

v
0

to a constant sum and defines a transformation RJ
þ ! SJ , where RJ

þ is the positive orthant of RJ defined by RJ
þ ¼

v
0
1; . . . ; v

0
J : v

0
1 > 0; . . . ; v

0
J > 0

� �
and SJ is the simplex space defined by SJ = {v1, . . ., vJ : v1> 0, . . ., vJ> 0;

P
jvj= k}, where K is a given

positive constant.
The natural sample space for CoDa is the simplex SJ, a subset of a (J� 1)-dimensional subspace of RJ . Aitchison (1986) introduced

two basic operations on the simplex, namely perturbation and powering, which introduce a real vector space structure on the simplex.
This geometric structure, known as the Aitchison geometry, satisfies standard properties, such as compatibility of the distance with
perturbation and powering transformation, and subcompositional coherence (Pawlowsky-Glahn and Egozcue, 2001). In the statistical
literature, there are two approaches to analyze CoDa: moving from and staying in the simplex. The difference between them is more
psychological than mathematical; see Mateu-Figueras (2011) for more details. In this paper, we follow the log-ratio transformation approach.
Through this transformation, a direct association between the simplex sample space and the real space is found. Thus, it is possible to
work in real space, where it is easier to apply statistical methods, and then, by using inverse functions, the results can be projected back
to the simplex space.

Following this strategy, Aitchison (1982, 1986) proposed three kinds of transformation: pairwise (plr), additive (alr), and centered (clr)
log ratios.

Through the plr, each element of a compositional vector, such as v(1� J), is transformed into the logarithm of the ratio vj=vj0 (j< j0) cal-
culated between all the pairs of elements of the considered vector. In this way, the vector of pairwise log ratios, ẑ ¼ plr vð Þ, has a dimension

(1� (J� 1)J/2) with a generic element log vj=vj0
� �

. The vector of additive log ratios, ez ¼ alr vð Þ, has a dimension (1� J� 1), where each

element is given by log(vj/vj *); therefore, with j * = J, we haveez ¼ log v1=vj
� �

; . . . ; log vJ�1=vJð Þ� 	
. Finally, the vector of centered log ratios,

z= clr(v), has a dimension (1� J) and a generic element z = log(vj/g(v)), with g(v) = g(v1v2 . . . vJ)
1/J.

Egozcue et al. (2003) introduced an additional transformation called isometric log ratios (ilr), which is the only one that can be directly
associated with an orthogonal coordinate system in the simplex. Let ^z 1� J � 1ð Þ be the vector of isometric log ratios, so that ^z ¼ ilr vð Þ,
which is given by zΨ, where ΨtΨ= IJ� 1 and ΨΨt ¼ IJ � 1̂J 1̂t J=J

� �
, with IJ being the identity matrix (J� J) and 1̂J being a unit vector of J

dimension. All these transformations have a role to play in the analysis of CoDa, and the choice is determined by the type of analysis that we
have to use and the kind of application that we are interested in. Here, the alr is not discussed because it is an asymmetric transformation, and
multidimensional analysis may fail. On the other hand, ilr transformations have very important properties that could also be applied to the
multidimensional analysis. Nevertheless, the interpretation of their components is very difficult, and therefore, in this paper, we only take
into account their mathematical properties.

2.2. Compositional data in three-way arrays

Let
�
V I � J � Kð Þ be the three-way array where the I compositions, observed on K different occasions, are arranged in rows, whereas the J

columns represent the parts of the compositions. The three-way array can also be seen as a collection of matrices, known as slices. There are
three types of slices referred to as (I� J ) frontal Vk with k= 1, . . .,K, (I�K) vertical Vj with j= 1, . . ., J, and (K� J) horizontal Vi with i = 1,
, I. These can be concatenated in several ways as VA= [V1| . . . |Vk| . . . |VK], VB = [V

t
1| . . . |V

t
k| . . . |V

t
K], and VC= [V1| . . . |Vi| . . . |VI], which are,

however, only some examples (for more details, see Kroonenberg, 2008; Gallo 2012b).
According to the discussion in Section 2.1, the logarithmic transformation can be applied to a three-way array

�
V; thus,

�
L I � J � Kð Þ is an

array with a typical element log(vijk), and Lk is the kth frontal slice (k= 1, . . .,K). Hence, the kth frontal slice of the clr can be written as LkP⊥
J ,

whereP⊥
J ¼ IJ � 1̂J 1̂t J=J

� �
is the symmetric and idempotent centering matrix. The kth frontal slice of the plr can be written as LkΞ, where Ξ

is a (J� J(J� 1)/2) matrix with 0 s in each column except for 1 and �1 in two rows, because ΞΞt ¼ JP⊥
J . Finally, the kth frontal slice of the

ilr can be written as LkP⊥
J Ψ. In addition, to ensure that the log ratios are centered with respect to the column means, each frontal slice is

premultiplied by the symmetric and idempotent centering matrixP⊥
I ¼ II � 1̂I 1̂t I=I

� �
. So the kth frontal slice of clr isYk ¼ P⊥

I LkP
⊥
J , whereas

the kth columnwise-centered frontal slice for plr and ilr are Ŷ k ¼ P⊥
I LkΞ and Ŷ k ¼ P⊥

I LkP
⊥
I Ψ, respectively. Therefore, �

Y I � J � Kð Þ is the
three-way array where the data are clr preprocessed and columnwise centered. Like the three-way array

�
V , it is possible to obtain the
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following representations of
�
Y YA ¼ Y1½ j⋯ Yk ⋯ Ykj �jj , YB ¼ Yt

1 . . .j jYt
k . . .j jYt

K

� 	
, and YC= [Y1| . . . |Yi| . . . |YI]. The other log-ratio

transformed data can be arranged in a similar way.

2.3. The Tucker3 model for compositional data

It is well known that the Tucker analysis is a three-way generalization of PCA where loadings matrices are employed for each mode. A
different number of loadings can be used in the different modes, and (P< I), (Q< J), and (R<K) are the number of loadings used to approx-
imate the data for the first, second, and third modes, respectively. Moreover, the relationships between the loadings of each mode are
captured by the elements of the three-way array

�
G P� Q� Rð Þ, called core array. Specifically, the generic element of the core-array gpqr

gives the strength (or weight) of the linkage between the pth, qth, and rth loadings of the first, second, and third modes, respectively. So
defining A(I�P) as the loadings matrix for compositions, B (J�Q) as the loadings matrix for variables or parts, and C (K�R) as the load-
ings matrix for occasions, the Tucker3 model for the centered log-ratio data can be written as

YA ¼ AGA C�Bð ÞtEA (1)

where � is the Kronecker product; GA = [G1| . . . |Gr| . . . |GR] and EA = [E1| . . . |Ek| . . . |EK] are the juxtaposition of the frontal slices of the
core and residuals array

�
E I � J � Kð Þ, respectively.

When there is only one loading for the third mode, that is, R= 1, Equation (1) can be written as

YA ¼ AG1 c�Bð Þt þ EA (2)

where G1 is the first frontal slice of core array, necessarily diagonal, and c contains the elements [c1, . . .,ck, . . .,cK]. Equation (2) defines a
very simple generalization of the PCA, known as wPCA (Ten Berge et al., 1987). In fact, the K frontal slices of

�
Y are given by the same

AG1B
t but weighted from the different coefficient Ck1.

To estimate the parameters of the wPCA, in the same way as for the Tucker3 model, several algorithms can be used. Thus, presuming that
the wPCA model is perfectly fitting, the estimation of the parameters can be obtained in subsequent steps. The loadings Amay be determined
as the first P left singular vectors of YA, whereas the loadings B and c can be given by the first Q and one left singular vectors of YB and YC,
respectively. And once A, B, and c are fitted, the core array can subsequently be calculated as G1 =A

tYA(c�B).
The only difference between this model and the traditional ones is that the loadings matrices for the first and second modes must have a

column sum equal to zero: 1̂IA ¼ 1̂JB ¼ 0̂ (0̂ is a zero vector). The Tucker3 algorithm previously described automatically respects these
additional constraints. In fact, to determine the loadings matrices A and B, we take the first P left singular vectors of YA and the first Q left
singular vectors of YB, with P =Q in case of wPCA. Now, in singular value decomposition (SVD), a generic matrix X of size (I� J) with a
rank equal to F can be decomposed into X ¼ UFΛFVt

F, where UF, VF, and ΛF are matrices containing both the singular vectors and values,

UFUt
F ¼ VFVt

F ¼ IF, and so if X is double centered 1̂IX ¼ 0̂J ;X1̂J ¼ 0̂I
� �

, then the result is 1̂IU ¼ 0̂F and V 1̂J ¼ 0̂F. In the same way, the
SVD of YA assures that the matrix of left singular vector A is orthonormal and column centered. Thus, it is easy to verify that these
constraints are automatically respected.

Gallo (2012a) has shown that the loadings matrices of clr, plr, and ilr transformed data are strongly linked. In detail, the loadings matrices

for the first and third modes are equivalent for the three transformations. In contrast, let B̂ and
^
B be the loadings matrices for the second mode

in case of plr and ilr preprocessed data. It has been shown that _B ¼ ΞtB and
^
B ¼ ΨtB, where the matrices Ξ and Ψ have been previously

defined. Hence, all the Tucker3 results on pairwise log-ratio data can be obtained by the analysis of smaller three-way arrays of centered log-
ratio data. In the same way, it is possible to obtain the Tucker3 results on the isometric log-ratio data by the loadings matrices of the clr
preprocessed data.

2.4. Procedures for displaying results

The Tucker3 results are usually given in the form of tables or plots (Kiers, 2000). Here, for the representation of the Tucker3 results of log-
ratio data, we propose using one-mode plots, clr-joint biplots (Gallo, 2012a), and trajectory plots.

We are referring to one-mode plots when the components of a single mode are plotted against each other in scatter plots, that is, the first
and second columns of A. To provide some adequate representation of the higher-dimensional space of log-ratio data, it is necessary to
choose carefully the low-dimensional space axes with respect to the compositions, parts, or occasions that are to be visualized and to com-
pute coordinates with respect to these axes. LetWA ¼ c�Bð ÞGt

1 be the base of A, WA is the orthonormal base for the principal coordinates of
compositions A. So, in this form, plotting the elements of A assures that the high-dimensional Aitchison distances are correctly represented
in the low-dimensional plot within the accuracy of the approximation. Of course, WB ¼ c�Að ÞGt

1 is the orthonormal base for the principal
coordinates of part B because of the symmetry of the model. Then, given the accuracy of the approximation, the distances between the parts
in the low-dimensional plot of RIK indicate the relative variation.

In one-mode plots, only the relationships between the entities in the same mode can be investigated. The joint biplot can be used when the aim
is to investigate both the relationship between the entities in the same mode and the relationship between the entities from the different modes.

Joint biplots are constructed by displaying simultaneously the components of the first and second modes for the component of the third
mode. For the Tucker3 results, the matrix Gr can be decomposed by an SVD into UrΛrVt

r so that Λr, Ur, and Vr are the matrices of the
singular values and the orthonormal left and right singular vectors, respectively (Kroonenberg, 2008). Then the joint biplot for rth occasions
is obtained by plotting the compositions as points, with coordinates given by the rows ofA

0
r ¼ AUrΛa

r, and the parts as rays, with coordinates
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given by the rows of B
0
r ¼ BVrΛ1�a

r with a2 [0,1]. To assure a symmetric scaling of the loadings, a is chosen equal to 0.5, but different
values can also be considered.

Given the joint biplot for centered log ratios, it is easy to obtain the joint biplot for pairwise log ratios. In fact, the only difference is that the
rays have the coordinates B

0
r ¼ BVrΛ1�a

r . If the joint biplots for clr and plr are built following defined rules, then they can lead to a correct
interpretation of the results (Gallo, 2012a). In case of wPCA, the matrix G1 is diagonal. So the coordinates for the compositions are given by
A

0 ¼ AGa
1, and the coordinates for the parts are given by B

0 ¼ BG1�a
1 with a2 [0,1].

In cases where there is a sequence of measurements, it could be of interest to visualize the location of combinations of the entities of two
modes, that is, compositions and occasions. In these cases, let B

0 ¼ BG1�a
1 be the coordinates for the parts, and then the coordinates of the

compositions observed on the k different occasions A
0
k ¼ ckAGa

1 (k= 1, . . .,K) are plotted together to see how the location of the composi-
tions in the space spanned by the parts changes over the occasions.

3. RESULTS

3.1. Case study

By considering the impact of water pollution on the environmental and ecological characteristics of a river, it is important to model the
situation in space–time coordinates with the aim of having a reference framework to monitor the change in progress. Thus, to study the
complex system affected by several physical–chemical processes, natural or attributable to anthropogenic phenomena present along the Arno
river (central-northern Apennines, Italy), an extensive three-way array related to a sampling carried out between May 2002 and October 2003
(Nisi et al., 2008b; Nisi et al., 2008a) was analyzed.

The hydrographic catchment area of the Arno river basin, covering a surface of 8228 km2 with an average elevation of 353m, is entirely
located in Tuscany (central Italy, http://www.arno.autoritadibacino.it). The Arno river, 242 km long, springs from the Northern Apennines at
an elevation of 1650m and flows into the Ligurian Sea, 10 km west from Pisa and 110 km from Florence (Figure 1, Nisi et al., 2008b). The
annual rainfall pattern is typical of the Mediterranean area, with low regime in summer and two peaks of precipitation in winter (December
and February). Mean annual rainfall values range from 600mm, mainly in the low lands, up to 3000mm on the Apennine ridge.

The outcropping rocks in the basin are predominantly sedimentary folded and faulted Mesozoic and Tertiary units resulting from the for-
mation of the Apennine chain. The subsequent extensional tectonic phase has produced a NW–SE-oriented horst and graben system, made of
Cretaceous to Paleogene allochthonous units, belonging to the Ligurian, sub-Ligurian, and Tuscan domains, being overthrusted mostly in the
Early Miocene (e.g., Carmignani and Kligfield, 1990; Abbate et al., 1992; Carmignani et al., 1994; Moretti, 1994). The drainage network of
the Arno river follows these NW–SE trending structures by six main sub-basins (Figure 1), from east to west: (i) Casentino (CA), (ii) Chiana
Valley (CH), (iii) Sieve (SI), (iv) Upper Valdarno (UV), (v) Middle Valdarno (MV), and (vi) Lower Valdarno (LV).

Data are expressed in mgL�1, a measure unit equivalent to ppm if data are multiplied for the density of the water (g cm�3). When the
saline content of water is low, mgL�1 and ppm are also numerically equal units, because the water density is practically equal to 1, the value

Figure 1. Schematic geological map of the Arno basin with the locations of the sampling sites along the river and in the whole basin. The catchment is divided
into six sub-basins by dashed lines, as follows: Casentino (CA), Chiana Valley (CH), Sieve (SI), Upper Valdarno (UP), Middle Valdarno (MV), and Lower
Valdarno (LV). Legend: 1, alluvial deposits; 2, clays, sands, and conglomerates of continental, lacustrine, and marine environments; 3, chaotic shaly rocks
with calcareous and ophiolitic olistolitus; 4, dolomitic and evaporitic rocks; 5, Cervarola formation: turbiditic sandstones; 6, Macigno formation: turbiditic
sandstones; 7, Modino formation: turbiditic sandstones; 8, Paleozoic formations; 9, running water samples; 10, thermal water samples; 11, rock samples;

and 12, towns (Nisi et al., 2008b)
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of pure water. Thus, from the compositional point of view, these measure units represent equivalent classes in the simplex geometry
(Buccianti and Pawlowsky-Glahn, 2005; Buccianti, 2013).

Temperature and pH were measured in the field. SO4
2�, Cl�, and NO3

� concentrations were determined by ion chromatography (Dionex
DX100) and HCO3

� by titration with 0.01M HCl using methyl orange as indicator. Major cations (Ca2+, Mg2+, Na+, and K+) were deter-
mined by atomic absorption spectrometry (Perkin–Elmer AAnalyst 100). Dissolved NH4

+ and NO2
� were measured by molecular spectropho-

tometry (Hach DR2001). Analytical errors were generally <3% for the main components and 5–10% for trace species (Nisi et al., 2008b).
Values of pH varied from 7.29 to 8.63, indicating an alkaline nature typical of most surficial waters worldwide. The least mineralized site

(upstream Zambra tributary) presented a total dissolved solids of 83mgL�1, whereas the most saline (Arno river near to the mouth)
presented a value of 5344mgL�1, because of seawater intrusion (Cortecci et al., 2002; Sbolci et al., 2003). Anions were mostly represented
by HCO3

� contributing to 63% of the charge balance, whereas Cl� and SO4
2� only accounted for 13% and 7%, respectively. Among the cat-

ions, Ca2+ was the main dissolved species (57% of charge balance), followed by Na+ (23%), Mg2+ (19%), and K+ (1%). The concentrations
of the nitrogenated species varied from <0.01 to 3.68mgL�1 for NH4

+, 0.003 to 3.36mgL�1 for NO2
�, and <0.01 to 17mgL�1 for NO3

�.
According to nitrogen and oxygen isotope in nitrates, the surficial waters appear to be mainly affected by mineralized fertilizer, soil-organic
nitrogen, manure, and septic waste (Nisi et al., 2005).

3.2. Preprocessing and analysis

The three-way compositional array (main chemical composition of water, distance from the spring, and time of collection) was given only for
the samples from the main stream of the Arno river, 92 compositions related to four occasions, May 2002 (May02), January 2003 (Jan03),
May 2003 (May03), and October 2003 (Oct03). The 23 compositions, associated to different spatial coordinates, indicating distance from the
spring, were arranged by rows, the 11 main chemical compositions (parts) by columns and the four occasions by tubes.

In accordance with the approach discussed in Section 2.1, the clr transformation was applied to the three-way array, and subsequently, the data
were centered across the second mode; thus, the data were logarithm-scaled so that the average of each row and each column was zero.

A Tucker3 analysis was performed on these preprocessed data by the use of algorithm developed for the package R 2.11.1 GUI 1.34 Leop-
ard. With the aim of choosing the best dimensionality of the model, the Timmerman and Kiers (2000) procedure was also applied. It suggests
a dimensionality-selection procedure analogous to Cattell’s scree plot for two-mode component analysis.

The results suggested a choice of the model that had, proportionally, the highest fitted sum of squares SST. The selected model has the
same total number of components T=P+Q+R, where P, Q, and R are the number of factors for each mode. In Figure 2, the residual
sum of squares was plotted versus the number of components to select the model that had the smallest residual sum of squares within the
class of the Tucker3 model with the same total number of components. Instead, to compare classes with a different number of components,
the difference difT= SST� SST� 1 is then determined, and only those that are sequentially higher were chosen. Finally, the model for which bs
had the highest value was selected, with bs being the ratio between difT and the next highest value after difT. The results (reported in Table 1)
suggested the choice of a model with two dimensions on the first and second modes and only one for the third mode with a total of five com-
ponents and with a 60.02% of variability explained.

3.3. Results and discussion

For an in-depth interpretation of wPCA, we have used one-mode plots for the first two modes and clr-joint biplots to study the relationship
between the elements of the two different modes.

In Figure 2(a), it is possible to interpret the relationships among the variables, where the principal coordinates are the same across all the
occasions. The length of the arrows estimates the standard deviation of the variables rationed to the geometric mean on a logarithmic scale. In
terms of centered log ratios, the distance between the tips of the arrows, known as links, estimates the standard deviation of the ratios be-
tween chemical species. Finally, the angle between the arrows estimates the correlation between the variables.

As we can see, Cl� (and Na+) showed the most important variation, followed by NO2
� and NH4

+. Cl� as a product of silicate weathering and
carbonate rocks is extremely low in river water, whereas a contribution of about 13% of all the sources on a global scale is expected from atmo-
spheric cyclic salts (Berner and Bernes, 1996). Consequently, a high variation has to be attributable to different phenomena such as the presence

Figure 2. Scree plot of the residual sum of squares versus the number of components
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Table 1. Statistical results of the application of several Tucker models

Tucker3 model T SST difT bs

1� 1� 1 3 0.4058960 0.405896034 2.0886537
2� 2� 1 5 0.6002298 0.194333814 25.7807679
2� 2� 2 6 0.6077678 0.007537937 0.3584267
2� 3� 2 7 0.6287984 0.021030623 0.2658147
3� 3� 2 8 0.7079160 0.079117593 4.7591872
3� 3� 3 9 0.7245402 0.016624182 0.4152881
4� 3� 3 10 0.7645707 0.040030478 1.0841270
4� 4� 3 11 0.8014948 0.036924158 2.2172972
4� 4� 4 12 0.8181476 0.016652778 —

T is the total number of components, SST is the fitted sum of squares, difT is computed by the difference between SST and SST� 1, and bs is
a crucial value equal to bs= difT/difT *, where difT * has the next highest value after difT.

Figure 3. Plot of the relative variation of the parts (variables): (a) centered log-ratio transformed nd (b) pairwise log-ratio transformed. Variables and relative
labels: sulfate (SO4), chlorine (Cl), nitrate (NO3), nitrite (NO2), sodium (Na), ammonium (NH4), carbonates (HCO3 +CO3), magnesium (Mg), potassium (K),

silica (SiO2), and calcium (Ca)

Figure 4. Object plot of the sampling sites. The catchment is divided into six sub-basins by dashed lines, as follows. Casentino (CA): La Casina (1),
Pratovecchio (2), Ponte a Poppi (3), Rassina (4), Subbiano (5), and Buon Riposo (6). Chiana Valley (CH): Ponte a Buriano (7). Upper Valdarno (UV): Ponte
del Romito (8), S. Giovanni Valdarno (9), Incisa (10), and Rosano (11). Middle Valdarno (MV): Ponte San Niccolò Firenze (12), Ponte a Signa (13), and
Camaioni (14). Lower Valdarno (LV): Montelupo Fiorentino (15), Empoli (16), Colle Alberti (17), Castelfranco (18), Calcinaia (19), San Giovanni Alla Vena

(20), Caprona (21), Pisa (Ponte Solferino) (22), and Arno Vecchio (23)
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of evaporation, pollution, or, as in our case, to the contribution of sea water intrusion perturbing the samples near the mouth of the river, all con-
tributions that suffer the effect of seasonality. Na+ showed the same pattern even if a major contribution from silicates weathering (22% on a
global scale) was generally expected. High variation of the nitrogen species, NO2

� and NH4
+, was attributable to anthropogenic sources, changing

in time (e.g., seasonality and water availability) and space (e.g., soil use), and to the chemical reactions that transformed the reduced forms into the
more stable species, NO3, in oxidized environment. The variation affecting the SiO2, Ca

2+, HCO3
�+CO3

2�, andMg2+, which were mainly related
to the weathering of the sedimentary rocks characterizing the basin, appeared to suffer the effect of time, whereas the behavior of SO4

2� and K+

indicated that their sources (evaporation and pollution for the first and mainly silicates for the second one) were not changed.
Considering the angle between the arrows, a high correlation could be derived for Na and Cl, stressing their similar geochemical source in our case,

and between variables contributed by the weathering of sedimentary rocks (e.g., Ca2+, SiO2, and HCO3
�+CO3

2�). The high variability/correlation of
NO2

� and NH4
+ if compared with NO3

� described well the instability of the first two species in the superficial environment and the natural passage
from reduced to oxidized (stable) forms.

Unfortunately, these approaches do not preserve subcompositional coherence, so if we need to maintain this property, it would
be appropriate to examine the links in Figure 3(a) or plot the pairwise log-ratio coordinates (Figure 3(b)).

Figure 5. clr-joint biplot of the compositions and the parts (a). Trajectory plot for centered log ratios (b): the compositions of January 2003 are in black and
the compositions of May 2003 are in red. Labels for compositions: La Casina (1), Pratovecchio (2), Ponte a Poppi (3), Rassina (4), Subbiano (5), Buon Riposo
(6), Ponte a Buriano (7), Ponte del Romito (8), San Giovanni Valdarno (9), Incisa (10), Rosano (11), Ponte San Niccolò Firenze (12), Ponte a Signa (13),
Camaioni (14), Montelupo Fiorentino (15), Empoli (16), Colle Alberti (17), Castelfranco (18), Calcinaia (19), San Giovanni Alla Vena (20), Caprona (21),

Pisa (Ponte Solferino) (22), and Arno Vecchio (23)
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For example, in Figure 3(a), considering the distance between the tips of the rays of Na+ and Cl�, it was possible to evaluate that the ratio
Na+/Cl� had maintained its values constant in time, which was an indication of the preservation of the environmental conditions affecting the
behavior of the variables. A similar conclusion could be drawn for SO4

2� and K+ and for SiO2 and Ca
2+. As can be seen, the points where the

links intersect each other were very distant from the origin of the plot. Thus, it was not possible to study the correlations between the ratios of
parts. In this case, we would consider the values of the cosine of the angles between the rays in Figure 3(b), which are equivalent to the
cosine of the angles between the links in centered log-ratio plots.

In Figure 4, the results obtained by the investigation of spatial coordinates are shown. Considering all the covered period, and
consequently the effect of seasonality (sampling in May 2002 and January, May, and October 2003), most of the samples were located
on a linear pattern that in part corresponded to the distance from the source and to the different sub-basins that occurred along the river’s
path. Marked deviations characterized only two localities where the closeness to the mouth (influence of sea water intrusion) strongly
modified the chemical composition. It is noteworthy here that the samples pertaining to the Casentino (CA) sub-basin, when compared with
the others (Figure 1), were characterized by a lower variability in time, which was an expected result because here the chemical composition
of waters was mainly affected by natural weathering phenomena due to the pristine nature of the area. More scattering appeared to perturb
data of the other sub-basins, indicating that time (seasonality) could have had an effect on natural and anthropogenic processes (for example,
use of soils and pressure of cities and industrialized areas).

On the diagram, cases 1 (La Casina, CA), 11 (Rosano, UV), 22 (Pisa, Ponte Solferino, LV), and 23 (Arno Vecchio, LV) were located in
the opposite part with respect to cases 14 (Camaioni, MV) and 15 (Montelupo Fiorentino, LV). The last cases were characterized by an im-
portant contribution of NH4

+ along the river’s path, indicating that these places suffered pollution in the time of sampling when compared
with all the others.

The one-mode plots give information only on each single mode, but there is no relationship between the elements plotted in different one-mode
plots. To investigate the relationship between the elements of different modes, the simultaneous plotting of the compositions and parts may high-
light the relation between them across the occasions. Figure 5(a) shows the clr-joint biplot where the variables are plotted in standard coordinates
and the compositions in principal coordinates. Moreover, they are regulated by factor scales [(I�K)/J]75 and [(J�K)/I]25, respectively. In
Figure 5(b), it was possible to analyze the trajectories for some compositions as they move across the space. The clr-joint biplot of the compo-
sitions, the parts (Figure 5(a)), and the trajectories for centered log ratios allowed us to identify sites where ratios between variables present dif-
ferent behaviors in time and space. For example, in the case of samples 23 (Arno Vecchio) and 22 (Pisa, Ponte Solferino), the Mg2+/NH4

+ ratio
was maintained constant, indicating that potential environmental changes had affected both the chemical species during the considered interval of
time. On the other hand, changes had also influenced the Cl�/Na+ ratio. Here, it is important to note that both the samples were collected near the
mouth of the river. Sample 1 (La Casina) was characterized by an increase in the ratio Mg2+/NH4

+, revealing for the same variables a possible
perturbation due to different sources (increase of Mg2+ or decrease of NH4

+, perhaps due to seasonality). The sample was collected at the spring
of the river. Thus, for different spatial positions, a different behavior of two rationed variables can be pointed out.

On the whole, most of the samples were characterized by changes in time that affected the variables related to pollution, such as NO2
� and

NH4
+, or concerned the main components of the water chemistry, that is, Ca2+, SiO2, and HCO3

�+CO3
2�, typically related to water/rock in-

teractions in the considered basin lithology. It is evident from this analysis that the samples related to the two extreme conditions (spring and
mouth) tend to show some chemical features that distinguish their behavior with regard to all the others.

4. Conclusions

A particular version of the Tucker models for CoDa was proposed to analyze the chemical composition of surficial waters pertaining to the
Arno river. Gallo (2012a) has shown how it is possible to apply the Tucker3 model for CoDa by discussing the results obtained when dif-
ferent kinds of preprocessing are used. Here, this approach was proposed for wPCA model, and a full interpretation of the results is given.
Moreover, the use of some graphical methods in regard to CoDa such as one-mode and trajectory plots was considered.

The results encourage the application of these kinds of tools to display the information concerning the chemical composition of surficial
water when data are collected in different sampling locations and periods. In fact, by employing the one-mode plot for the first mode, it was
possible to detect the differences between the six sub-basins of the Arno river. By using the one-mode plot for parts (clr and plr version), it
was possible to extract useful information on the correlations between the ratios of parts and the variability of parts across the samplings.
Finally, on the clr-joint plot, the behavior of the compositional variables for the different ratios could be read as well as the trajectories of
the sampling locations across the seasonality on trajectory plots. On the whole, the approach appeared to be able to give an exhaustive
and interpretable framework of a complex geochemical system whose equilibrium moving in space and time.
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