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SUMMARY

This paper is a generalization of earlier studies by Venkatesan and Arumugam (2007) who consid-

ered the changes in the parameters of an autoregressive (AR) time series model in order to make

Bayesian inference for the shift points and other parameters of a changing AR model. In this paper,

the problem of gradual changes in the parameters of an AR model of pth order, through Bayesian

mixture approach is considered. This model incorporates the beginning and end points of the inter-

val of switch. Further, the Bayes estimates of the parameters are illustrated with the data generated

from known model.

Keywords: Autoregressive model, Bayesian estimation, Structural change, Mixture model, Numerical

integration.

1. INTRODUCTION

Recently, increasing interest has been shown in the problem of making inferences

from the switching time series model of a sequence of random variables and there

has been many evidence for the parameter of economic models undergone the struc-

tural changes.

Essentially, there are two problems associated with switching time series models:

detecting the change and making inferences about the shift points and all the other

parameters of the model. The study in this paper is concerned with inferences about

the shift points and parameters of AR time series model through the mixture model

approach. In many practical problems either the data itself will validate the assump-

tion that there is a change or there will be reasons which make this assumption rea-

sonable.

The literature on structural change problems is by now enormous. Most of the

work is confined to the analysis of univariate linear models. Bacon and Watts

(1971), Ferreira (1975), Holbert and Broemeling (1977), Chin Choy and Broemeling

q
2
0
0
9
V
it
a
e
P
en
si
er
o
/
P
u
b
b
li
ca
zi
o
n
i
d
el
l’
U
n
iv
er
si
tà
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(1980) and Moen, Salazar and Broemeling (1985) studied these problems to shift

points in linear models. West and Harrison (1986), Salazar (1982), Broemeling

(1985) and Venkatesan and Arumugam (2007) have studied the structural change pro-

blems in time series model through the parameter change, while Baufays and Rasson

(1985) have studied a variance change in autoregressive model. Most of the work in

the literature is based on the parameter change in the time series model. In this paper,

a Bayesian analysis of structural changes in autoregressive model of higher order is

studied through the mixture model approach by introducing the distribution function

of the beta random variable to model the nature of change in a finite interval of time.

Consider, for example, the case of permanent change in a finite interval t1; t2ð Þ.
It is now assumed that one model operates before time t1, another model operates

after time t2 and in the interval the second model gradually replaces the first model.

That is, at time t t1 < t < t2ð Þ the first model operates with probability 1� Ptð Þ and

the second model operates with probability Pt and Pt goes from zero to one as t goes

from t1 to t2. Then, in this formulation, the likelihood function of the data will be

based upon mixture distributions.The advantage of this approach in the construction

of switching models is that the number of parameters describing the nature of switch

will always be fixed.

An outline of this paper is as follows. The pth order autoregressive model and

likelihood function are described in Section 2. Section 3 describes the posterior ana-

lysis of the model under the mixture model approach. In Section 4, a numerical ex-

ample is presented to study the quality of the estimates.

2. THE MODEL AND LIKELIHOOD FUNCTION

Consider the autoregressive model of order p (AR(p))

Xt ¼ �1Xt�1 þ �2Xt�2 þ . . .þ �pXt�p þ et ð1Þ

and suppose that there is a shift in �1; �2; . . . ; �p

� �

which starts at some time

point t1 and ends at some time point t2. In such a case the model can be written as

Xt ¼ 1� Ptð Þ
P

p

i¼1

�iXt�i þ Pt

P

p

i¼1

�iXt�i þ et ð2Þ

where �1; �2; . . . ; �p

� �

and �1; �2; . . . ; �p

� �

are real unknown autoregressive

parameters of before and after change respectively, et’s are iid Normals with zero

mean and common variance �2. The mixture model probability is

Pt ¼
0

F tð Þ
1

: t � t1
: t1 � t � t2
: t � t2

8

<

:

where F tð Þ ¼
1

B �; �ð Þ

ðt

0

u��1 1� uð Þ��1
du; t ¼ t � t1ð Þ= t2 � t1ð Þ; 1 < t1 < t2 < n.
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B �; �ð Þ denotes the complete beta function with arguments � and � and denote

¼ �1; �2; . . . ; �p; �1; �2; . . . ; �p

� �

.

Let X1; X2; . . . ;Xn be a sequence of n observations. Then the conditional density

of Xt Xt�1j has the following probability density function

f Xt Xt�1jð Þ ¼
f1t
1� Ptð Þ f1t þ Pt f2t
f2t

: t � t1
: t1 � t � t2
: t � t2

8

<

:

ð3Þ

where f1t and f2t are the probability density functions of a Normal random variable

with means
Pn

i �iXt�i and
Pn

i �iXt�i respectively and common variance �2. Thus,

� and � determine the nature of change of Pt from 0 to 1 as t goes from t1 to t2.

The problem is to estimate U ¼ t1; t2; �; �; �; �2ð Þ but attention is mainly focused

on the estimation of t1, t2, � and � given the observation X ¼ X1; X2; . . . ;Xnð Þ and

it is assumed, as was done by Broemeling (1985), that X0; X�1; . . . ;X1�p are initial

observations which are assumed to be known.

The likelihood function of the observations X ¼ X1; X2; . . . ;Xnð Þ given the

parameter U ¼ t1; t2; �; �; �; �2ð Þ is given by

P X Ujð Þ /
X

m

r¼0

X

r

Y

t2C�
r

1� Ptð Þ
� � Y

t2Cr

Pt

� �

��n

exp �
1

2�2

�

Xt1

1
Xt � B1ð Þ2þ

X

t2C�
r

Xt � B1ð Þ2þ . . .þ

"

þ
P

t2Cr

Xt � B2ð Þ2 þ
Pn

t2þ1 Xt � B2ð Þ2
#)

(4)

where

B1 ¼
P

t1

t¼1

XtXt�1 þ
P

t2c�r

X tXt�1, B2 ¼
P

n

t¼t2þ1

XtXt�1 þ
P

t2cr

X tXt�1

P

r is the summation over
m

r

� �

combination of t1 þ 1; . . . ; t2ð Þ selecting ‘r’ at a

time of the second term and remaining m� rð Þ of the first term.

m ¼ t2 � t1, C ¼ t1 þ 1; t1 þ 2; . . . ; t2f g

Cr is any subset of C with ‘r’ elements, C�
r is the complement of Cr, on simplifica-

tion (4) becomes

P X Ujð Þ /
X

m

r¼0

Ar�
�n exp

�Q

2�2

� �

ð5Þ

where Ar ¼
P

r

Q

t2C�
r

1� Ptð Þ
� �

Q

t2Cr

Pt

� �

��n
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Q ¼ C Xð Þ þ �01A1 p;Xð Þ�1 � 2�01B1 p;Xð Þ
� �

þ

þ �01A2 p;Xð Þ�1 � 2�01B2 p;Xð Þ
� �

þ �02A3 p;Xð Þ�2 � 2�2
0B3 p;Xð Þ

� �

þ

þ �02A4 p;Xð Þ�2 � 2�2
0B4 p;Xð Þ

� �

A1 p;Xð Þ is p� p matrix with ith diagonal element is
P

t1

i¼1

X 2
t�i and ijth off-diagonal

element is
P

t1

i¼1

Xt�iXt�j.

A2 p;Xð Þ is p� p matrix with ith diagonal element is
P

t2C�
r

X 2
t�i and ijth off-diagonal

element is
P

t2C�
r

Xt�iXt�j.

A3 p;Xð Þ is p� p matrix with ih diagonal element is
P

t2Cr

X 2
t�i and ijth off-diagonal

element is
P

t2Cr

Xt�iXt�j.

A4 p;Xð Þ is p� p matrix with ith diagonal element is
P

n

t¼t2þ1

X 2
t�i and ijth off-diagonal

element is
P

n

t¼t2þ1

Xt�iXt�j

B1 p;Xð Þ is p� 1 vector with ith element
P

t1

i¼1

XtXt�i

B2 p;Xð Þ is p� 1 vector with ith element
P

t2C�
r

XtXt�i

B3 p;Xð Þ is p� 1 vector with ith element
P

t2Cr

XtXt�i

B4 p;Xð Þ is p� 1 vector with element
Pn

t2þ1 XtXt�i

C Xð Þ ¼
Pn

1 X
2
t ; �

0
1 ¼ �1; �2; . . . ; �p;

� �

, �02 ¼ �1; �2; . . . ; �p

� �

.

3. THE POSTERIOR ANALYSIS

In order to make Bayesian inference for the shift points and other parameters of a

changing AR model, the following prior distributions are assigned

i. �2 is non-informative

ii. Given �2, � follows the multivariate normal distribution with mean zero and va-

riance si=�
2; i ¼ 1; 2

iii. � and � follow the exponential distribution with parameters ‘a’ and ‘b’ respecti-

vely

iv. t1; t2ð Þ is uniformly distributed over all possible values.

v. The parameters �; �2ð Þ, �, � and t1; t2ð Þ are apriori independent.

Thus, the joint prior distribution is

P Uð Þ /
ab

�
e� �aþ�bð Þ

; �; a; b; �; � > 0 ð6Þ
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Using (5), (6) and Bayes theorem, the joint posterior distribution of the parameter

is, after simplification given by,

P U Xjð Þ /
X

m

r¼0

Are
� �aþ�bð Þ�� nþ1ð Þ exp

�Q�

2�2

� �

ð7Þ

where

Q� ¼ C Xð Þ þ �01M p;Xð Þ�1 � 2�01D p;Xð Þ
� �

þ �02M1 p;Xð Þ�2 � 2�02D1 p;Xð Þ
� �

M p;Xð Þ ¼ A1 p;Xð Þ þ A2 p;Xð Þ, M1 p;Xð Þ ¼ A3 p;Xð Þ þ A4 p;Xð Þ,

D p;Xð Þ ¼ B1 p;Xð Þ þ B2 p;Xð Þ, D1 p;Xð Þ ¼ B3 p;Xð Þ þ B4 p;Xð Þ.

After simplification, one can get,

P U Xjð Þ /
X

m

r¼0

Are
� �aþ�bð Þ�� nþ1ð Þ exp

�Q��

2�2

� �

ð8Þ

where

Q�� ¼ �1 �M�1 p;Xð ÞD p;Xð Þ½ �
0
M p;Xð Þ �1 �M�1 p;Xð ÞD p;Xð Þ½ �þ

þ �2 �M�1
1 p;Xð ÞD1 p;Xð Þ

� �0
M1 p;Xð Þþ �2 �M�1

1 p;Xð ÞD1 p;Xð Þ
� �0

þC� Xð Þ

and

C� Xð Þ ¼ C Xð Þ � D0 p;Xð ÞM�1 p;Xð ÞD p;Xð Þ � D0 p;Xð ÞM�1 p;Xð ÞD1 p;Xð Þ½ �

Eliminating �1 and �2 and �2 from the above expression (8), one gets

P t1; t2; �; � Xjð Þ /
P

m

r¼0

Ar e� �aþ�bð Þ
� �

M p;Xð Þj j�1=2
M1 p;Xð Þj j�1=2

C� Xð Þ½ �
� n�2pþ3ð Þ

2 ð9Þ

The elimination of the parameters from (9) is analytically not possible since the

joint posterior distribution of t1, t2, � and � is a complicated function of t1, t2, � and

�. Therefore, one may have to resort to numerical integration technique to determine

the marginal posterior distribution of the parameter.

4. NUMERICAL EXAMPLE

In order to illustrate the solution of the structural change problem described in Sec-

tion 3, a computer simulation study was carried out and it is presented in Tables 1

and 2. Due to certain practical limitations in computing, attention was focused on

AR (1) and AR (2) models.

The point estimates of the parameters were evaluated numerically using the gen-

erated data, taking the posterior mean as the estimate under the squared error loss

function. The parameters of the prior distribution were selected to reflect prior ignor-

ance. Because of computational problem first t̂t1 ¼ E t1ð Þ and t̂t2 ¼ E t2ð Þ we calculated
numerically after removing the other variable by numerical integration.
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Table 1 relates to the switching first order AR model. Fixing t1 and t2 at t̂t1 and t̂t2
respectively, then the Bayesian estimates for AR (1) model �̂� = E(�/ t1 ¼ t̂t1, t2 ¼ t̂t2)

was calculated. Further, �̂�1 ¼ Eð�1=t1 ¼ t̂t1, t2 ¼ t̂t2, � ¼ �̂�) �̂�1 ¼ Eð�1=t1 ¼ t̂t1,

t2 ¼ t̂t2, � = �̂�) and �̂�2 ¼ Eð�2=t1 ¼ t̂t1, t2 ¼ t̂t2, � ¼ �̂�).

Table 2 relates to the switching second order AR model by taking p ¼ 2 in the

models discussed in Section 3.

The Bayes estimates were calculated first for the switching parameters and the es-

timates of the other parameters were calculated after fixing the switch parameters at

their estimated values. Thus, the estimates listed in these tables are:

t̂t1 ¼ Eðt1Þ, t̂t2 ¼ Eðt2Þ, �̂� ¼ Eð�=t1 ¼ t̂t1, t2 ¼ t̂t2Þ,

�̂�1 ¼ Eð�1=t1 ¼ t̂t1, t2 ¼ t̂t2, � ¼ �̂�Þ,

�̂�2 ¼ Eð�2=t1 ¼ t̂t1, t2 ¼ t̂t2, � = �̂�Þ,

�̂�1 ¼ Eð�1=t1 ¼ t̂t1; t2 ¼ t̂t2, � ¼ �̂�Þ and

�̂�2 ¼ Eð�2=t1 ¼ t̂t1, t2 ¼ t̂t2, � = �̂�Þ.

The parameters of the prior distribution were selected as below to reflect prior ig-

norance s1 ¼ s2 ¼ 0:01, and � ¼ 1 and simulation has been carried out for one hun-

dred times and the estimated values of the parameters are given in Tables 1 and 2

along with their true values. A perusal of the tables tells us that the mean square er-

rors (MSE’s) are uniformly quite small indicating that the method works quite nicely

in the cases considered.

TABLE 1. - Bayes Estimates of the Parameters in a Switching First Order

Autoregressive Process through Mixture Models

�1 ¼ 0:4 �
�1 ¼ 0:3 �1 ¼ 0:2 �1 ¼ 0:8

0.6 1.0 2.0 0.6 1.0 2.0 0.6 1.0 2.0

n ¼ 50 t1 15 15 14 14 15 15 14 14 15
t1 ¼ 15 t2 20 20 19 20 20 20 18 18 20
t2 ¼ 20 � 0.44 0.62 1.29 0.60 0.94 1.80 0.66 0.72 1.81
�2 ¼ 1:0 �1 0.31 0.36 0.40 0.31 0.33 0.38 0.38 0.43 0.45

�1 0.29 0.28 0.36 0.20 0.26 0.24 0.81 0.87 0.72
�2 1.07 1.08 1.13 0.80 0.90 1.11 0.76 0.76 1.17

n ¼ 75 t1 17 18 18 17 17 17 18 18 19
t1 ¼ 18 t2 20 19 20 19 20 20 20 20 20
t2 ¼ 20 � 0.50 0.83 1.91 1.02 0.96 1.62 0.78 1.41 1.90
�2 ¼ 1:0 �1 0.37 0.33 0.48 0.39 0.36 0.43 0.48 0.41 0.43

�1 0.32 0.30 0.39 0.21 0.28 0.32 0.83 0.86 0.76
�2 1.15 1.23 1.01 1.12 1.18 1.20 0.81 1.13 1.17

n ¼ 100 t1 15 15 15 14 14 15 14 15 15
t1 ¼ 15 T2 18 18 17 18 18 18 18 16 18
t2 ¼ 18 � 0.22 0.41 1.45 0.26 0.92 1.73 0.40 0.86 1.73
�2 ¼ 2:0 �1 0.38 0.39 0.31 0.42 0.47 0.48 0.42 0.46 0.43

�1 0.29 0.24 0.22 0.23 0.26 0.25 1.00 1.03 1.11
�2 2.02 2.11 2.16 2.13 2.18 2.21 2.02 2.11 2.23
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TABLE 2. - Bayes Estimates of the Parameters in a Switching Second

Order Autoregressive Process through Mixture Models

�1 ¼ 0:5 �1 ¼ 0:25 �1 ¼ 0:50 �1 ¼ 0:75

�2 ¼ 0:75 �2 ¼ 0:40 �2 ¼ 0:60 �1 ¼ 0:90

� 0.8 1.0 2.0 0.8 1.0 2.0 0.8 1.0 2.0

n ¼ 50 t1 12 12 11 12 11 10 12 12 12

t1 ¼ 12 t2 15 15 15 14 15 15 15 14 15

t2 ¼ 15 � 0.75 0.92 1.83 0.82 0.76 2.11 0.91 1.17 2.84

�2 ¼ 1:0 �1 0.48 0.52 0.49 0.39 0.42 0.47 0.53 0.57 0.51

�2 0.68 0.72 0.76 0.74 0.71 0.77 0.78 0.82 0.85

�1 0.21 0.26 0.20 0.68 0.59 0.55 0.71 0.78 0.76

�2 0.28 0.41 0.36 0.52 0.63 0.61 0.88 0.82 0.92

�2 0.96 0.88 0.97 0.86 0.91 0.93 0.99 1.02 1.10

n ¼ 75 t1 14 14 15 14 13 13 15 15 15

t1 ¼ 15 t2 17 18 18 18 19 17 18 18 16

t2 ¼ 18 � 0.71 0.93 1.86 0.70 1.27 2.32 0.75 0.97 1.68

�2 ¼ 2:0 �1 0.42 0.46 0.52 0.48 0.41 0.39 0.56 0.52 0.50

�2 0.61 0.68 0.71 0.79 0.76 0.72 0.67 0.78 0.74

�1 0.24 0.29 0.32 0.30 0.46 0.61 0.82 0.71 0.70

�2 0.31 0.39 0.42 0.65 0.58 0.52 0.78 0.83 0.97

�2 1.92 1.91 1.76 1.97 2.03 2.11 2.18 2.11 2.14

n ¼ 100 t1 18 18 18 17 17 16 18 18 17

t1 ¼ 18 t2 20 20 18 21 21 20 21 20 18

t2 ¼ 20 � 0.62 0.85 1.78 0.92 1.12 2.10 0.9 1.24 2.21

�2 ¼ 3:0 �1 0.48 0.51 0.56 0.61 0.58 0.53 0.51 0.47 0.52

�2 0.71 0.73 0.82 0.74 0.78 0.86 0.83 0.76 0.72

�1 0.18 0.21 0.26 0.67 0.62 0.53 0.72 0.78 0.74

�2 0.34 0.38 0.46 0.63 0.57 0.59 0.89 0.93 0.98

�2 2.84 2.88 2.92 2.95 2.98 3.03 3.12 3.03 3.12
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RIASSUNTO
Nel presente contributo è proposto un approccio mixture Bayesiano per affrontare il problema delle

variazioni graduali nei parametri di un modello autoregressivo di ordine p. Il modello proposto in-

clude i punti iniziali e finali di variazione dell’intervallo. Le stime Bayesiane e le distribuzioni mar-

ginali a posteriori dei parametri sono determinate mediante l’utilizzo di tecniche di integrazione nu-

merica ordinale. Un esempio numerico è riportato per lo studio della qualità delle stime.
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