Washington Law Review

Volume 68 | Number 2

4-1-1993

A Square Peg in a Round Hole: The Proper Substantial Similarity
Test for Nonliteral Aspects of Computer Programs

David A. Loew

Follow this and additional works at: https://digitalcommons.law.uw.edu/wIr

6‘ Part of the Computer Law Commons

Recommended Citation

David A. Loew, Comment, A Square Peg in a Round Hole: The Proper Substantial Similarity Test for
Nonliteral Aspects of Computer Programs, 68 Wash. L. Rev. 351 (1993).

Available at: https://digitalcommons.law.uw.edu/wlr/vol68/iss2/4

This Comment is brought to you for free and open access by the Law Reviews and Journals at UW Law Digital
Commons. It has been accepted for inclusion in Washington Law Review by an authorized editor of UW Law Digital
Commons. For more information, please contact cnyberg@uw.edu.

https://digitalcommons.law.uw.edu/wlr
https://digitalcommons.law.uw.edu/wlr/vol68
https://digitalcommons.law.uw.edu/wlr/vol68/iss2
https://digitalcommons.law.uw.edu/wlr?utm_source=digitalcommons.law.uw.edu%2Fwlr%2Fvol68%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=digitalcommons.law.uw.edu%2Fwlr%2Fvol68%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.law.uw.edu/wlr/vol68/iss2/4?utm_source=digitalcommons.law.uw.edu%2Fwlr%2Fvol68%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cnyberg@uw.edu

Copyright © 1993 by Washington Law Review Association

A SQUARE PEG IN A ROUND HOLE: THE
PROPER SUBSTANTIAL SIMILARITY TEST
FOR NONLITERAL ASPECTS OF
COMPUTER PROGRAMS

David A. Lowe

Abstract: Since the Third Circuit’s decision in Whelan Associates, Inc. v. Jaslow Dental
Laboratory, Inc. expanded copyright protection to include the nonliteral aspects of com-
puter programs, courts have struggled to find a way to properly determine substantial
similarity between programs, a necessary element of copyright infringement. In the Third
Circuit, courts dissect competing programs and compare them in a one-step procedure.
The Ninth Circuit uses a two-part process to objectively, and then subjectively, compare
program elements. In Computer Associates International, Inc. v. Altai, Inc. the Second
Circuit recommended a three-part substantial similarity test to filter out unprotectable
elements and compare the remaining core expression. This Comment argues that existing
tests are inadequate because they fail to consider programs as a whole and use inappropri-
ate analytical techniques resulting in the loss of protection for nonliteral elements. This
Comment proposes the use of a two-tiered substantial similarity test that considers the
computer program as an integrated whole and as separate components. This approach
would enable courts to fully protect programmers’ rights in the original nonliteral aspects
of their computer programs.

Compuhypo, Inc., a small computer software company, created and
began marketing a new educational word processing program for children
designed to teach the alphabet while expanding the child’s vocabulary.
Called “KidPrint,” the program performs four operations common to
most word processors: data entry, data display, spell-checking, and print-
ing. Beyond simply displaying typed text, however, KidPrint displays col-
orful animal pictures on the screen and emits related animal sounds
corresponding to various alphabetical characters. Six months after Kid-
Print hit the stores, Microhypo, Inc., another small computer software
company, released a new educational word processing program, ‘Kid-
dieType,” which performed the same operations as KidPrint. Unbe-
knownst to Compuhypo, Microhypo obtained copies of KidPrint’s
computer code and drew extensively from it when creating the logic and
structure of KiddieType. Compuhypo brought suit against Microhypo,
alleging that Microhypo copied significant nonliteral aspects of KidPrint
in its KiddieType program. While the literal computer code and each of
KiddieType’s discrete components are distinguishable from KidPrint’s,
KiddieType’s nonliteral aspects—based on the original selection, coordi-
nation, and arrangement of the program and on structure within the com-
ponents—are virtually identical to KidPrint’s. Compuhypo’s creative
development lies primarily in these nonliteral program aspects.

351

Washington Law Review Vol. 68:351, 1993

An owner may prove copying of a computer program by showing
that the defendant had access to the copyrighted program and that
substantial similarity exists between the two programs. When strug-
gling to define substantial similarity between the nonliteral aspects of
computer programs, courts have created various tests. These tests
incorporate specific ways to breakdown and compare computer
programs.

Although recent substantial similarity tests demonstrate an in-
creased judicial awareness of the technology involved in computer
programming, this Comment argues that existing tests are inadequate
and undermine copyright protection for the nonliteral aspects of com-
puter programs. Part I discusses copyright protection for computer
programs. Part II examines the existing substantial similarity tests
courts use to determine whether a computer program has been copied.
Part III criticizes those tests in the context of the hypothetical Kid-
Print program. Part IV proposes a two-tiered test that addresses those
criticisms and aids the courts in determining, comparing, and protect-
ing a programmer’s original work.

I. COPYRIGHT PROTECTION FOR COMPUTER
PROGRAMS

When courts apply copyright principles to deterrnine infringement
between computer programs, they employ the techniology of the pro-
grams as well as the intricacies of copyright law. To understand the
resulting judicial analyses and copyright infringement tests, a reader
must have a basic understanding of computer program structure, con-
cepts of copyright law, and the complications that arise when courts
apply copyright principles to computer programs.

A. The Structure of Computer Programs

A computer program may be a word processing program, spread-
sheet program, database, or other program that the user loads into a
computer system® and runs by typing the program’s name at the com-
mand prompt or “clicking” on its program icon with a mouse. To the

1. A computer system consists of both hardware and software. Hardware refers to the
physical components of the computer and includes a central processing unit (CPU)—electronic
circuits that control the computer and perform its basic calculations and operations—together
with memory and input/output devices. Software refers to the instructions that direct a
computer to perform operations. Software is composed of one or more computer programs
integrated to perform a given task or solve a particular problem. See NELL DALE & SUSAN C.
LiLLy, PascaL PLus DATA STRUCTURES 2-3 (2d ed. 1988); D. M. ETTER, STRUCTURED
FORTRAN 77 FOR ENGINEERS AND SCIENTISTS 2-3 (2d ed. 1987).

352

Substantial Similarity Test for Computer Programs

user, a program appears as visual images and audio sounds that pro-
vide an interface with which the user accomplishes a given function or
achieves a desired result. These audio and visual elements generated
by the computer program are referred to as the program’s audiovisual
aspects.? A computer program, however, is much more than its audio-
visual representations. A computer program is the complex combina-
tion of statements, instructions, and commands created by its
programmer.?

One must understand how a program is created to understand com-
puter program structure. Typically, a computer programmer creates a
program by following a planned sequence of steps.* First, the
programmer must identify the problem that the computer program
attempts to solve.® The programmer devises a general strategy for
solving the problem by dividing the complex problem into smaller,
more manageable subproblems.® The programmer solves each of these
subproblems using program components called modules.” Next, the
programmer breaks down these larger modules into smaller modules
or subprograms to perform individual tasks.® These subprograms
interact with each other, with various file structures, and within the
larger program modules to solve the problem. The interrelationship
among the program’s “components”—the modules, subprograms, and
file structures—defines the program’s “structure.”® Selecting and
arranging program components and creating this interrelationship is
the most difficult step in the programming process.!® It is also the
most creative step because here the programmer refines the program,
ensuring that data passes in a logical and efficient manner to and from
the computer user and between the individual program components.!!

2. See Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 703 (2d Cir. 1992).

3. See ROGER S. PRESSMAN, SOFTWARE ENGINEERING: A PRACTITIONER’S APPROACH
10-14 (1982).

4. DALE & LILLY, supra note 1, at 11. This methodology is often referred to as the “top-
down” approach to computer program design. The programmer defers the specific details of the
program as long as possible, dividing its complex requirements into more manageable elements.
Id,; see also CARLO GHEZZI ET AL., FUNDAMENTALS OF SOFTWARE ENGINEERING 115 (1991).
DALE & LILLY, supra note 1, at 2, 11.

Id,

See PRESSMAN, supra note 3, at 148—-49.
DALE & LILLY, supra note 1, at 12,

. PRESSMAN, supra note 3, at 129.

10. Jd. at 143 (describing this step as the “techmical kernel of software [program]
engineering).

11. Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc. 797 F.2d 1222, 1230-31, 1237 (3d Cir.
1986) (concluding that the arrangement of modules and subprograms, along with the de-
velopment of program structure, is the most creative aspect of program creation), cert. denied,
479 U.S. 1031 (1987); see also DALE & LILLY, supra note 1, at 3 (explaining that despite the use

353

PN

o

Washington Law Review Vol. 68:351, 1993

Finally, the programmer converts the developed program into a set
of statements or instructions using a written computer language.'?
The programmer writes or “codes” these statements or instructions—
commonly referred to as source code!>—according to the syntax of the
chosen computer language.!* Once the programmer completes the
coding of the program, a compiler program translates the source code
into computer executable object code.’®

For the purposes of copyright law, a computer program consists of
both literal and nonliteral elements. A program’s literal elements are
its source and object code.!® The nonliteral elements of computer pro-
grams, however, are not as readily defined.!” When defining nonliteral
elements, courts have included program file structures, screen outputs,
and program subroutine interaction;'® the overall “look and feel” of
the program;'® and program design flow charts, the organization of
inter-modular relationships, parameter lists,”® macros,?! and a pro-
gram’s list of services.??> The creation of the nonliteral elements takes
place primarily in the program design stage of development in which

of common programming knowledge and techniques, program structure is the result of a high
degree of creative programming); PRESSMAN, supra note 3, at 85 (suggesting that much of the
programmer’s creative effort lies in designing the program’s structure).

12. See DALE & LILLY, supra note 1, at 12. Modern programmers typically write computer
programs in high-level programming languages, examples of which include FORTRAN,
COBOL, Pascal, and C. See GHEZZI ET AL., supra note 4, at 480.

13. Source code refers to a computer program written in a programming language that uses
complex symbolic names and rules of syntax. See ETTER, supra note 1, at 4-7.

14. DALE & LiLLY, supra note 1, at 1.

15. Object code, written in a binary language comprised of ones and zeros, is source code in
machine readable form. See ETTER, supra note 1, at 4-7.

16. Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 702 (2d Cir. 1992); Whelan
Assoc., Inc. v. Jaslow Dental Lab., Inc. 797 F.2d 1222, 1234 (3d Cir. 1986), cert. denied, 479
U.S. 1031 (1987).

17. See, e.g., Whelan, 797 F.2d at 1233-34 (defining nonliteral program elements in a
somewhat circular fashion as the tangible or fixed elements of a program’s structure that exist
beyond the program’s literal source and object code but nevertheless relate to the programmer’s
original program).

18. Id. at 1242-46.

19. Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173, 1175 (9th Cir. 1989)
(suggesting that the nonliteral elements of program structure include the design of the video
screen and the manner in which the computer presents information to the user).

20. A parameter list is the form in which information critical to the function of each module
is passed, upon request, among modules in a program. Altai, 982 F.2d at 697-98.

21. A macro is a user programmable keystroke sequence used to represent the longer and
more complex set of keystrokes normally required to initiate a program response. Id. at 698.

22. See id. at 697-98, 702.

354

Substantial Similarity Test for Computer Programs

the programmer tailors the program to the demands of various practi-
cal and commercial restraints.??

B. Principles of Modern Copyright Protection

The Copyright Act of 1976 explicitly protects authors’ original
works.>* To obtain this copyright protection, an author’s work must
meet two fundamental criteria: the work must be original?® and fixed?®
in a tangible form.?’” Copyright law only protects an author’s original
expression and not the ideas or processes used to create the expres-
sion.?® Furthermore, the Copyright Act gives the author the exclusive
right to reproduce and distribute the work and to create other works
based on the original copyrighted work.?®

The Copyright Act includes both literary works®® and audiovisual
works3! as copyrightable works.3? It also protects compilations* and

23. These immediate considerations include efficiency concerns (making the program run
faster) and hardware constraints (making the program work with the computer system).
Programmers must also design their programs to meet future concerns such as maintainability
(modifications made to the program after its initial release); portability (the program’s ability to
run using different hardware and operating systems); and interoperability (the program’s ability
to coexist and cooperate with other systems). See generally GHEZZI ET AL., supra note 4, at
19-36.

24. 17 U.S.C.A. § 102(a) (West Supp. 1992) (“Copyright protection subsists, in accordance
with this title, in original works of authorship fixed in any tangible medium of expression, now
known or later developed, from which they can be perceived, reproduced, or otherwise
communicated, either directly or with the aid of a machine or device.”).

25. A work is original if it is independently created by the author and possesses at least some
minimal degree of creativity. Feist Publications, Inc. v. Rural Tel. Serv. Co., Inc., 111 S. Ct.
1282, 1287 (1991).

26. A work is fixed when “its embodiment . . . by or under the authority of the author, is
sufficiently permanent or stable to permit it to be perceived, reproduced, or otherwise
communicated for a period of more than transitory duration.” 17 U.S.C.A. § 101 (West 1977).

27. Id. § 102(a) (West Supp. 1992); see also Feist, 111 S. Ct. at 1292-93,

28. 17 US.C.A. § 102(b) (West Supp. 1992) provides that “[iln no case does copyright
protection for an original work of authorship extend to any idea, procedure, process, system,
method of operation, concept, principle, or discovery, regardless of the form in which it is
described, explained, illustrated, or embodied in such work.”

29. Id. § 106 (West 1977 & Supp. 1992).

30. *“‘Literary works’ are works, other than audiovisual works, expressed in words, numbers,
or other verbal or numerical symbols or indicia, regardless of the nature of the material objects
such as books, periodicals, manuscripts, phono-records, film, tapes, disks, or cards, in which they
are embodied.” Id. § 101 (West 1977).

31. “‘Audiovisual works’ are works that consist of a series of related images which are
intrinsically intended to be shown by the use of machines or devices such as . . . electronic
equipment, together with accompanying sounds, if any, regardless of the nature of the material
objects . . . in which the works are embodied.” Id.

32, Id §102(a) (West Supp. 1992).

33. “A ‘compilation’ is a work formed by the collection and assembling of preexisting
materials or of data that are selected, coordinated, or arranged in such a way that the resulting
work as a whole constitutes an original work of anthorship.” Id. § 101 (West 1977).

355

Washington Law Review Vol. 68:351, 1993

derivative works®* as copyrightable works.*>®> The Act, however, pro-
tects only the author’s original contributions and nct the pre-existing
material employed in the work.*® Copyright protection for compila-
tions and derivative works therefore extends only to the original coor-
dination and arrangement of the work’s materials.?’

The Copyright Act also provides a defendant with certain defenses
to a copyright infringement claim.3® A defendant may escape liability
by showing that the allegedly infringing work is original or that the
similarities found between the competing works are based on unpro-
tectable elements of the work.>® In computer program infringement
suits, courts have generally recognized three categories of unprotect-
able program elements: elements dictated by efficiency;*® elements dic-
tated by external factors;*! and elements taken from the public
domain.*?

C. Protecting Computer Programs Under the Copyright Laws

In the 1976 Copyright Act, Congress failed to explicitly provide for
the protection of computer programs. In 1980, upon the recommen-

34. “A ‘derivative work’ is a work based upon one or more preexisting works . . . which, as a
whole, represent[s] an original work of authorship.” Id.

35. Id. § 103(a).

36. Id. § 103(b) (“The copyright in a compilation or derivative work extends only to the
material contributed by the author of such work, as distinguished from the preexisting material
employed in the work, and does not imply any exclusive right in the preexisting material.”).

37. Id.; see also Feist Publications, Inc. v. Rural Tel. Serv. Co., Inc. 111 S. Ct. 1282, 1289-94
(1991) (holding that the copyright for a factual compilation is limited tc the particular selection
or arrangement of elements).

38. 17 U.S.C.A. §§ 106-118 (West 1977 & Supp. 1992) (detailing the scope and limitations of
an owner’s copyright protection).

39. See Feist, 111 S. Ct. at 1290-92.

40. Computer program elements are dictated by efficiency when there is essentially only one
way to express the idea underlying a specific programming task. The element’s expression is said
to merge with the task’s overall purpose or function. Often referred to as the merger doctrine,
the resulting program element expression is considered unprotectable. See Computer Assocs.
Int’l, Inc. v. Altai, Inc,, 982 F.2d 693, 707-09 (2d Cir. 1992); Data East U.S.A., Inc. v. Epyx,
Inc., 862 F.2d 204, 208 (9th Cir. 1988).

41. Program elements are dictated by external factors when a programmer’s freedom of
design choice is limited by extrinsic considerations such as computer hardware compatibility
requirements. This is also known as the scenes a faire doctrine. See Altai, 982 F.2d at 709-10;
Data East, 862 F.2d at 208; Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222,
1236 (3d Cir. 1986), cert. denied, 479 U.S. 1031 (1987); see also supra note 23 and accompanying
text.

42. Program elements are taken from the public domain when they consist of material, either
original or previously copyrighted, which is freely circulated to the public through program
exchanges or similar information-disbursement functions. Public domain material cannot be
appropriated by a single author despite its inclusion in a copyrighted work. See Altai, 982 F.2d
at 710; Whelan, 797 F.2d at 1232 n.23, 1248 n.47.

356

Substantial Similarity Test for Computer Programs

dation of CONTU,*® Congress expressly included computer programs
within the copyright statute.** Instead of creating a separate category,
however, Congress classified computer programs as “literary works”
already protected under copyright law.** Congress also provided
copyright protection for computer screen displays generated by the
literal source code as entirely distinct works of authorship—audiovi-
sual works.*¢ Under existing law, copyright protects the literal expres-
sion of computer programs*’ such as the program’s source code and
corresponding object code.*® Copyright also protects the nonliteral
expression of computer programs.*® Courts disagree, however, on the
nonliteral program elements eligible for copyright protection.>®
Furthermore, copyright law only protects an author’s original
expression and not the ideas or processes used to create the expres-
sion.>® This critical distinction becomes hazy when courts apply it to
computer programs. Courts may view computer program elements as
abstract ideas about how to accomplish specific tasks or as computa-
tional processes describing how to perform those tasks; copyright law
denies protection in either instance, although perhaps for different rea-

43, CONTU is short for the National Commission on New Technological Uses of
Copyrighted Works. FINAL REPORT OF THE NATIONAL COMMISSION ON NEW
TECHNOLOGICAL USEs OF COPYRIGHTED WORKS 1 (1978) [hereinafter CONTU REPORT].
Congress created the Commission in 1974 in response to anticipated problems in the application
of its pending copyright bill to computers and other new technologies. Id. See generally
MARSHALL LEAFFER, UNDERSTANDING COPYRIGHT LAW § 3.4[A] (1989); 2 MELVILLE B.
NIMMER & DAvID NIMMER, NIMMER ON COPYRIGHT § 8.08 (1992). CONTU’s final report
recommended express statutory copyright protection for computer programs to the extent that
they embody a programmer’s original creation. CONTU REPORT, supra, at 1.

44. 17 US.C.A. § 101 (West Supp. 1992).

45. Congress defined a computer program as “a set of statements or instructions to be used
directly or indirectly in a computer in order to bring about a certain result,” id, thereby
including programs within the definition of “literary works.” See H.R. REp. No. 1476, 94th
Cong., 2d Sess. 54 (1976), reprinted in 1976 U.S.C.C.A.N. 5659, 5667 [hereinafter HOUSE
REPORT] (stating that the Copyright Act’s definition of “literary works” included “‘computer
programs to the extent that they incorporate authorship in the programmer’s expression of
original ideas, as distinguished from the ideas themselves”). See generally 1 PAUL GOLDSTEIN,
COPYRIGHT § 2.15.2 (1989) (describing congressional intent and judicial decisions recognizing
the copyrightability of computer programs as “literary works™).

46. 17 US.C.A. §§ 101, 102(a)(6) (West 1977 & Supp. 1992).

47. Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 702 (2d Cir. 1992); Whelan
Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1233 (3d Cir. 1986), cert. denied, 479
U.S. 1031 (1987); Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1249 (3d
Cir. 1983), cert. dismissed, 464 U.S. 1033 (1984).

48. See supra notes 13-15 and accompanying text.

49, See Altai, 982 F.2d at 702-03; Johnson Controls, Inc. v. Phoenix Contro! Sys., Inc., 886
F.2d 1173, 1175 (9th Cir. 1989); Whelan, 797 F.2d at 1248.

50. See supra notes 17-22 and accompanying text.

51. See supra note 28 and accompanying text.

357

Washington Law Review Vol. 68:351, 1993

sons.>? Courts may also view computer program elements as original
expression eligible for copyright protection.® Because computer pro-
grams fall between classical divisions of unprotectable and protectable
works, courts have been forced to analyze them as legal hybrids.>* As
a result, courts have created inconsistent standards for distinguishing
between a program’s uncopyrightable idea or process and its copy-
rightable original expression.>®

II. THE SUBSTANTIAL SIMILARITY TEST FOR
COMPUTER PROGRAMS

A copyright owner may bring a copyright infringement suit for a
violation of the Copyright Act.’® To prevail, the owner must show
two specific elements: (1) ownership of a valid copyright,®” and (2)
copying of original elements of the copyrighted work.® The owner
may prove copying of the work’s expression by showing the defend-
ant’s access to the copyrighted work® and substantial similarity
between the defendant’s work and the owner’s copyrighted work.®
Due to the problem of distinguishing an idea or process from an
expression, courts have difficulty determining what elements of com-
puter programs are copyrightable and, in turn, whether substantial
similarity exists between elements of competing computer programs.5!

52. Ideas are not protected per se, see Baker v. Seldon, 101 U.S. 99 (1879), while processes are
protected, if at all, through patent law. See 35 U.S.C.A. § 101 (West 1984). See generally
DONALD S. CHISUM & MICHAEL A. JAcoBs, UNDERSTANDING INTELLECTUAL PROPERTY
LAaw § 2C[1] (1992) (discussing processes as patentable subject matter).

53. See supra notes 24, 45 and accompanying text.

54. See, e.g., Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 712 (2d Cir. 1992)
(describing “the hybrid nature of a computer program, which, while it is literary expression, is
also a highly functional, utilitarian component in the larger process of computing”); see also J.H.
Reichman, Computer Programs as Applied Scientific Know-how: Implications of Copyright
Protection for Commercialized University Research, 42 VAND. L. Rzv. 639, 656-62 (1989)
(discussing how computer programs are legal hybrids falling between the classical forms of
protection for industrial and artistic property).

55. See Altai, 982 F.2d at 704-05; Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d
1222, 1234-38 (3d Cir. 1986), cert. denied, 479 U.S. 1031 (1987).

56. 17 US.C.A. § 501(b) (West Supp. 1992).

57. For a complete discussion of the ownership element, see 3 NIMMER & NIMMER, supra
note 43, § 13.01[A]; 2 GOLDSTEIN, supra note 45, § 14.3.1.

58. Feist Publications, Inc. v. Rural Tel. Serv. Co., Inc., 111 S. Ct. 1282, 1296 (1991); see also
Harper & Row, Publishers, Inc. v. Nation Enters., 471 U.S. 539, 548 (1985).

59. For a detailed discussion of access, see 3 NIMMER & NIMMER, supra note 43, § 13.03[D];
2 GOLDSTEIN, supra note 45, § 7.2.1.

60. See Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 701 (2d Cir. 1992); Brown
Bag Software v. Symantec Corp., 960 F.2d 1465, 1472 (9th Cir.), ceri. denied, 113 S. Ct. 198
(1992).

61. See, e.g., Altai, 982 F.2d at 703-05; Lotus Dev. Corp. v. Paperbzck Software Int’l, 740 F.
Supp. 37, 54 (D. Mass. 1990).

358

Substantial Similarity Test for Computer Programs

Three circuits have articulated three different standards for determin-
ing substantial similarity between computer programs: the Third Cir-
cuit’s one-step integrated test; the Ninth Circuit’s bifurcated test; and
the Second Circuit’s three-part test.

A. Whelan’s One-Step Integrated Test

In Whelan Associates, Inc. v. Jaslow Dental Laboratory, Inc.,* the
Third Circuit recognized that copyright protection extends beyond a
computer program’s literal code to its nonliteral “structure, sequence,
and organization.”®* The court adopted a one-step test to determine if
similarity exists between nonliteral aspects of computer programs.®
Under this test, a court determines the program’s ultimate purpose or
function, the equivalent of the program’s idea.®* The court will not
protect the program’s idea, but it will protect all remaining literal and
nonliteral elements as copyrightable expression.®® The court then
compares the two competing programs to determine whether substan-
tial similarity exists.®’” In Whelan, the court found that the overall
idea of the copyrighted program—the efficient management of a dental
laboratory—was not protected.® Because this idea could be accom-
plished in a variety of different ways, however, the court concluded
that the program’s structure was protectable expression rather than
unprotectable idea,®® and found substantial similarity based on three
distinct nonliteral program elements: the file structures, screen out-
puts, and the structure of five specific subroutines of the programs.”

B. The Ninth Circuit’s Bifurcated Test

The Ninth Circuit has rejected Whelan’s one-step integrated test in
favor of a two-part substantial similarity analysis generally referred to

62, 797 F.2d 1222 (3d Cir. 1986), cert. denied, 479 U.S. 1031 (1987).

63. Id. at 1248. Analogizing the copyrightability of nonliteral aspects of compilations and
derivative works to the nonliteral aspects of computer program structure, the court held that as
long as an alternate means of expressing a program idea exists, the structure, sequence, and
organization of a program is not essential to the program’s task and is therefore protectable
expression. Id. at 1238.

64. Id. at 1233.

65. Id. at 1236 (“[T]he purpose or function of a utilitarian work would be the work’s idea,
and everything that is not necessary to that purpose or function would be part of the expression
of the idea.”).

66. See id.

67. See id. at 1232-33.

68. See id. at 1238-40.

69. Id at 1236 n.28.

70. Id. at 1242-46.

359

Washington Law Review Vol. 68:351, 1993

as the “extrinsic-intrinsic” test.”! The “extrinsic” part of this test
requires an objective analysis of expression.”> To dstermine whether
similarity exists between computer programs, the trier of fact breaks
down or analytically dissects the two competing programs into stan-
dard program elements such as screens, menus, and keystrokes and
compares corresponding elements.”® If similarity exists between these
program elements, the trier of fact performs the “intrinsic” part of the
test—a subjective analysis to determine whether substantial similarity
exists between the two programs’ expression.”* The trier of fact evalu-
ates the overall “look and feel” of the two programs,” subjectively
comparing the programs rather than relying on the external criteria
that marks the extrinsic test.”® If the trier of fact finds similarities, the
trier again analytically dissects the program into its elements to deter-
mine whether similarities result from unprotectable expression.””

C. Altai’s Three-Part “Abstraction-Filtration-Comparison” Test

Rejecting Whelan’s conceptual framework and discarding elements
of the bifurcated test, the Second Circuit, in Computer Associates
International, Inc. v. Altai, Inc.,”® proposed a three-step abstraction-
filtration-comparison procedure to determine substantial similarity
between the nonliteral elements of two computer programs.”” The
Altai test breaks down the allegedly infringing program’s structure
into abstract levels.®° The court does this by retracing the program-
mer’s steps, starting with the program’s most detailed level, usually

71. Sid & Marty Krofft Television Prod., Inc. v. McDonald’s Corp., 562 F.2d 1157 (9th Cir.
1977) (citing Armnstein v. Porter, 154 F.2d 464 (2d Cir. 1946) (original bifurcation of the
substantial similarity test), cert. denied, 330 U.S. 851 (1947), and applying a two-part analysis).
See Shaw v. Lindheim, 919 F.2d 1353, 1356-57 (9th Cir. 1990) (inodifying the two-part
analysis); Brown Bag Software v. Symantec Corp., 960 F.2d 1465, 1475-77 (9th Cir.) (using the
modified two-part analysis), cert. denied, 113 S. Ct. 198 (1992).

72. Brown Bag, 960 F.2d at 1475.

73. See id. at 1475-71.

74, Id. at 1475; see also Data East U.S.A,, Inc. v. Epyx, Inc.,, 862 F.2d 204, 208 (9th Cir.
1988); Krofft, 562 F.2d at 1164-65.

75. See Brown Bag, 960 F.2d at 1476.

76. Krofft, 562 F.2d at 1164-65; see also Shaw v. Lindheim, 919 F.2d 1353, 1356 (9th Cir.
1990).

77. The court sifts out program elements where the idea and expression merge, where
elements are scenes a faire, and where the expression is in the public domain. See, e.g., Brown
Bag, 960 F.2d at 1473; Data East, 862 F.2d at 208; see supra notes 40-42 and accompanying text.

78. 982 F.2d 693 (2d Cir. 1992).

79. See id. at 706. This procedure incorporates a successive filtration methodology taken
from scholarly commentary. See 3 NIMMER & NIMMER, supra note 43, § 13.03[F); see also
David Nimmer et al., 4 Structured Approach to Analyzing the Substantial Similarity of Computer
Software in Copyright Infringement Cases, 20 AR1Z. ST. L.J. 625 (1988).

80. See Altai, 982 F.2d at 706-07.

360

Substantial Similarity Test for Computer Programs

consisting of the program’s literal computer code.’! Becoming
increasingly more generalized, the court defines successive abstract
levels of the program’s structure, each level representing an unprotect-
able function that describes the structure within that abstract level.®?
The process ends when the court reaches the programmer’s last step in
creation, at which point the court is left with the program’s most gen-
eral abstraction level—the program’s idea or purpose.®®> Throughout
this “abstraction” process, the court filters out uncopyrightable ele-
ments of the computer program® by way of successive filtration.®®
After this filtration, the court compares the program’s remaining
copyrightable expression to that found in the allegedly infringing pro-
gram to determine whether similarity exists, and if so, whether the
similarity is significant to the owner’s overall program.®¢ In Altai, the
court defined the copyrighted program’s abstract levels as its object
code, source code, parameter lists, macros, services required, and gen-
eral outline.?” The court subsequently filtered out the program’s list of
services and general outlines as being dictated by external factors®®
and found no substantial similarity between the competing programs’
object code, source code, parameter lists, and macros.®®

ITII. CRITIQUE OF EXISTING SUBSTANTIAL SIMILARITY
TESTS FOR COMPUTER PROGRAMS

Existing substantial similarity tests fail to properly protect the non-
literal aspects of computer programs. Courts applying these substan-
tial similarity tests fail to consider computer programs as a whole, and
when comparing separate program elements do not use adequate dis-
section and filtration techniques. Because of this, courts have improp-
erly defined the scope of copyright protection and incorrectly
distinguished protectable expression. As a result, courts overlook pro-
grammers’ original expression and erode copyright protection for their
programs.

81, Id
82. Id
83. Seeid.

84. Id. at 707-10 (elements dictated by efficiency, elements dictated by external factors, and
elements taken from the public domain); see also supra notes 40-42 and accompanying text.

85. Altai, 982 F.2d at 707; see also 3 NIMMER & NIMMER, supra note 43, § 13.03[F][5].
86. Altai, 982 F.2d at 710-11.

87. Id. at 714.

88, Id. at 715.

89, Id. at 714-15.

361

Washington Law Review Vol. 68:351, 1993

A. Whelan’s One-Step Integrated Test Is Too Broad and Fails to
Consider the Program as a Whole

Whelan’s substantial similarity test*° fails to properly protect nonlit-
eral elements because it is too broad and because it does not consider
the program as a whole. It is overbroad because it affords protection
to unprotectable program elements. The court incorrectly assumes
that only one idea underlies any computer program, and therefore iso-
lates the program’s main purpose and affords all other aspects of the
program copyright protection. A program, however, is made up of
smaller modules and subprograms, each of which may have its own
idea and be unprotectable.’’ By erroneously defining computer struc-
ture, Whelan improperly extends copyright protection to unprotect-
able program elements. This results in a substantial similarity test that
is too broad®>—one that protects ideas as well as expression—and vio-
lates the Copyright Act’s specific limitations.®?

Additionally, the Whelan test fails to properly consider the program
as a whole. The Whelan test extends protection to the separate, pro-
tectable nonliteral program elements.”* By failing to view the program
as a whole and to protect the program based on the coordination and
arrangement of both protectable and unprotectable program elements,
the Whelan test disregards the most creative aspects of computer
programs.®®

The deficiencies of the Whelan test’s methodology become apparent
when a court applies the test in the hypothetical KidPrint infringe-
ment suit. The court would first define KidPrint’s purpose as the crea-
tion of an educational word processing program for children designed
to teach the alphabet while expanding the child’s vocabulary.’® The
court would then conclude that all program components not necessary
for this purpose are protected.”” Thus, an unprotectable idea such as

90. See supra notes 62-67 and accompanying text.

91. See supra notes 4-23 and accompanying text.

92. See Alrai, 982 F.2d at 705-06 (criticizing Whelan’s general formulation as being
“descriptively inadequate” and as demonstrating “a flawed understanding of a computer
program’s method of operation™); 3 NIMMER & NIMMER, supra note 43, § 13.03[F]), at 13-78.33,
(“The crucial flaw in [Whelan’s] reasoning is that it assumes that only one ‘idea,’ in copyright
law terms, underlies any computer program, and that once a separable idea can be identified,
everything else must be expression.”). Due to the heavy criticism generated by Whelan’s
program-idea concept, Whelan’s correct emphasis on protecting nonliteral program structure has
been largely overlooked.

93. See supra note 28 and accompanying text.

94, See, e.g., supra text accompanying notes 69-70.

95. See supra note 11 and accompanying text.

96. See supra note 65 and accompanying text.

97. See supra notes 65-66 and accompanying text.

362

Substantial Similarity Test for Computer Programs

KidPrint’s “spell-checking” element would be deemed protectable
program expression because it would not be found necessary to Kid-
Print’s purpose. This would result in an expansive and unwarranted
increase in the scope of copyright protection for KidPrint’s separate
components.®® A court would find similarity between KidPrint’s and
KiddieType’s data display modules based on subprogram and file
structure interrelationship, but by failing to consider the unique selec-
tion, coordination, and arrangement of KidPrint’s modules, sub-
programs, and file structures within the program as a whole, the court
would deny copyright protection to KidPrint’s overall program
structure.®®

B. The Ninth Circuit’s Bifurcated Test Fails to Properly Examine
Component Structure and to Consider the Program as a

Whole

The Ninth Circuit’s two-part substantial similarity test!® fails to
properly examine component structure and to consider computer pro-
grams as a whole. This test does not adequately protect nonliteral
program aspects because the trier of fact must find similarity in the
extrinsic stage before proceeding to determine whether substantial
similarity of the “look and feel” of the program exists in the intrinsic
stage.!°! In the extrinsic stage, the trier breaks down the two compet-
ing programs into elements for examination.!? If the trier does not
find similarity between the two programs’ discrete elements, the trier
never examines the relevant aspects of the copyrighted program’s
overall structure and component interrelationship.!®> The Ninth Cir-
cuit’s two-part test therefore fails to consider the coordination and
arrangement of the program as a whole and to recognize that copy-
right may exist based on the program’s structure, apart from the pro-
tection given to its discrete program elements.!%*

98. KidPrint’s hypothetical components include its four main modules: data entry, data
display, spell-check, and print; the three primary subprograms making up KidPrint’s data
display module: animal picture display, animal sound production, character output to screen;
and the file structures used in the storage and retrieval of each animal picture and sound used in
the data display module.

99. See, e.g., supra text accompanying notes 68-70.

100. See supra notes 71-77 and accompanying text.

101. See supra notes 74-75 and accompanying text.

102. See supra note 73 and accompanying text.

103. See supra note 74 and accompanying text.

104. The petitioner in Brown Bag argued this on appeal, but the Ninth Circuit dismissed the
contention due to evidence deficiency. Brown Bag Software v. Symantec Corp., 960 F.2d 1465,
1476 (9th Cir.), cert. denied, 113 S. Ct. 198 (1992).

363

Washington Law Review Vol. 68:351, 1993

Applying the Ninth Circuit’s bifurcated substantial similarity test in
the hypothetical KidPrint infringement suit, a court would not find
substantial similarity between the KidPrint and KiddieType pro-
grams. The court would first analytically dissect the KidPrint and
KiddieType programs into their respective components.!®® Objec-
tively comparing individual components of the copyrighted program
with those found in the allegedly infringing work,®® the court would
find no similarity of expression because each of KidPrint’s discrete
components, compared separately to those of KiddieType’s, are dis-
similar. Because no similarity exists in the extrinsic stage of the test,
the court would end its analysis.!®” Had the court proceeded to the
intrinsic stage, it would have found substantial similarity between the
two programs based on the selection, coordination, and arrangement
of KidPrint’s program components and on the interrelationship
between the subprograms and file structures within KidPrint’s and
KiddieType’s data display modules. The test fails to properly consider
the program as a whole and the structure within each component, and
therefore fails to protect the original aspects of Compuhypo’s Kid-
Print program.

C. Altai’s Three-Part Test Uses Inappropriate Analytical Techniques
and Fails to Consider the Program as a Whole

Altai’s three-part abstraction-filtration-comparisor. test!?® uses inap-
propriate analytical techniques and fails to consider computer pro-
grams as a whole, thereby failing to protect nonliteral program
aspects. To determine the protectable parts of the program, the Altai
test breaks down the program into “abstract levels”!%® and filters out
unprotectable program elements.!’® This dissection or abstraction
process mischaracterizes computer components as abstract levels,
however, causing an analysis of the wrong elements. The abstraction
process also lacks definite limits on the extent of component abstrac-
tion. The filtration process fails because it prematurely sifts out
unprotectable expression, neglecting potential similarity based on
component structure.

105. See supra note 98.

106. See supra notes 72-73 and accompanying text.
107. See supra note 74 and accompanying text.
108. See supra notes 78-86 and accompanying text.
109. See supra notes 80-83 and accompanying text.
110. See supra notes 84-85 and accompanying text.

364

Substantial Similarity Test for Computer Programs

1. Altai’s Abstractions Process Is Ill-suited for Analytically
Dissecting Computer Programs

The abstraction process relies on a dissection method developed for
traditional literary works.!!! This method of analysis is wholly inade-
quate when applied to computer programs because the individual ele-
ments of traditional literary works and computer programs are
different in both their definition and their interrelationship.!!?
Although the literal elements of traditional literary works and com-
puter programs are similar, both composed of fixed written words and
symbols, the nonliteral elements of each are not analogous. Tradi-
tional literary works such as novels and plays have readily definable
nonliteral elements such as themes, characters, plots, and sequences of
events.!’® A computer program’s nonliteral elements are less defined
and include a wide range of program elements, from screen outputs to
parameter lists.!’* Because the nonliteral elements of each are so dif-
ferent, an abstraction process designed for traditional literary works
inadequately protects computer programs.

Additionally, courts applying the abstraction method to computer
programs mischaracterize computer elements as “abstract levels.”?!®
When breaking down the program into abstract levels, the Altai test
separates the program into its object code, source code, parameter
lists, macros, services required, and general outline.!'® As abstract
levels representing separate functions or ideas, these elements are
uncopyrightable.’” Some of these “abstract levels,” however, repre-
sent elements within a computer program rather than abstract levels
analogous to those found within traditional literary works, and may be
copyrightable as original expression. For example, under the Altai

111. Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 706-07 (2d Cir. 1992). Altai’s
abstraction analysis is based on the Second Circuit’s enunciation of Judge Learned Hand’s
abstractions test, originally created for and applied to literary works such as novels and plays.
See Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (2d Cir. 1930), cert. denied, 282 U.S.
902 (1931).

112. See LEAFFER, supra note 43, § 9.5[E] (suggesting that applying copyright law to
computer programs as literary works is problematic); see also supra note 54 and accompanying
text.

113. Stewart v. Abend, 495 U.S. 207, 238 (1990) (recognizing that copyrightable nonliteral
elements of a book include its unique setting, characters, plot, and sequence of events); Shaw v.
Lindheim, 919 F.2d 1353, 1356-57 (Sth Cir. 1990) (suggesting that traditional literary works can
be broken down into standard and generally accepted nonliteral elements such as plot, themes,
mood, setting, pace, characters, and sequence of events); Nichols, 45 F.2d at 121 (recognizing
that protectable nonliteral elements of a play include characters, sequence of incidents, and plot).

114. See supra notes 17-22 and accompanying text.

115. See supra notes 80-83 and accompanying text.

116. See supra notes 80-89 and accompanying text.

117. See supra note 82 and accompanying text.

365

Washington Law Review Vol. 68:351, 1993

test, a court may define a parameter list!'® as an abstract layer that is
an unprotectable idea. A parameter list, however, may be a protect-
able expression of an idea if analyzed as a program element. Thus, by
mischaracterizing computer elements as abstract levels, the court
denies protection to a programmer’s original ncnliteral program
elements.

Furthermore, in applying the abstractions test, the Altai court fails
to limit the extent of element abstraction. The 4/tai court relies on the
abstraction process to break down the computer program into separate
elements.!’® By not providing a limit to the program abstraction,
however, a court may eventually abstract the program into pieces so
elemental that originality no longer exists. At that point, a program’s
expression would merge with the idea it represents and a court would
eliminate all copyrightability.!*°

2. Altai’s Filtering Procedure Prematurely Diminisies Legitimate
Copyright Protection

After abstracting the computer program into elemental parts, the
Altai test separates the unprotectable elements from the protectable
elements to allow the trier of fact to determine substantial similarity
based solely on similarity between protectable expression.’?! This fil-
tration process sifts out elements of computer programs to which the
merger,'?? scenes a faire,'®* and public domain'?* copyright doctrines
deny protection.’?® This filtration procedure, however, prematurely
separates unprotectable program elements from their related and
potentially protectable components.’?® A program’s creativity results

118. See supra note 20 and accompanying text.

119. See supra notes 80-83 and accompanying text.

120. This process resembles abstracting the text of a book into its conceptual elements. While
at the level of a complete book, chapter, paragraph, or even sentence, the material may be
sufficiently original to retain its copyright protection. If abstraction of these elements continues,
the court will abstract the original expression of words to an outline of the text, and then to the
concept or idea that motivated the literal expression. At this abstract levzl the work’s expression
has merged with its idea and all copyright protection is lost. Cf David Bender, Computer
Associates v. Altai: Rationality Prevails, COMPUTER LAw., Aug. 1992, at 5-6 (suggesting that
“[i]f one breaks [program] expression into small enough chunks, each chunk will be so elemental
that it will effectively merge with the idea it represents”).

121. See supra note 86 and accompanying text.

122. See supra note 40 for a description of the merger doctrine.

123. See supra note 41 for a description of the scenes a faire doctrine.

124. See supra note 42 for a description of the public domain doctrine.

125. See supra note 84 and accompanying text.

126. The Ninth Circuit finds this filtration procedure premature, and instead filters out
unprotectable elements after determining similarity. See Brown Bag Software v. Symantec
Corp., 960 F.2d 1465, 1476 (9th Cir.) (“[W]here two works are found to be similar without

366

Substantial Similarity Test for Computer Programs

primarily from the coordination between and interrelationship among
its components.!?” Unprotectable elements may interact with each
other in a creative way, just as protectable and unprotectable elements
may interact with each other in a creative way.!?® By filtering out
unprotectable elements before comparison for similarity, the Altai test
denies protection to the program as a whole based on the selection,
coordination, and arrangement of its protectable and unprotectable
components as well as on each component’s separate structure. Thus,
Altai’s test prematurely filters out program elements and inadequately
protects a programmer’s originality.!*®

The Altai three-part substantial similarity test would deny protec-
tion to Compuhypo’s KidPrint program. Applying this test, a court
would first dissect KidPrint into abstract levels by retracing Com-
puhypo’s development steps in reverse order.*® KidPrint would be
broken down into its four main modules,®! and its data display mod-
ule would be abstracted into its animal picture display, animal sound
production, and character output to screen subprograms along with its
corresponding file structures. A court, examining KidPrint’s discrete
program components, would filter each of them out as unprotectable
expression.’®? KidPrint’s copyrightable expression, however, is based
on the original selection, coordination, arrangement and interrelation-
ship of its unprotectable program components. Thus, filtering out
KidPrint’s program components before comparison would leave the
court with no expression to compare to KiddieType. Under this test,
the court would not find copyright infringement, and would effectively
deny copyright to KidPrint’s original nonliteral program aspects.

regard to the scope of the copyright in the plaintiff’s work . . . the source of the similarity must
be identified and a determination made as to whether this source is covered by plaintiff’s
copyright.”), cert. denied, 113 S. Ct. 198 (1992).

127. See supra note 11 and accompanying text.

128, See supra notes 5-11 and accompanying text.

129. See Gates Rubber Co. v. Bando Am., Inc., 798 F. Supp. 1499, 1516 (D. Colo. 1992)
(rejecting the use of the filtration test prior to comparison because such a procedure “has the real
potential to eviscerate the application of [the substantial similarity test]’); Anthony L. Clapes &
Jennifer M. Daniels, Revenge of the Luddites: A Closer Look at Computer Associates v. Altai,
CoMPUTER LAw., Nov. 1992, at 16 (“Filtering ideas out of each level of abstraction in a
program . . . deprives the work of its essence.”).

130. See supra notes 80-83 and accompanying text.

131. See supra note 98.

132, See supra note 84 and accompanying text.

367

Washington Law Review Vol. 68:351, 1993

IV. COURTS SHOULD ADOPT A TWO-TIERED
SUBSTANTIAL SIMILARITY TEST

To rectify the problems with existing substantial similarity examina-
tions, courts should adopt a two-tiered substantial similarity test that
considers computer programs both as an integrated whole and as a set
of separate components. This test focuses the court’s attention on a
computer program’s nonliteral aspects—where the majority of a
programmer’s creative input exists.!*®> Upon finding similarity at
either tier, the court should determine the substantiality of that simi-
larity and conclude its infringement analysis. This test would better
determine, compare, and protect the original norliteral aspects of
computer programs.

A. Tier One: Program-as-a-Whole Analysis

In the first tier of analysis, courts should compare competing pro-
grams as complete, integrated works. At this stage, the programs
would be viewed as comprised of both protectable and unprotectable
elements. The court should consider the programs as a whole because
doing so recognizes the compilation-type nature of computer pro-
grams and extends copyright protection to the creative aspects of com-
puter programs.

The court should examine the programs as a whole to determine
similarity in selection, coordination, and arrangement of the program
components as courts do when analyzing compilaticns. For purposes
of this part of the test, courts should analogize computer programs to
traditional compilations such as legal casebooks to consider programs
as a whole. A typical casebook is composed of both unprotectable
elements (cases) and protectable elements (original commentary). An
editor chooses which cases to include, what order to place them in,
and how to most effectively arrange them. Due to the public nature of
court decisions, copyright does not protect these cases individually.
Copyright protection may exist, however, for the independent original
commentary and for the work as a whole, so long as its selection, coor-
dination, or arrangement is original.!3*

133. See supra note 11 and accompanying text.

134. See, e.g., Harper & Row, Publishers, Inc. v. Nation Enters., 471 U.S. 539, 556-57 (1985)
(holding that President Ford could not prevent others from copying the unprotectable historical
facts of his work but could prevent others from copying his original and “subjective” descriptions
associated with these facts); ¢f Feist Publications, Inc. v. Rural Tel. Serv. Co., Inc., 111 S. Ct.
1282, 1289 (1991) (denying copyright protection for a phone book as a compilation work because
the court found no original selection and arrangement).

368

Substantial Similarity Test for Computer Programs

Like compilations, computer programs are often an integration of
both unprotectable and protectable elements.'>> Furthermore, as with
compilations, most of the programmer’s original expression exists in
the selection, coordination, and arrangement of computer program
components.!*® Because computer programs are similar to compila-
tions!®” and because a compilation-type analysis would adequately
protect the program’s nonliteral structure, courts should view pro-
grams as a whole to determine substantial similarity, considering the
selection, coordination, and arrangement of program components.'*®
In viewing the program as a whole, courts would examine the pro-
gram’s dynamic behavior—the way the program responds to input
from its human user and from other program components—and, if
applicable, the program’s audiovisual representations, using any simi-
larities as evidence of copying of the program structure.!®® Using this
approach, courts would properly incorporate an author’s creativity

135. See DALE & LILLY, supra note 1, at 3 (describing how programmers often rely upon a
“shared body of knowledge™ that has been collected over time in program creation); Peter S.
Menell, An Analysis of the Scope of Copyright Protection for Application Programs, 41 STAN. L.
REvV. 1045, 1057 (1989) (suggesting that programmers draw heavily upon an existing knowledge
base to create their programs, often using elements of existing programs).

136. See supra note 11 and accompanying text.

137. The description of compilations in the 1976 original House report further supports the
compilation analogy: “A ‘compilation’ results from a process of selecting, bringing together,
organizing, and arranging previously existing material of all kinds, regardless of whether the
individual items in the material have been or ever could have been subject to copyright.” HOUSE
REPORT, supra note 45, at 5670.

138, Clapes & Daniels, supra note 129, at 13 (“Even where . . . elements [of computer
programs] are individually unprotected by copyright . . . , the selection, arrangement and/or
organization of such unprotected elements may be sufficiently original to be protected by
copyright.”); see also Atari Games Corp. v. Nintendo of Am., Inc., 975 F.2d 832, 840-41 (Fed.
Cir. 1992) (concluding that the unique selection and arrangement of computer program
expression that generates a data stream is sufficiently creative to be protected under copyright);
¢f Atari Games Corp. v. Oman, 979 F.2d 242 (D.C. Cir. 1992) (concluding that audiovisual
works are analogous to compilations of fact, and that copyright protection is available to
audiovisual works when viewed as a whole based on the author’s selection and arrangement of
individual elements).

139. The way that traditional compilations are organized and presented affects the way they
are used. Students, for example, are guided in their study of the law by the order and manner in
which their casebooks present cases and commentary, thereby making casebooks distinguishable
based on their organization and presentation. In an analogous fashion, courts can determine
similarity between computer programs based in part on how each program interacts with and is
presented to its user—namely its dynamic behavior and audiovisual representations. See Gates
Rubber Co. v. Bando Am., Inc., 798 F. Supp. 1499, 1518-19 (D. Colo. 1992) (holding that a
program’s behavior is significant in determining computer program copyright infringement);
Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1244 (3d Cir. 1986), cert.
denied, 479 U.S. 1031 (1987) (concluding that audiovisual representations are inherently related
to the underlying program that generates them and that courts should give probative value to the
resulting similarity between audiovisual displays).

369

Washington Law Review Vol. 68:351, 1993

into the substantial similarity analysis when considering programs’
nonliteral structure, thereby adequately protecting programmers’ orig-
inal expression.

B. Tier Two: Program-Component Analysis

Regardless of similarity between the programs viewed as a whole in
the first tier, courts should proceed to tier two, the program-compo-
nent analysis. At this stage, courts dissect the competing programs
into their respective components, breaking them down according to
their corresponding modules, subprograms, and file structures.!*
Courts should then examine the literal and nonliteral aspects or ele-
ments associated with each of these components,'*! comparing the ele-
ments of the copyrighted program’s components to those of the
allegedly infringing program’s components. If the court finds similar-
ity between competing program components, it should sift out the
unprotectable elements of the copyrighted program’s components,’*
leaving only the protectable “core” of similar expression. If the simi-
larity found at either tier constitutes a significant portion of the copy-
righted program—examining the quality as well as the quantity of the
similarity—the court would find substantiality exists.'*?

Applying the proposed two-tiered test to the KidPrint program, a
court would properly find similarity between KidPrint and Kid-
dieType. In the program-as-a-whole tier, the courl would recognize
the originality involved in selecting, coordinating, and arranging both
protectable and unprotectable components in KidPrint. Comparing
KidPrint’s and KiddieType’s program structure, the court would
examine the dynamic behavior of the two programs. The court would
find similarity between how both KidPrint and KiddieType input data
from the user, send data to and from each module, subprogram, and
file structure, and ultimately display the data on the screen. Examin-
ing the resulting audiovisual representations as evidence of copying,
the court would again find similarity based on how the data and
related animal pictures and sounds appear to the user.

In the program-component tier, the court would find similarity
based on the interrelationship between related subprograms and file
structures. Initially, the court would dissect KidPrint and Kid-
dieType into their respective components, namely their modules, sub-

140. See supra text accompanying notes 7-9.

141. See supra notes 16-22 and accompanying text.

142. See supra notes 40-42 and accompanying text.

143. See, e.g, Whelan, 797 F.2d at 1245; see also 3 NIMMER & INIMMER, supra note 43,
§ 13.03[A].

370

Substantial Similarity Test for Computer Programs

programs, and file structures.'** Next, the court would compare the
elements of each program’s component structure, finding no similarity
between the discrete program components. In comparing the compo-
nent structure of KidPrint’s data display module to KiddieType’s,
however, the court would find similarity based on the interrelationship
among the modules’ three subprograms (animal picture display,
animal sound production, and character output to screen) and with
the animal picture and sound file structures. The court would then sift
out elements of KidPrint’s program components that are unprotect-
able due to the merger, scenes a faire, and public domain doctrines,'**
leaving the interrelationship between subprograms and file structures
within KidPrint’s data display module as protectable expression. Ulti-
mately, the court would conclude that the similarities between the pro-
grams as a whole and between the structure of the programs’ data
display modules—because it is essentially the heart of KidPrint’s crea-
tive aspects—are sufficiently substantial to justify a finding of copy-
right infringement.

V. CONCLUSION

To protect programmers’ rights in their original works, Congress
chose not to create a separate right for computer programs, but to
extend existing copyright principles to programs. This decision left
courts forcing the proverbial square peg into a round hole.}*¢ By not
considering programs as a whole and by using inappropriate analytical
techniques to determine infringement, courts fail to recognize and
properly protect programmers’ originality in the nonliteral aspects of
their computer programs.

Under existing substantial similarity tests, illicit copying of nonlit-
eral aspects, as illustrated in the hypothetical infringement suit, will go
unpunished. Courts should adopt a two-tiered test that considers
computer programs both as an integrated whole and as separate com-
ponents. Designed to recognize the original aspects of computer pro-
grams, this test would adequately protect programmers’ rights in their
programs.

144. See supra note 98. See generally supra notes 7-9.
145. See generally supra notes 4042,
146. Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 712 (2d Cir. 1992).

371

	A Square Peg in a Round Hole: The Proper Substantial Similarity Test for Nonliteral Aspects of Computer Programs
	Recommended Citation

	A Square Peg in a Round Hole: The Proper Substantial Similarity Test for Nonliteral Aspects of Computer Programs

