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Abstract. There are many sources of variability in gene–phenotype associations. During the measurement 
of genotype and phenotype and during selection, researchers must deal with experimental error in trials; 
gene-gene interaction (epistasis) for sub-traits and observed traits; trait-trait interaction (pleiotropy) and 
gene- or genotype-by-environment interaction. These effects can be structured in a framework that allows 
simulation of the entire gene-environment ‘landscape’. Studies of these landscapes have been published 
by others. Here we aim to explain with simple examples some of the types of insights that can be made. A 
current challenge for breeders working with simple marker–phenotype associations is to design selection 
strategies that can rapidly create new combinations of multiple marker-based traits. For a real-world 
example in wheat, we have used simulation to show how gene enrichment during early generations 
(selection of homozygotes and heterozygotes with desirable alleles) can greatly reduce resource 
requirements when combining 9 genes into one genotype through marker-assisted selection. Another 
wheat example compares phenotypic and QTL-based selection for coleoptile length where the QTL also 
had a pleiotropic association with plant height. These simulations show the relative negative effects of 
either low heritability, or less than complete detection of QTL associated with traits. Finally, we revisit a 
marker-assisted selection (MAS) example whereby a QTL study is undertaken on a population for a 
complex trait, and then those QTL are used in selection. This process is subject to all sources of error 
described above. If the trait is complex, then interactions among sub-traits; between sub-traits and the 
environment; or between the chromosomal locations of controlling genes, create an extremely ‘rugged’ 
selection landscape that slows breeding progress. In this situation, a detailed understanding of some of 
these interactions is required if MAS is to be able to exceed the progress of conventional breeding. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wageningen UR (University & Research Centre): Publication System

https://core.ac.uk/display/267954528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


38 S.C. CHAPMAN ET AL. 

INTRODUCTION AND BACKGROUND 

Many breeding programmes are now utilizing marker–trait associations as part of 
their selection process. Some of the typical applications include introgression of 
traits from donor (‘unadapted’ lines) into parental germplasm; broadening the 
genetic base of a crop (Xu et al. 2004); selection of parental combinations, based on 
marker profiles (Wang et al. 2005); selection of cross progeny during early and late 
generations of selfing and evaluation (Eagles et al. 2001); and recurrent selection 
based on marker–trait associations (Podlich et al. 2004). The value of markers is 
heightened when the target trait is difficult or expensive to screen, like resistance to 
cereal cyst nematodes (Ogbonnaya et al. 2001). With the continued expansion of 
information on quantitative trait loci (QTL) for more complex traits, there is an 
increasing desire to implement these efficiently in plant-breeding programmes, with 
new strategies being proposed for this (Podlich et al. 2004). 

In considering how to utilize markers, several issues arise around the association 
of markers with genes that affect trait expression, and around the precision of the 
estimates of the relationship between alleles and trait expression. In perhaps the 
simplest relationship, the presence of a single allele at a single locus explains 100% 
of the observed phenotype in a particular environment, such as in the case of a gene 
that confers resistance to a single rust pathotype. This association is effectively the 
same as a qualitative gene effect like seed colour, apart from the need to have the 
‘rust environment’ to see the effect. If the gene sequence is known, and/or the 
phenotype has been carefully mapped in crosses or screened across a large number 
of resistance and susceptible lines, then a ‘perfect’ allele marker may be available 
(Ogbonnaya et al. 2001). So, the gene-trait relationship is 100% explained; there is 
no genetic-background effect (the marker works in different pedigrees); and the 
relationship can be predicted without error by the presence/absence of a marker for 
the desired allele. The challenge for breeders then is to combine sets of essential 
alleles into single backgrounds. 

At the other extreme is the case where many genes interact with each other 
(epistasis) in different environments (gene-by-environment interaction) and affect 
sub-traits that interact to determine the desirable trait (pleiotropy). For a particularly 
complex trait like yield, there are networks of interactions, including recursive 
effects, among these components of control of the desirable trait. A QTL study will 
never explain 100% of the genetic variation typically observed. During selection 
these effects will be apparent as low heritability for the trait and/or poor linkage 
between QTL and their markers. But it may not be clear how the main sources of 
error (epistasis, gene-by-environment or pleiotropy) result in the residual variance 
that is not explained by QTL. 

Recently, Cooper et al. (2005) proposed a gene-to-phenotype modelling 
framework to utilize molecular breeding for complex traits. This illustrates, for a 
large number of genetic models, how the ‘context-dependent’ relationships between 
genes (epistasis, gene-by-environment interaction and pleiotropy) impact on genetic 
progress in both molecular and phenotypic breeding strategies. They propose, as an 
alternative to ‘traditional’ quantitative genetic models (say, comprised of genotype 
and genotype-by-environment interaction effects), to work with models where 
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phenotype is described as a function of ‘explained’ and ‘unexplained’ sources of 
variation, and these sources are associated with vectors of ‘known’ and ‘unknown’ 
gene (or QTL) and gene-by-environment effects. For example, a simulation may use 
the predicted effects and the QTL/marker locations from a QTL study to simulate 
genetic progress in a breeding programme, assuming that 100% of the genetic 
variance is explained by the QTL. In an actual study, for all but the simplest gene–
trait relationships, the ‘unexplained’ variance for a complex trait is typically 20 to 
80%. The simulation can then be re-run multiple times, while adding in each an 
ensemble of different gene effects (representing epistasis and G×E etc.) to determine 
the potential effect of this ‘unexplained variance’ on expected genetic progress. Not 
so surprisingly, real-world QTL studies where the unexplained variance was high 
suffered more in terms of potential impact on selection, but now there is a method to 
quantify this effect in terms of expected context dependencies. These methods can 
help breeders to decide on the likely usefulness of the QTL in their selection 
scheme, given a better understanding of how robust the QTL are for expected (or 
unexpected) levels of complexity in the ‘unexplained’ variance. 

While there has been some application of simulation approaches to examine the 
value of QTL for complex traits in Australian sorghum (Hammer et al. 2005), 
marker technology is still being developed for application in that breeding 
programme, but is focusing on utilization for QTL associated with complex traits 
such as midge resistance and stay-green (see Hammer et al., Chapter 5). Markers for 
single-gene/single-trait applications have been used in wheat-breeding programmes 
in Australia for over 10 years, e.g., Ogbonnaya et al. (2001) and Eagles et al. (2001). 
In general, their use has been in introgressing into breeding lines (in BCF1) and in 
screening progeny in early (F2) and later generations of evaluation. A pertinent task 
for these breeding programmes is devising strategies to combine these many 
‘simple’ genes together into breeding lines. 

Cooper et al. (2005) explored a large number of breeding scenarios, focusing on 
QTL for complex traits, and were able to summarize from these that gene-by-
environment effects were still a substantial impediment to marker selection for 
complex traits. We aimed to present three practical scenarios of applying marker-
assisted selection: 
1. from a 3-way cross, recovering a target genotype comprising 9 desirable genes 

that have near-perfect markers; 
2. from a 2-way cross, selecting for a quantitative trait (coleoptile length), given 

different levels of knowledge of the genetic variation explained by the QTL; 
3. for a sorghum-breeding programme, selection for yield based on QTL detected 

in a single environment, compared to progress based on knowledge of 
underlying ‘physiological pleiotropy’ controlling yield. 
Throughout the chapter, we aim to demonstrate how these approaches can 

account for sources of variability and assist breeders to deal with them. 
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MATERIALS AND METHODS 

While some of the calculations presented here can be applied quite simply to sets of 
unlinked genes, the QU-GENE simulation platform was used for more complex 
scenarios (Podlich and Cooper 1998). The programme generates populations of 
genotypes and provides a library of subroutines to develop simulation modules of 
breeding programmes. For the wheat examples, we simulated selection using 
QuLine, a breeding module used to simulate wheat-breeding programmes (Wang et 
al. 2003), and to predict cross performance for quality traits (Wang et al. 2005). For 
sorghum, the original simulations were done using a proprietary breeding module 
(Hammer et al. 2005). More details of the examples are given in the Results section. 

RESULTS 

Example 1: Single-gene control of traits – Using F2 enrichment to combine ‘simple’ 
genes in a complex cross  

This example is the subject of a paper (Wang et al. in press) that explores additional 
details beyond those given here. Where 5 genes are unlinked and a simple cross is 
considered, the frequency (f) of the desired homozygote in the F2 can be estimated 
as 0.255 = 0.00098. To select one target genotype at an acceptance probability (α) of 
0.01, this would require an F2 population size of about 4,700 individuals, estimated 
from log (α) / log (1 – f). Delaying selection until lines are homozygous requires 
only 145 individuals as the frequency becomes 0.55. For 12 independent loci, > 77 
million lines are needed to identify a single homozygote in the F2, or > 18,000 in 
fixed lines. In this case, F2 ‘gene enrichment’ (selection of homozygotes and 
heterzygotes (Bonnett et al. 2005)) is a useful strategy as only 144 F2s would need to 
be screened to retain the desired gene combination (f = 0.7512 = 0.03168), followed 
by screening of 596 fixed lines to recover then a homozygote individual (f = (2/3)12 
= 0.00771). 

Using simulation (QU-GENE/QuLine, Wang et al. 2003), we examined progeny 
from a 3-way cross ((Silverstar + tin × HM14BS) × Sunstate) segregating at 9 loci (7 
independent). The aim was to recover a target genotype (at overall acceptance α = 
0.01) that had the required alleles (bottom line of Table 1).  

In the TCF1, selection of Rht-B1a and Glu-B1i homozygotes could be fixed, and 
enrichment (selection for heterozygotes) done for Rht8, Cre1, and tin. If no selection 
was applied in the F2, then a total of > 3500 lines (> 25,000 marker screens) were 
needed to recover the target genotype (Table 2). This was reduced to < 600 lines (< 
3500 marker screens) if F2 enrichment was used for the 7 loci that had not been 
fixed in the TCF1. The effect of linkage between the Glu-A3 and tin loci, and the 
non-perfect marker for tin (Table 1) resulted in a final frequency of the tin gene of 
0.79, while other genes were all fixed at frequencies of 1.0 or > 0.98. Therefore, the 
presence of tin would still need to be confirmed by phenotyping after production of 
the fixed lines. So, in this example of multiple gene selection, the desired gene 
combinations can be achieved with a relatively small number of screens, even given 
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slightly imperfect markers for three trait loci, and linkage-in-repulsion for two of the 
loci. 

Example 2: Polygenic control of quantitative traits – Selection for increased 
coleoptile length and reduced height  

The GA-insensitive, height-reducing gene, Rht-D1b, also reduces coleoptile length 
(cl) by about 20% in wheat seedlings, while the Rht8 gene has virtually no effect. 
Long coleoptiles are desirable so that seeds can be planted deeper to access soil 
water better at sowing. The screening of the cl phenotype is taken after a set period 
growing in dark conditions in a controlled-temperature environment. 

Based on QTL-mapping studies (Rebetzke et al. 2001; in press), 8 QTL were 
considered to affect height (ht) and coleoptile length in addition to the major height 
genes. Supposing the reduced height alleles at Rht-D1 and Rht8 reduce the plant 
height by 10 and 8 cm (explaining 48% and 31% of genetic variance, respectively; 
Ellis et al. 2002), then these additional QTL affecting plant height by 2 to 3 cm each 
explain between 2 and 5% of the genetic variance (data not shown). The QTL for 
coleoptile length explain similar proportions of genetic variance (equating to –3 to 
+4 mm), while the 18-mm reduction due to Rht-D1b explains about 80% of the  
 

Table 1. Selected genes, their chromosomal location and the genotypes for the three parents 

Gene symbol Rht-B1 Rht-D1 Rht8 Sr2 Cre1 VPM Glu-B1 Glu-A3 tin 
Chromosome 4BS 4DS 2DL 3BS 2BL 7DL 1BL 1AS 1AS 
Marker type Cod. Cod. Cod. Cod. Dom. Dom. Cod. Cod. Cod. 
Marker–gene 
 distance (cM)

0 0 0.6 1.1 0 0 0 0 0.8 

Silverstar+ 
 tin 

Rht-B1b Rht-D1a rht8 sr2 Cre1 vpm Glu-B1i Glu-A3c tin 

HM14BS Rht-B1a Rht-D1a Rht8 sr2 cre1 vpm Glu-B1a Glu-A3e Tin 
Sunstatea Rht-B1a Rht-D1b rht8 Sr2 cre1 VPM Glu-B1i Glu-A3b Tin 
Target genotype Rht-B1a Rht-D1a Rht8 Sr2 Cre1 VPM Glu-B1i Glu-A3b tin 
a The bold-printed alleles at Rht-B1, Rht-D1 and Rht8 reduce plant height; those at Sr2, Cre1, and VPM 

confer resistance to rusts or cereal-cyst nematode; those at Glu-B1 and Glu-A3 improve dough quality; 
and, the bold-printed allele at tin reduces the tiller number. The genes are all unlinked, except for Glu-
A3 and tin, which are linked in repulsion at 3.8 cM apart on chromosome 1AS. 

Table 2. Selected proportion and number of individuals (or families) selected in each marker 
selection scheme 

Breeding population No enrichment selection in 
TCF2 

Enrichment selection for all 
target genes in TCF2 

 Selected 
proportion 

Minimum 
population size 

Selected 
proportion 

Minimum 
population size 

TCF1 0.0313 145 0.0316 144 
TCF2   0.1190 37 
DHs 0.0013 3440 0.0112 408 
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genetic variance. We undertook a series of simulations of a cross between HM14BS 
(ht 82 cm; cl 125 mm) and Sunstate (ht 78 cm; cl 75 mm) to attempt to recover a 
target genotype with increased coleoptile length and reduced height, but with a 
greater proportion of the desirable Sunstate genetic background. 

In all cases, the process was to make the cross, produce ten F1 plants, and then 
produce 1000 doubled haploid (fixed) lines prior to selection by either phenotype or 
by combinations of the markers for the two major and eight minor QTL. In an initial 
simulation (1), we made a single cross between HM14BS and Sunstate, assuming 
broad-sense heritabilities of 0.7 and 0.8 for height and coleoptile length, 
respectively, and undertook selection for coleoptile length in the 1000 DH lines, 
with no selection for height (Table 3). As might be expected, this led to a taller 
phenotype with a long coleoptile, i.e. a greater proportion of lines carrying both the 
Rht-D1b and Rht8 alleles, and minor QTL for both coleoptile length and height. The 
next two simulations (2 and 3) show the effect of experimental precision in the 
measurement of coleoptile length. Compared to the initial simulation (Hb = 0.8), the 
final length of the selected lines decreased or increased by 5 mm or more as the 
phenotyping was made less precise (Hb = 0.5) or more precise (Hb = 1.0). 

The remaining simulations (4 to 6) involve selection using the QTL information. 
For the major QTL, selection was against Rht-D1b and for Rht8, to increase the 
coleoptile length while trying to minimize the effect on height. When selection was 
applied only to these major QTL (simulation 4, Table 3), followed by selection on 
coleoptile phenotype, the plant height was close to that of HM4BS. 

Table 3. Breeding schemes and final height (ht) and coleoptile length (cl) of top 2% of lines 

Scheme Heritability Selection for QTL Mean value 
 Ht Cl Major Minor 

Selection
for cl ht (cm) cl (mm) 

1 0.7 0.8 No No Yes 91.1 132.8 
2 0.5 0.5 No No Yes 90.7 127.8 
3 1.0 1.0 No No Yes 90.9 138.3 
4 0.7 0.8 Yes No Yes 82.6 126.6 
5 0.7 0.8 Yes 8 No 82.9 123.5 
6 0.7 0.8 Yes 4 No 82.0 133.7 

Example 3: Polygenic control of complex traits – Selection for ‘yield’ QTL in 
sorghum 

At the other extreme of gene–trait relationships, is the example of selection of 
markers linked to QTL controlling complex traits. In this situation, many sources of 
error exist, which include: experimental error in measuring the phenotype during the 
QTL study (trait heritability); error in selection of the marker or markers for the 
QTL (poor linkage); lack of observation (or knowledge) about how ‘sub-traits’ 
combine physiologically to affect the trait of interest; and, most critically, lack of 
knowledge of the gene action of the ‘unexplained’ variance in the QTL study. 

Using simulation, Chapman et al. (2003) and Hammer et al. (2005) illustrated 
that when simple additive gene action was defined for four sub-traits (‘trait 
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parameters’) in a sorghum-cropping system, complex gene-by-gene-by-environment 
interactions could still be generated for expression of yield. Models of gene action 
(i.e. for phenotypes associated with QTL) were used to define trait parameters that 
are input values to a crop simulation model. For example, one trait parameter was 
the relationship between crop development rate (toward flowering) and temperature. 
For this trait, a simple additive three-gene model, based on existing knowledge of 
QTL, calculated the parameter for each of the simulated genotypes created in a 
population. The calculated parameters (for this and the other three traits) were input 
to a crop simulation model, and the model was then run for each genotype using soil 
data for six locations and weather data over 100 years. This generated a complex 
‘gene–environment landscape’ from which environments could be sampled (e.g., 
several locations in a single year) and genotypes could be selected on the basis of 
the expression of the trait value as it affected yield. The best lines were crossed to 
create new generations in a manner similar to a conventional breeding programme. 
Chapman et al. (2003) quantified how bias in the sampling of environments by the 
breeding programme (because of variability in rainfall between successive seasons) 
reduced the efficiency of selection, through the generation of substantial genotype-
by-environment interaction. Using the same dataset, Hammer et al. (2005) showed 
how even ‘simple’ combinations of traits across genotypes and environments could 
easily confound detection of QTL associated with yield. 

DISCUSSION 

In example 1, there was no attempt to select for ‘background’ alleles during the 
process of combining the essential genes. In practice, the breeding programme 
screens a large number of lines (ca. 10 to 20% more than indicated) using F2 
enrichment so that more than one target genotype is recovered. These target lines are 
then tested for field performance and may then be used as cultivars and/or parents in 
crossing and selection. In Australian wheat breeding greater disease resistance and 
grain quality are deemed ‘essential’ and have often taken priority over selection for 
yield per se, with integration of new sources of yield adaptation taking quite some 
time. This contrasts with the situation illustrated in sorghum, and in US corn 
breeding, where a major objective is to maintain and build upon elite combinations 
of genes for complex traits like yield (Duvick et al. 2004; Podlich et al. 2004). 

Using a slightly different simulation approach that studied only marker-assisted 
recurrent selection, Bernardo and Charcosset (2006) found that if large numbers (say 
40 to 100) of QTL affected a trait, it was more advantageous to use only large-effect 
QTL and to ignore the small-effect QTL in selection, given the small population size 
typically used in marker-assisted recurrent selection. However, empirical evidence 
suggests that these large-effect QTL are fixed in early cycles while evidence from 
other studies (e.g., Openshaw and Frascaroli 1997) show that many of the genetic 
effects for traits such as yield are indeed small. 

Thus, for most important breeding traits it is challenging to implement the large 
amount of QTL studies through marker-assisted selection to exceed the breeding 
efficiency of the conventional phenotypic selection. 
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