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Abstract

This work is concerned with model reduction of stochastic differential equations and builds on the
idea of replacing drift and noise coefficients of preselected relevant, e.g. slow variables by their conditional
expectations. We extend recent results by Legoll & Lelièvre [Nonlinearity 23, 2131, 2010] and Duong
et al. [Nonlinearity 31, 4517, 2018] on effective reversible dynamics by conditional expectations to the
setting of general non-reversible processes with non-constant diffusion coefficient. We prove relative
entropy and Wasserstein error estimates for the difference between the time marginals of the effective
and original dynamics as well as an entropy error bound for the corresponding path space measures. A
comparison with the averaging principle for systems with time-scale separation reveals that, unlike in the
reversible setting, the effective dynamics for a non-reversible system need not agree with the averaged
equations. We present a thorough comparison for the Ornstein-Uhlenbeck process and make a conjecture
about necessary and sufficient conditions for when averaged and effective dynamics agree for nonlinear
non-reversible processes. The theoretical results are illustrated with suitable numerical examples.

Keywords: Coarse graining, Non-reversible diffusions, Conditional expectation, Effective dynamics,
Optimal prediction, Relative Entropy, Wasserstein distance, Slow-fast systems, Averaging principle.

1 Introduction

Modelling of complex systems by differential equations often leads to systems with large spatial dimension
and vastly different time scales. Prominent examples are molecular dynamics [2], metabolic systems [39],
turbulent flows [51] or climate systems [6]. The high dimensionality and the multiscale nature of the models
cause problems for the simulation over long times, and when solving control or data assimilation problems
that require many forward simulations of the system under consideration. Model reduction techniques are
a means to simplify the models so as to arrive at numerically feasible problems of lower dimensionality and
higher regularity (since typically highly oscillatory terms are eliminated).

In most situations, the quantities of interest (or: resolved variables) are the slow degrees of freedom that
contain information about the long-term dynamics whereas the fast scales or high-order modes are often
considered irrelevant for the long-term behaviour. Examples include conformational changes in biomolecules
[43] taking place within a time scale of milliseconds or seconds whereas the fastest motion, the vibrations
of the single atoms, happen within femtoseconds (10−15 second). Also in climate models, [40] for which the
interesting time scale are years, decades or even centuries, long-term processes like El-Niño or slow trends like
anthropogenic effects are coupled to fast-scale processes like the weather that changes within days or hours.
In most cases the dynamics of the resolved or slow variables is coupled to the dynamics of the remaining
ones, i.e. the equations for the resolved variables are not closed. Coarse-graining or model reduction are
umbrella terms for finding appropriate closure schemes to arrive at a closed system of equations of motion
for the resolved variables only, also called the effective dynamics.

Model reduction and coarse-graining techniques for dynamical systems can be roughly divided into two
categories: analytical or rational techniques that are (explicitly or implicitly) based on scale separation
and the existence of suitable small parameters and empirical or data-driven techniques that are based on
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(e.g. short) simulations of a full-scale system from which a reduced subspace and an effective dynamics
on this subspace is constructed. The first category comprises averaging and homogenisation techniques
for stochastic and deterministic ordinary and partial differential equations [58, 59, 62], but also control-
theoretic approaches, such as balanced truncation [27, 4] or interpolation-based methods [23, 11]. The second
category includes techniques like Proper Orthogonal Decomposition [65], Empirical Orthogonal Functions
[52] or methods that are designed for nonstationary problems, such as Dynamic Mode Decomposition [41]
or Lagrangian Coherent Structures [30]. In contrast to the first category, the second category methods
do not allow for easy control of the approximation error in the resolved variables, but there are of course
combinations of the aforementioned approaches, e.g. semi-empirical methods that combine homogenisation
with stochastic parametrisation of the reduced-order models [50, 22, 64, 42]. For an overview of various
model reduction methods, see [26].

A related idea, partly inspired by statistical mechanics and termed “optimal prediction” by Chorin and
co-workers, is to use best-approximations and close the equations by projecting them onto the resolved
variables in a way that is optimal, e.g. in a weighted least squares sense [18, 17] or in relative entropy
[67, 49]. The use of weighted least squares leads to conditional expectations as projection onto the space of
the resolved variables and thus resembles the exact coarse-graining approach proposed by Gyöngy [28]. See
also [10, 12, 31, 33, 66, 70] for conditional expectation closures and their applications in molecular dynamics,
reaction kinetics and turbulence modelling.

1.1 Key observations

This paper is concerned with the coarse-graining of non-reversible stochastic differential equations (SDE)
with non-degenerate diffusion. Non-reversible diffusions play an ever increasing role in statistical mechanics,
with applications ranging from the variance reduction for Monte Carlo simulation [35, 20] to the modelling
of non-equilibrium systems such as polymer chains in a flow [55, 44] or stochastic modelling of turbulent
flows under shear stress [7, 56].

Coarse graining of non-reversible diffusions

To briefly describe the key problem addressed in this paper, consider the linear SDE

dXε
t = −(Xε

t − αY εt ) dt+
√

2 dW 1
t , Xε

0 = x,

εdY εt = −(Y εt + αXε
t ) dt+

√
2ε dW 2

t , Y ε0 = y,
(1)

on X = R×R, where α ∈ R is a parameter, and W 1,W 2 are independent components of a Brownian motion
W = (W 1,W 2). For 0 < ε � 1, the second component is fast in that it makes O(1) excursions within a
time span of order ε. The averaging principle (e.g. [25, Ch. 7, Thm. 2.1]) states that, for ε → 0, the slow
dynamics is essentially decoupled from the fast dynamics and can be represented by a system of the form

dXε
t = −(Xε

t dt− αyxt/ε) dt+
√

2 dW 1
t , Xε

0 = x, (2)

with yx being the solution of the auxiliary fast subsystem

dyxt = −(yxt + αx) dt+
√

2 dW 2
t , yx0 = y . (3)

for fixed x. Since yt/ε converges to a Gaussian with mean −αx and unit covariance for any fixed t as ε→ 0,
the averaging principle states that we can replace yx in (2) by its mean in the limit ε→ 0 and obtain

dXt = −(1 + α2)Xt dt+
√

2 dW 1
t , X0 = x. (4)

The convergence Xε → X is pathwise and uniformly on [0, T ] for any T > 0. The key ingredient to prove
convergence is that the fast subsystem (3) is exponentially mixing with unique invariant measure for every
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fixed x (here: a Gaussian measure on the real line). No assumption whatsoever regarding the invariant
measure of the joint process (Xε, Y ε) is needed.

Now consider the joint process (1), which for every fixed ε > 0 has a unique Gaussian invariant measure
µε = N (0,Kε), with Kε being a symmetric positive definite 2× 2 matrix (see, e.g. [54, Sec. 2]). We seek an
equation for Xε only. Clearly, the first equation in (1) depends on Y ε for every ε > 0, but we may close the
equation by assuming that (Xε, Y ε) ∼ µε and replacing Y ε by its conditional expectation given Xε, i.e. by
replacing the right hand side of the first equation in (1) by its best approximation in the space L2(X , µε)
as a function of Xε. This closure can be justified by the observation that for any square-integrable random
variable G = G(X,Y ), it holds that

E(G|X) = arg min
Z∈L2,Z=Z(X)

E((G− Z)2) (5)

where E denotes the expectation with respect to µε, and Z = Z(X) means that Z is measurable with
respect to the σ-algebra generated by X. It follows by completing the square in the joint Gaussian density
of (Xε, Y ε) that the conditional mean of Y ε given Xε is given by

E(Y ε|Xε) = Kε
xy/K

ε
xxX

ε , (6)

where Kε
xx and Kε

xy are the first diagonal and the off diagonal terms of the covariance matrix Kε. Replacing
Y ε in the first equation of (1) by its conditional mean, we obtain an effective equation for Xε, namely

dX̂ε
t = −(1− αKε

xy/K
ε
xx)X̂ε

t dt+
√

2 dW 1
t . X̂ε

0 = x (7)

which in general differs from (4); for example for ε = 1, we have Kε=1
xy = 0 and thus the conditional mean

is 0. As a consequence, the averaged dynamics and the effective dynamics that is obtained by conditional
expectation closure are different in general. Note, however, that they agree in the limit ε → 0, since
E(Y ε|Xε = x)→ −αx as ε→ 0.

Despite the positive result that the two dynamics coincide in the limit ε→ 0, it should be clear that there
is a fundamental difference between the two methods in that they rely on different assumptions regarding
the invariant measure: averaging assumes that the fast dynamics Y ε has a unique invariant measure that
is reached exponentially fast when Xε = x is held fixed, whereas the idea of the conditional expectation
relies on the existence of an invariant measure for the joint process (Xε, Y ε). Typically, the exponential
convergence condition is enforced by a combination of uniform ellipticity and dissipativity conditions for
the fast dynamics (see e.g. [68, Sec. 2]), whereas no such condition is needed for the joint process in the
conditional expectation closure, unless one is interested in deriving sharp error bounds (in which case one
needs even stronger assumptions for the joint process that hold uniformly in ε). As the example above shows,
the conditional probability and the invariant measure of the fast process need not be the same for finite ε.

Reversible systems

We should mention an important special case, namely, when the dynamics is reversible, i.e. when the un-
derlying transition density satisfies detailed balance. For the situation at hand this is the case if and only
if α = 0 in (1), in which case the two equations decouple, and so Xε

t = X̂ε
t = Xt trivially holds almost

surely for all t ≥ 0 and all ε > 0. This is admittedly a trivial situation, but to demonstrate that it is the
reversibility of the process that makes the difference, consider the following modification of (1):

dXε
t = −(Xε

t − αY εt ) dt+
√

2 dW 1
t , Xε

0 = x,

εdY εt = −(Y εt − αXε
t ) dt+

√
2ε dW 2

t , Y ε0 = y ,
(8)

with |α| < 1. The process solving (8) is reversible for all α ∈ R, since the drift is of gradient form:(
−x+ αy
−y + αx

)
= −

(
∂V/∂x
∂V/∂y

)
,
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with potential

V (x, y) =
1

2

(
x2 − 2αxy + y2

)
.

Moreover the potential is bounded from below if |α| < 1, in which case the joint process has a unique
invariant measure with density µ ∝ exp(−V ), independent of ε. As a consequence, the equations for X̂ε

and X agree for all ε > 0, since the conditional probability measure is the same as the invariant measure of
the fast subsystem. Therefore both effective and averaged equation yield the same approximation of the law
of Xε on [0, T ]. This is true for all gradient systems which is equivalent to saying that this is a feature of
reversible systems [61, Prop. 4.5].

1.2 Relevant previous works

As indicated by the literature above and the references therein, the question of coarse-graining has received
considerable attention. However the question of deriving quantitative estimates, especially in the absence
of explicit scale separation, is a challenging one, and there are so far only few rigorous results available (see
below). This is in stark contrast to the huge body of literature on the averaging principle for SDEs, for
which various weak and strong error bounds under various different growth and regularity conditions on the
SDE coefficients exist; see e.g. [37, 38, 25, 68, 62, 1] and the references given there.

First attempts towards the derivation of error estimates for conditional expectation closures have been
undertaken in [29] and [45]. While the work [29] by Hald & Kupferman is based on traditional Gronwall-type
estimates for Lipschitz continuous right hand side, the second work [45] by Legoll & Lelièvre uses functional
inequalities of logarithmic-Sobolev type to give semi-quantitative estimates for the differences in the finite-
time marginals measured in relative entropy. The idea there, and also in this paper, is to exploit the fact
that, while the resolved variables are slowly evolving or almost constant, the remaining degrees of freedom
will reach their equilibrium distribution considerably faster, so that it is justifiable to replace these degrees of
freedom by their equilibrium statistics, i.e. by their conditional expectation (see also [31, 70] for the relation
between coarse-graining of reversible systems and thermodynamic free energy calculation).

When the SDE under consideration is reversible in a wide sense, which includes overdamped Langevin
dynamics with non-degenerate noise and underdamped Langevin dynamics with degenerate noise, quantita-
tive error estimates comparing finite time marginals have been proved in [45] for the overdamped Langevin
equation and in [21] for the underdamped equation under the assumption that the resolved variables are
affine functions of the state variables. Stronger results that are reminiscent of the pathwise error estimates
for averaging problems have been obtained in [46, 48] for stationary overdamped Langevin systems assuming
that the conditional invariant measure satisfies a Poincaré inequality. For systems with scale separation,
these results have been extended recently in [63] to the non-stationary case, using a forward-backward mar-
tingale method. Even more recently, pathwise estimates for non-reversible systems without explicit scale
separation have been proved in [47], however in a fairly restrictive setting when the resolved variable is an
affine function of the original coordinates.

1.3 Main results, novelty and outline

In this article we extend the aforementioned results in two ways. First, given a resolved variable that is
a (sufficiently regular) nonlinear function of the state variables, we prove error bounds for the finite time
marginals in relative entropy and the Wasserstein-2 distance for general non-reversible dynamics with non-
degenerate noise. Moreover we present an error estimate for the relative entropy between the path measure
of the effective dynamics and the marginal path measure of the resolved variable (under the full dynamics).
Although weaker than the pathwise estimates that have been obtained in [47], this will allow us to go beyond
the restrictive affine setting. Second, we will discuss the sharpness of these bounds in the presence of explicit
scale separation and, specifically, compare effective and averaged SDE dynamics.
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The pre-limit relative-entropy error bounds that we prove are of the form (see Theorem 2.4, 2.11 and
Proposition 3.2)

H(ρ̂t|ηt) ≤ Aε+B(ε),

where H(ρ̂t|ηt) denotes the relative entropy between the true finite time marginal of the resolved variable
(under the original dynamics) with probability density ρ̂ and the finite time marginal of the effective dy-
namics, with probability density η. Throughout this paper we will use the subscript as in ρt to indicate that
this is the time-slice of ρ at time t. The above error bounds holds under the assumption that η0 = ρ̂0, where
A ∈ (0,∞) is explicit in terms of Log-Sobolev and Talagrand constants of the conditional density and the
full initial data. The second term, B(ε) is uniformly bounded in ε under mild assumptions and vanishes if
the diffusion coefficient is independent of the unresolved variables.

The Wasserstein-2 distance which although a weaker measure of error, is used to prove sharper error
estimates of the form (see Theorem 2.7, 2.13 and Proposition 3.4):

W2(ρ̂t, ηt) ≤ CeD(ε)t
√
ε ,

where the C,D(ε) ∈ (0,∞) and can be explicitly expressed in terms of the system coefficients, the constants
appearing in the Log-Sobolev and Talgrand inequalities of the fast subsystem, and the initial data (see
Remark 3.5 for bounds on D(ε)). However, the path-space error bound that we obtain is not sharp as ε→ 0
(see Theorem 2.9 and Proposition 3.6):

H(ρ̂[0,t]|ν̂[0,t]) ≤ Eε+ F (ε)t ,

where ρ̂[0,t] and ν̂[0,t] denote the laws of the resolved process (under the full dynamics) and the effective
dynamics on C([0, t],X ), and E,F ∈ (0,∞) can be explicitly computed, with F having a finite, nonzero
limit as ε→ 0 and depend on how strongly the systematic drift of the resolved variable varies as a function
of the unresolved variables.

Novelty

Our results generalise the existing literature in various directions. We present time-marginal error estimates
starting with general non-reversible SDEs and nonlinear coarse-graining maps. Additionally we prove an
error estimate for the law of paths, which is the first such result for effective dynamics, and is important for
approximation of dynamical quantities such as mean first-passage times.

While averaging is a well understood and popular technique in multiscale studies, so far its connection
to coarse-graining and effective dynamics is not well understood. In this paper we explore these connections
in detail. Using our error estimates, we present new results for averaging of reversible SDEs with diffusion
coefficients which depend on the full state space. To the best of our knowledge, these are the first quantitative
results in this general (diffusion coefficient) setting. We also present a detailed comparison of the averaging
and the conditional expectation approach in the case of (non-reversible) Ornstein-Uhlenbeck processes and
isolate sufficient conditions under which the two approaches agree.

Organisation of the article

In Section 2 we first introduce the problem setup and prove various error bounds in relative entropy and
Wasserstein distance for affine and general nonlinear coarse-graining maps. The results are then generalised
to slow-fast systems with two time scales in Section 3, and these are detailed for reversible nonlinear and
non-reversible linear diffusions in Sections 3.2 and 3.3. The theoretical results are illustrated with a few
numerical examples in Section 4. The article concludes in Section 5 with further discussions. The article
contains three appendices that record the proofs of the main theorems (Appendices A and B), and some
auxiliary results (Appendix C).
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2 Quantitative estimates

In this section we consider the SDE

dZt = f(Zt)dt+
√

2σ(Zt)dWt, Z|t=0 = Z0, (9)

where f : Rn → Rn, σ : Rn → Rn×n andWt is a standard n-dimensional Brownian motion. The corresponding
Fokker-Planck equation for ρt = law(Zt) is

∂tρ = −∇ · (fρ) +∇2 : γρ, ρ|t=0 = ρ0, (10)

with γ = σσT , ρ0 = law(Z0). Here ∇2 is the Hessian and A : B = tr(ATB) is the Frobenius inner product
for matrices.

Assumption 2.1. Throughout this section, (9) satisfies

1. (Regularity of coefficients) The coefficients f, σ ∈ C∞. Furthermore, the diffusion matrix γ ∈ L∞(Rn)
is positive definite, i.e. γ(x)γT (x) ≥ c Idn for some c > 0 independent of x ∈ Rd, and therefore satisfies

0 < λmin(γ) := inf
z∈Rn

λ(γ(z)) < +∞, (11)

where λ(A) denotes the smallest eigenvalue of matrix A.

2. (Invariant measure) The SDE (9) admits a unique invariant measure1 µ ∈ P(Rn) which has a density
with respect to the Lebesgue measure, which we also denote by µ.

Note that, by assuming the existence and regularity of the invariant measure we have implicitly assumed
certain growth conditions on the coefficients of (9). We avoid these technical details here to simplify the
presentation of the paper. Interested readers can see [15, Section 2.4, 3.2] for a detailed discussion on the
well-posedness and regularity of the invariant measure under fairly general conditions.

In the introduction we discussed the idea of coarse-graining or model reduction in detail. In practice,
coarse-graining is achieved by means of a so-called coarse-graining (CG) map (also called a reaction coordi-
nate in molecular dynamics)

ξ : Rn →M,

which maps the full state space Rn onto relevant lower-dimensional class of variables encoded in a manifold
M. In this article we will consider the case when M is a Euclidean space, and use the notation z ∈ Rn for
the full-state variable and x := ξ(z) for the coarse-grained (or: resolved) variable.

In what follows we divide our results into two parts. In Section 2.1 we focus on the case of linear CG
maps and prove the results comparing the projected dynamics to the effective dynamics. In Section 2.2
we consider the case of nonlinear CG maps. While the analysis is more involved in the nonlinear setting,
the proofs follow on the lines of the linear case and we only point out the main differences. Although the
linear setting is a special case of the nonlinear setting, we treat the linear case separately because classical
averaging falls under this category, and therefore in the latter half of this paper we will use the explicit
estimates available in the linear setting for further discussions.

2.1 Estimates for linear CG maps

In this section we focus on the case of a coordinate projection as a CG map, i.e.

ξ : Rn → Rnx , ξ(x, y) = x. (12)

1P(X ) is the space of probability measures on space X .
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Here x ∈ Rnx and y ∈ Rny with n = nx + ny. To this end, let us rewrite (9) using Zt = (Xt, Yt) ∈ Rnx×ny

dXt = f1(Xt, Yt) dt+
√

2σ11(Xt, Yt) dW
1
t +
√

2σ12(Xt, Yt) dW
2
t ,

dYt = f2(Xt, Yt) dt+
√

2σ21(Xt, Yt) dW
1
t +
√

2σ22(Xt, Yt) dW
2
t ,

(13)

where f1 : Rn → Rnx , f2 : Rn → Rny , σ11 : Rn → Rnx×nx , σ12 : Rn → Rnx×ny , σ21 : Rn → Rny×nx ,
σ22 : Rn → Rny×ny , and W 1

t , W
2
t are independent standard Brownian motions in Rnx and Rny respectively.

2.1.1 Preliminaries

We now introduce certain preliminaries and technical tools that will be used throughout this article.

Any ζ ∈ P(Rn) which is absolutely continuous with respect to the Lebesgue measure on Rn, i.e. dζ(z) =
ζ(z) dz, with density again denoted by ζ for convenience, can be decomposed into its marginal measure

ξ#ζ =: ζ̂ ∈ P(Rnx) satisfying dζ̂(x) = ζ̂(x) dx with density

ζ̂(x) =

∫
Rny

ζ(x, y)dy, (14)

and for any x ∈ Rnx the family of conditional measures ζ(·|x) =: ζ̄x ∈ P(Rnx) satisfying dζ̄x(y) = ζ̄x(y)dy
with density

ζ̄x(y) =
ζ(x, y)

ζ̂(x)
. (15)

Differential operators on Rn will be denoted by ∇,∇·,∇2, while the corresponding operators in Rnx will be
denoted by ∇x,∇x·,∇2

x (and similarly with subscript y for corresponding operators on Rny ).

We now introduce some notation for norms of vectors and matrices. We use |v| for the standard Euclidean
norm of a vector v, and |M | for the operator norm of a (possibly non-square) matrix M . For A ∈ Rk×k and
v ∈ Rk we set |v|2A := (v,Av). For a matrix M ∈ Rk×k, the Frobenius norm is

|M |2F := trMTM =

k∑
i,j=1

|Mij |2.

For a three tensor T ∈ Rk×k×k, we abuse notation and use |T |F to denote the tensor norm induced from the
Frobenius norm for matrices, i.e. it is a mapping from (Rk, | · |) to (Rk×k, | · |F ). Precisely it can be written
as

|T |2F =

k∑
i,j,`=1

|Tij`|2.

Next we introduce the relative entropy and the Wasserstein-2 distance. For two probability measures
ζ, ν ∈ P(X ), the relative entropy of ζ with respect to ν is defined as

H(ζ|ν) =


∫
X

ln

(
dζ

dν

)
dζ, if ζ � ν,

∞, otherwise.

Relative entropy is not a metric since it is not symmetric and does not satisfy the triangle inequality. However
it satisfies (see for instance [3, Section 9.4])

H(ζ|ν) ≥ 0 and H(ζ|ν) = 0 ⇐⇒ ζ = ν, ζ-almost surely.

Furthermore by the Cziszàr-Kullback-Pinsker inequality, it bounds the total variation norm ‖ · ‖TV from
above via

‖ζ − ν‖TV ≤
√

2H(ζ|ν).

7



For two probability measures ζ, ν ∈ P(X ) with bounded second moments, the Wasserstein-2 distance is

W2(ζ, ν) = inf
θ∈Θ(ζ,ν)

(∫
X×X

|z1 − z2|2 dθ(z1, z2)

)1/2

,

where Θ(ζ, ν) denote the set of all couplings of ζ and ν, i.e. for any Borel set B ⊂ X∫
B×X

dΘ(z1, z2) = ζ(B) and

∫
X×B

dΘ(z1, z2) = ν(B),

The Wasserstein-2 distance is a metric on the space of probability measures with bounded second moments.

As mentioned in the introduction, in this paper we assume that the conditional invariant measure satisfies
the Log-Sobolev and the Talagrand inequality, which we now define.

Definition 2.2. A probability measure ν ∈ P(X ), where X ⊂ Rn is a smooth submanifold, satisfies

1. the Log-Sobolev inequality with constant αLSI if

∀ζ ∈ P(X ) with ζ � ν : H(ζ|ν) ≤ 1

2αLSI
R(ζ|ν).

For ζ, ν ∈ P(X ), the relative Fisher Information of ζ with respect to ν is defined as

R(ζ|ν) :=


∫
X

∣∣∣∣∇ ln
dζ

dν

∣∣∣∣2 dζ, if ζ � ν and ∇ ln

(
dζ

dν

)
∈ L2(X ; ζ),

∞, otherwise.

2. the Talagrand inequality with constant αTI if

W2
2 (ζ, ν) ≤ 2

αTI
H(ζ|ν).

The notion of ∇ in the definition of the Fisher Information depends on the manifold X . For X = Rn

this is the usual gradient, while on the level-set of ξ, i.e. X = Rny , we use ∇y. Furthermore the Log-Sobolev
inequality implies the Talagrand inequality such that the constants satisfy 0 ≤ αLSI ≤ αTI (see [57] for
details).

Finally we state the entropy-dissipation identity for the Fokker-Planck equation (10), which we rewrite
as

∂tρt = ∇ ·
(
ρt

[
f +∇ · γ + γ∇ logµ+ γ∇ log

ρt
µ

])
,

where µ is the invariant measure, and therefore we find

d

dt
H(ρt|µ) =

∫
Rn

(
1 + log

ρt
µ

)
∇ ·
(
ρt

[
f +∇ · γ + γ∇ logµ+ γ∇ log

ρt
µ

])
= −

∫
Rn

∇
(

log
ρt
µ

)
γ∇
(

log
ρt
µ

)
ρt −

∫
Rn

∇
(

log
ρt
µ

)
ρt [f +∇ · γ + γ∇ logµ]

= −
∫

Rn

∣∣∣∣∇ log
ρt
µ

∣∣∣∣2
γ

ρt −
∫

Rn

∇
(
ρt
µ

)
[fµ+∇ · (γµ)] = −

∫
Rn

∣∣∣∣∇ log
ρt
µ

∣∣∣∣2
γ

ρt.

To arrive at the final equality we first apply integration by parts and then use the fact that µ is the invariant
measure. Integrating in time, we arrive at the entropy-dissipation identity for any t > 0

H(ρt|µ) +

∫ t

0

Rγ(ρs|µ)ds = H(ρ0|µ), (16)
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where Rγ(·, ·) is the γ-weighted Fisher Information given by

Rγ(ζ|ν) :=

∫
X

∣∣∣∣∇ ln
dζ

dν

∣∣∣∣2
γ

dζ.

These formal calculations which assume smoothness of the solution to (10), can be generalised to allow for
weaker notions of solutions using approximation arguments as in [14].

2.1.2 Projected and effective dynamics

Using Itô’s formula along with ∇ξ = (1, 0),∇2ξ = 0 (recall (12)) and f = (f1, f2), γ =

(
γ11 γ12

γ21 γ22

)
, we find

dξ(Zt) = f1(Zt)dt+
√

2γ11(Zt)dBt, (17)

where Bt is the standard Brownian motion in Rnx given by

dBt =
[
(γ11)−1/2(σ11, σ12)

]
(Zt) · dWt, (18)

with Wt = (W 1
t ,W

2
t ). The projected dynamics (also called the coarse-grained dynamics in [21]) is the closure

of ξ(Zt), which solves

dX̂t = −F̂ (t, X̂t)dt+

√
2Γ̂(t, X̂t)dBt, (19)

with the corresponding Fokker-Planck equation for ρ̂t := law(X̂t) ∈ P(Rnx) given by

∂tρ̂ = ∇x · (F̂ ρ̂) +∇2
x : Γ̂ρ̂. (20)

Here the coefficients F̂ : [0, T ]× Rnx → Rnx , Γ̂ : [0, T ]× Rnx → Rnx×nx satisfy

F̂ (t, x) =

∫
Rny

−f1(x, y) dρ̄t,x(y), Γ̂(t, x) =

∫
Rny

γ11(x, y) dρ̄t,x(y), (21)

where ρ̄t,x is the conditional measure corresponding to ρt (recall (15)). A straightforward calculation (see for

instance [21, Proposition 2.8]) shows that ρ̂t = law(ξ(Zt)), i.e. ξ(Z) and X̂ are exact in the time-marginal
sense.

Next, we define the effective dynamics as

dX̄t = −F (X̄t)dt+
√

2Γ(X̄t)dBt,

with the corresponding Fokker-Planck equation for η := law(X̄t) ∈ P(Rnx) given by

∂tη = ∇x · (Fη) +∇2
x : Γη . (22)

The coefficients F : Rnx → Rnx , Γ : Rnx → Rnx×nx satisfy

F (x) =

∫
Rny

−f1(x, y) dµ̄x(y), Γ(x) =

∫
Rny

γ11(x, y) dµ̄x(y), (23)

where µ̄x is the conditional invariant measure.

Remark 2.3. In this article we assume that the CG map and the coefficients of the original dynamics satisfy
sufficient regularity and growth properties to ensure the well-posedness of the projected and the effective
dynamics. Following the strategy in [21, Sec. 2.3, 2.4] and general well-posedness results in [15], these details
can be made precise in the setting of this paper. For instance, the Lipschitz continuity of the effective
coefficients (and thereby the well-posedness of the effective dynamics) follows as in the proof of Lemma C.1
(with ε = 1). However, to keep the presentation simple we skip these details here.
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2.1.3 Relative entropy and Wasserstein estimates

We now state the relative entropy estimate.

Theorem 2.4. In addition to Assumption 2.1, assume that

(R1) The conditional invariant measure µ̄x satisfies the Talagrand and the Log-Sobolev inequality uniformly
in x ∈ Rnx with constant αTI and αLSI respectively.

(R2) There exists κH > 0 such that

κH := sup
x∈Rnx

sup
y,y′∈Rny

|F(x, y)−F(x, y′)|Γ−1/2(x)

|y − y′|
<∞,

where F : Rn → Rk is defined as F := f1 −∇x · γ11 − (γ11 − Γ)∇x logµ.

(R3) There exists λH > 0 such that

λH :=
∥∥∥ ∣∣∣Γ−1/2(γ11 − Γ)

∣∣∣ ∥∥∥
L∞(Rn)

<∞.

Then for any t > 0

H(ρ̂t|ηt) ≤ H(ρ̂0|η0) +
2

λmin(γ)

(
λ2
H +

κ2
H

αTIαLSI

)
[H(ρ0|µ)−H(ρt|µ)] , (24)

where λmin(γ) is defined in (11) and ρt = law(Zt) where Zt solves (9).

For a proof of this result see Appendix A. We now make some remarks about these assumptions.

Remark 2.5 (Functional inequalities). Assumption (R1) is the central assumption made throughout this
paper and we now discuss it in detail. Functional inequalities such as the Log-Sobolev inequality (which
implies the Talagrand inequalty) have been extensively used to quantify convergence to equilibrium. For
instance, consider dµ(z) = Z−1e−V (z)dz with normalisation constant Z, which satisfies the Log-Sobolev
inequality with constant αLSI, and ρt which solves the overdamped Langevin dynamics (which is ergodic
with respect to µ). Then it is well known that ρt converges exponentially fast in time with rate 2αLSI to µ
(see [9]).

Here we assume that the conditional invariant measure µ̄x satisfies the Log-Sobolev inequality, which from
the observation above implies that any dynamics on Rny (with non-degenerate diffusion) which is ergodic
with respect to this measure converges exponentially fast to it. It must be stressed that since we do not know
the dynamics of the conditional measure, no statement can be made about its convergence behaviour and
therefore the Log-Sobolev assumption is purely technical. Consequently, while in certain simpler settings (see
for instance Proposition 3.13 on linear diffusions), one can connect this assumption to the global dynamics,
in general there is no clear interpretation.

The invariant measure µ ∈ P(Rn) for (13) below can always be written in the form dµ(z) = Z̃−1e−U(z) dz,
where Z̃ =

∫
Rn e

−U(z)dz is the normalisation constant with z = (x, y) for some potential U : Rn → R (recall
Assumption 2.1). The corresponding conditional invariant measure is

dµ̄x(y) =
1

Ẑ(x)
e−Ux(y) dy (25)

where Ux(·) := U(x, ·) for a fixed x ∈ Rnx . The normalisation constant Ẑ(x) =
∫

Rny e
−Ux(y)dy is exactly the

marginal invariant measure. By the Bakry-Émery criterion (cf. [8]), the requirement that the conditional
invariant measure (25) satisfies the LSI inequality with constant αLSI follows if

∇2
yUx(y) ≥ αLSI Idny

.
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uniformly in x ∈ Rnx . This convexity requirement can be weakened to allow for bounded perturbations using
the Holley-Stroock result [34]. Furthermore, it is worth noting that

∇2U(x, y) =

(
∇2
xUx(y) ∇x∇Ty Ux(y)

∇y∇TxUx(y) ∇2
yUx(y)

)
≥ α Idn =⇒ ∇2

yUx ≥ α Idny
, (26)

and therefore the conditional invariant measure satisfies the LSI inequality if the full invariant measure
satisfies the LSI inequality. It is indeed reasonable to expect that the full invariant measure satisfies a LSI
inequality, since assuming the existence of an invariant measure requires that e−U ∈ L1(Rn) which follows if
U has sufficient growth at infinity, and thereby could satisfy the Holley-Stroock result.

In the context of Theorem 2.4, the estimate (24) is sharper when the constant αLSI is larger, which
implies that a sharper estimate holds when we use a CG map such that the resulting conditional measure is
unimodal and concentrated on its level sets. This gives an alternative characterisation of a ‘good’ choice for
a CG map.

Remark 2.6. The constants κH, λH are the non-reversible counterparts of the corresponding constants in [45,
Theorem 3.1] and [21, Theorem 2.15]. The constant λH bounds the difference between the coarse-grained
mobility γ11 = ∇ξγ∇ξT and its average Γ with respect to the conditional invariant measure µ̄x. Furthermore,
when γ11 is a constant matrix, λH = 0 and κH = ‖|∇yf1|‖L∞(Rn), and therefore κH can be interpreted as
the interaction between the projected dynamics (via its coefficients) and the level sets of ξ. Similar constants
also appear in the trajectorial estimates comparing the projected and the effective dynamics [47, Theorem
2.2].

We now state the Wasserstein-2 estimate comparing the projected and the effective dynamics.

Theorem 2.7. In addition to Assumption 2.1, assume that

(W1) The conditional invariant measure µ̄x satisfies the Talagrand and the Log-Sobolev inequality uniformly
in x ∈ Rk with constant αTI and αLSI respectively.

(W2) There exists κW > 0 such that

κW := sup
x∈Rnx

sup
y,y′∈Rny

|f1(x, y)− f1(x, y′)|
|y − y′|

<∞. (27)

(W3) There exists λW > 0 such that

λW := sup
x∈Rnx

sup
y,y′∈Rny

∣∣∣√γ11(x, y)−
√
γ11(x, y′)

∣∣∣
F

|y − y′|
<∞,

where | · |F is the Frobenius inner product for matrices.

Then for any t ∈ [0, T ]

W2
2 (ρ̂t, ηt) ≤ eCW t

(
W2

2 (ρ̂0, η0) +
λ2
W + κ2

W
αTIαLSIλmin(γ)

[H(ρ0|µ)−H(ρt|µ)]

)
,

where CW := 1 + max{2‖|∇x
√

Γ|F ‖2L∞(Rn), ‖|∇xF |‖L∞(Rn)} and λmin(γ) is defined in (11).

Remark 2.8. The constants κW , λW depend on how strongly the coefficients in (17) vary along the unresolved
variables on the level sets of the CG map. These constant are similar to their counterparts in pathwise esti-
mates (see for instance [47, Theorem 2.2]), which is to be expected since the proof of the Wasserstein estimate
follows a synchronous-coupling argument which is also used to prove pathwise estimates. Furthermore, note
that κW , λW are automatically finite if ∇√γ,∇f are bounded.

Theorem 2.4, 2.7 quantify the error on time-marginals of the projected and the effective equations, and
therefore do not provide any correlation-in-time information. In the following section we present error
estimates on path measures in relative entropy.
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2.1.4 Error in path space

With Zt = (Xt, Yt) ∈ Rnx+ny , we consider a special case of (13) with diagonal diffusion matrix σ =
(
σ1 0
0 σ2

)
dXt = f1(Xt, Yt) dt+

√
2σ1(Xt) dW

1
t ,

dYt = f2(Xt, Yt) dt+
√

2σ2(Xt, Yt) dW
2
t ,

(28)

where we use the same notation as in (13). Note that σ1 is a function of Xt only. We write γ =
( γ1 0

0 γ2

)
with

γ1 = σ1σ
T
1 ≥ λmin(γ1) > 0 and γ2 = σ2σ

T
2 ≥ λmin(γ2) > 0. In the following we use ρ = law((Xt, Yt)0≤t≤T )

and ν = law((X̄t, Yt)0≤t≤T ) (see (29) below).

For a fixed T > 0, our aim is to compare the law of paths ρ̂ := law((Xt)0≤t≤T ) ∈ P(C([0, T ]; Rnx)) with
ν̂ := law((X̄t)0≤t≤T ) ∈ P(C([0, T ]; Rnx)), where the effective dynamics X̄t solves

dX̄t = F (X̄t) dt+
√

2σ1(X̄t) dW
1
t , with F (x) =

∫
Rny

f1(x, y) dµ̄x(y).

It is important to note that, as opposed to the last section, here we compare the effective dynamics directly
with X and not with the projected dynamics X̂ (defined in (19)) since the two do not have the same law of
paths, i.e. law((Xt)0≤t≤T ) 6= law((X̂t)0≤t≤T ). We now state the estimate that bounds the error in relative
entropy of the path measures ρ̂ and ν̂. Note that ρ̂ and ν̂ are the marginals of ρ = law((Xt, Yt)0≤t≤T ) and
ν = law((X̄t, Yt)0≤t≤T ) under the map ξ.

Theorem 2.9. In addition to Assumption 2.1 assume that

(P1) The diffusion coefficient of the slow variable Xt is independent of the fast variable Yt, i.e. γ1 = γ1(x).

(P2) The first component of the drift f1 is Lipschitz in y, with constant κW , uniformly in x (recall (27)).
Furthermore, ρ̄t,x has finite second moments uniformly in x ∈ Rnx , t ∈ [0, T ], i.e.,

sup
t∈[0,T ]

sup
x∈Rnx

∫
Rny

|y|2dρ̄t,x(y) <∞.

This implies that

Var(f1) := sup
t∈[0,T ]

sup
x∈Rnx

∫ (
f1(x, y)−

∫
f1(x, y′) dρ̄t,x(y′)

)2

dρ̄t,x(y) <∞.

(P3) f1 − F satisfies the Novikov’s condition, i.e. E[exp(
∫ T

0
|f1 − F |2γ−1

1

ds)] <∞.

Then

H(ρ̂|ν̂) ≤ H(ρ0|ν0) + T
Var(f1)

2λmin(γ1)
+

κ2
W

4αTIαLSIλmin(γ1)λmin(γ2)
H(ρ0|µ),

where λmin(γ1) is defined as in (11).

Proof. Instead of directly working with ρ̂ and ν̂, we will compare (28) with an auxiliary system

dX̄t = F (X̄t) dt+
√

2σ1(X̄t) dW
1
t ,

dYt = f2(X̄t, Yt) dt+
√

2σ2(X̄t, Yt) dW
2
t .

(29)

Using assumption (P2) we find∫
Rny

(∫
Rny

f1(x, y′)− f1(x, y) dρ̄t,x(y)

)2

dρ̄t,x(y′) ≤
∫

Rny

∫
Rny

(f1(x, y′)− f1(x, y))2 dρ̄t,x(y) dρ̄t,x(y′)

12



≤ κ2
W

∫
Rny

∫
Rny

(y − y′)2 dρ̄t,x(y) dρ̄t,x(y′) ≤ 2κ2
W

∫
Rny

|y|2dρ̄t,x(y) <∞,

and therefore Var(f1) <∞. Using Girsanov’s theorem together with f(z)− f̄(z) =
(
f1(z)−F (z)

0

)
, we have

H(ρ|ν) = Eρ
[
ln
dρ

dν

]
= H(ρ0|ν0) + Eρ

[∫ T

0

(
f(Zt)− f̄(Zt)

)
σdWt +

1

2

∫ T

0

|f(Zt)− f̄(Zt)|2γ−1dt
]

= H(ρ0|ν0) +
1

2
Eρ
[∫ T

0

|f(Zt)− f̄(Zt)|2γ−1dt
]

= H(ρ0|ν0) +
1

2

∫ T

0

Eρt
[
|f1(Zt)− F (Zt)|2γ−1

1

]
dt

≤ H(ρ0|ν0) +
1

2

∫ T

0

(
Eρt
[
|f1(Zt)− F̂ (Zt)|2γ−1

1

]
+ Eρt

[
|F̂ (Zt)− F (Zt)|2γ−1

1

])
dt,

where the last inequality follows by adding subtracting F̂ (defined in (21)). The first term in right hand side
can be estimated using

Eρt
[
|f1(Zt)− F̂ (Zt)|2γ−1

1

]
≤ 1

λmin(γ1)
Eρ̂t
[
Eρ̄t,x |f1(Zt)− F̂ (Zt)|2

]
≤ Var(f1)

λmin(γ1)
.

Controlling the second term in the right hand side as in the proof of Theorem 2.7, we arrive at

H(ρ|ν) ≤ H(ρ0|ν0) + T
Var(f1)

2λmin(γ1)
+

κ2
W

4αTIαLSIλmin(γ1)λmin(γ2)
(H(ρ0|µ)−H(ρt|µ)) . (30)

Using H(ρ̂|ν̂) ≤ H(ρ|ν) and 0 ≤ H(ρt|µ) ≤ H(ρ0|µ) we arrive at the final result

H(ρ̂|ν̂) ≤ H(ρ0|ν0) + T
Var(f1)

2λmin(γ1)
+

κ2
W

4αTIαLSIλmin(γ1)λmin(γ2)
H(ρ0|µ).

2.2 Analogous estimates for nonlinear CG maps

In the previous section we focussed on the case of coordinate projection as the CG map, which considerably
simplifies the notation and the results since the level sets in that case are lower-dimensional Euclidean spaces.
In this section we will focus on nonlinear CG maps, in particular we generalise the results to the following
setting.

Assumption 2.10. Throughout this section we assume that

1. (Regularity) ξ ∈ C∞(Rn; Rk) with ∇ξ having full rank k.

2. (Bounds) There exists constants C1, C2 such that ∇ξ∇ξT ≥ C1 Idk and |∇ξ| ≤ C2.

2.2.1 Preliminaries

We now briefly discuss a few notations that will be used in this setting. As in the previous section we use
z ∈ Rn for the full-state variable and x := ξ(z) ∈ Rk for the coarse-grained (or: resolved) variable. For any
x ∈ Rk we use

Σx := {z ∈ Rn : ξ(z) = x},

for the level set of ξ. For any such Σx there exists a canonical intrinsic metric dΣx , which for any z1, z2 ∈ Σx
satisfies

dΣx(z1, z2) := inf

{∫ 1

0

|ġ|ds : g ∈ C1([0, 1],Σx), g(0) = z1, g(1) = z2

}
.
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We use ∇ξ ∈ Rk×n for the Jacobian, G := ∇ξ∇ξT ∈ Rk×k for the metric tensor and Jac ξ :=
√

detG for the
Jacobian determinant of ξ. The Jac ξ is uniformly bounded away from zero due to the assumptions on ξ.

Since we are working with a nonlinear ξ, the formulation for the marginal and conditional probability
measures takes the level sets into account. For any ζ ∈ P(Rn) which is absolutely continuous with respect
to the Lebesgue measure on Rn, i.e. dζ(z) = ζ(z)dz, with density again denoted by ζ for convenience, can

be decomposed into its marginal measure ξ#ζ =: ζ̂ ∈ P(Rk) satisfying dζ̂(x) = ζ̂(x)dx with density

ζ̂(x) =

∫
Σx

ζ(z)
Hn−k(dz)

Jac ξ(z)
, (31)

and for any x ∈ Rk the family of conditional measures ζ(·|Σx) =: ζ̄x ∈ P(Σx) satisfying dζx(z) =
ζ̄x(z)dHn−k(z) with density

ζ̄x(z) =
ζ(z)

ζ̂(x) Jac ξ(z)
. (32)

Here Hn−k is the (n− k)-dimensional Hausdorff measure which is defined on Σx.

As before, differential operators on Rn will be denoted by ∇,∇·,∇2, while the corresponding operators
in Rk will be denoted by ∇x,∇x·,∇2

x. We define the surface gradient on Σx as

∇Σx := (Idn−∇ξTG−1∇ξ)∇.

As in the last section, in this section we will assume that the conditional invariant measure satisfies the Log-
Sobolev and the Talagrand inequalities defined in Definition 2.2, with the crucial difference that X = Σx
and therefore the gradient in the Fisher Information is the surface gradient ∇Σx .

For any φ : Rn → R, we define φξ : Rk → R as

φξ(x) :=

∫
Σx

φ
dHd−k

Jac ξ
.

Similarly for any matrix-valued function B : Rn → Rk×k we can define Bξ component-wise as above. For
any Rn-valued random variable X with law(X) = φ(z)dz, we have law(ξ(X)) = φξ(x)dx. The derivatives of
these objects will play a crucial role in the following, and are given by (see [21, Lemma 2.4] for proof)

∇xφξ(x) =

∫
Σx

∇ · (φG−1∇ξ)dH
d−k

Jac ξ
, ∇x ·Bξ(x) =

∫
Σx

∇ · (BG−1∇ξ)dH
d−k

Jac ξ
. (33)

2.2.2 Error estimates

Since we are no longer in the linear setting, ∇2ξ 6= 0 and therefore the coefficients of the projected and the
effective drifts differ from the previous section. Using Itô’s formula we find

dξ(Zt) = (∇ξf + γ : ∇2ξ)(Zt)dt+
√

2(∇ξγ∇ξT )(Zt)dBt,

where the Brownian motion Bt in Rk is defined by

dBt =
[
(∇ξγ∇ξT )−1/2∇ξσ

]
(Zt) · dWt.

The corresponding projected and effective dynamics are given in (20) and (22), with the corresponding
coefficients given by

F̂ (t, x) =

∫
Σx

(
−∇ξf − γ : ∇2ξ

)
(z) dρ̄t,x(z), Γ̂(t, x) =

∫
Σx

∇ξγ∇ξT (z) dρ̄t,x(z),

F (x) =

∫
Σx

(
−∇ξf − γ : ∇2ξ

)
(z) dµ̄x(z), Γ(t, x) =

∫
Σx

∇ξγ∇ξT (z) dµ̄x(z).

We now state the relative entropy estimate.
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Theorem 2.11. In addition to Assumptions 2.1,2.10, assume that

(RN1) The conditional invariant measure µ̄x satisfies the Talagrand and the Log-Sobolev inequality uniformly
in x ∈ Rk with constant αTI and αLSI respectively.

(RN2) There exists κH > 0 such that

κH := sup
x∈Rk

sup
z,z′∈Σx

|F(z)−F(z′)|Γ−1/2(x)

dΣx
(z, z′)

<∞,

where F : Rn → Rk is defined as

F := ∇ξf + γ : ∇2ξ −G−1∇ξ∇ · (∇ξγ∇ξT )− (∇ξγ∇ξT − Γ)
[
∇ · (G−1∇ξ) +G−1∇ξ∇ logµ

]
,

and dΣx
is the intrinsic metric defined on the level set Σx.

(RN3) There exists λH > 0 such that

λH :=
∥∥∥ ∣∣∣Γ−1/2(∇ξγ∇ξT − Γ)(∇ξ∇ξT )−1/2

∣∣∣ ∥∥∥
L∞(Rn)

<∞.

Then for any t > 0

H(ρ̂t|ηt) ≤ H(ρ̂0|η0) +
1

λmin(γ)

(
λ2
H +

κ2
H

αTIαLSI

)
[H(ρ0|µ)−H(ρt|µ)] ,

where λmin(γ) is defined in (11).

For proof of this result see Section B. The object F is connected to the notions of free-energy and
mean-force, which we discuss in the following remark.

Remark 2.12 (Connections to free energy). The object Γ−1F is the counterpart of the local-mean force
encountered in free-energy calculations [19]. To see this, let us consider the overdamped Langevin setting
with f = −∇V , γ = Idn, µ = Z−1e−V . Then we find

F = −∇ξ∇V + ∆ξ −∇ · (GG−1∇ξ)−GG−1∇ξ∇ logµ− Γ
[
G−1∇ξ∇V −∇ · (G−1∇ξ)

]
= −Γ

[
G−1∇ξ∇V −∇ · (G−1∇ξ)

]
,

and therefore F = −ΓN where N is the local mean force i.e. it satisfies −∇x log µ̂(x) =
∫

Σx
Ndµ̂x (see [21,

Eq. (2.19),(2.20)] for the proof of this final equality).

We now state the Wasserstein-2 estimate in the nonlinear setting.

Theorem 2.13. In addition to Assumptions 2.1,2.10, assume that

(WN1) The conditional invariant measure µ̄x satisfies the Talagrand and the Log-Sobolev inequality uniformly
in x ∈ Rk with constant αTI and αLSI respectively.

(WN2) There exists κW > 0 such that

κW := sup
x∈Rk

sup
z,z′∈Σx

|U(z)− U(z′))|
dΣx(z, z′)

<∞,

where U(z) := (−∇ξf − γ : ∇2ξ)(z).

(WN3) There exists λW > 0 such that

λW := sup
x∈Rk

sup
z,z′∈Σx

∣∣∣√∇ξγ∇ξT (z)−
√
∇ξγ∇ξT (z′)

∣∣∣
F

dΣx
(z, z′)

<∞,

where | · |F is the Frobenius norm for matrices.
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Then for any t ∈ [0, T ]

W2
2 (ρ̂t, ηt) ≤ eCW t

(
W2

2 (ρ̂0, η0) +
λ2
W + κ2

W
αTIαLSIλmin(γ)

[H(ρ0|µ)−H(ρt|µ)]

)
where CW := 1 + max{2‖|∇x

√
Γ|F ‖2L∞(Rn), ‖|∇xF |‖L∞(Rn)} and λmin(γ) is defined in (11).

We skip the proof, since it follows on the lines of Theorem 2.7.

3 Scale separation and averaging

In the previous section we presented error estimates comparing the projected and the effective dynamics.
In this section we discuss the asymptotic behaviour and sharpness of these estimates in the presence of
scale separation. Specifically we focus on the case of averaging in SDEs with diagonal diffusion matrices.
We first write the effective dynamics and state the time-marginal estimates derived in the last section in
the averaging setting for a fixed value of the scale-separation parameter. We then study the asymptotic
behaviour of these estimates in two specific examples – reversible SDEs in Section 3.2 and linear diffusions
in Section 3.3. Extensive literature has been devoted to the study of these averaging problems and in
Section 3.3, we compare our results with the existing averaging literature.

We consider the following SDE

dXε
t = f1(Xε

t , Y
ε
t ) dt+

√
2σ1(Xε

t , Y
ε
t ) dW 1

t , Xt=0 = X0,

dY εt =
1

ε
f2(Xε

t , Y
ε
t ) dt+

√
2

ε
σ2(Xε

t , Y
ε
t ) dW 2

t , Yt=0 = Y0.
(34)

With n = nx+ny, here Xε
t , Y

ε
t are random variables in Rnx ,Rny respectively, f1 : Rn → Rnx , f2 : Rn → Rny ,

σ1 : Rn → Rnx×nx , σ2 : Rn → Rny×ny , and W 1
t ,W

2
t are standard independent Brownian motions in Rnx

and Rny . The parameter 0 < ε � 1 encodes scale separation, and thereby Y εt can be viewed as the fast
variable and Xε

t as the slow variable. Following such a splitting, the natural coarse-graining map here is the
coordinate projection onto the slow variable, i.e.

ξ : Rn → Rnx , ξ(x, y) = x,

which is the CG map studied in Section 2.1. As stated in Assumption 2.1, we assume that (1) the coefficients
fε, γε ∈ C∞ and the diffusion matrix γε is positive definite, and (2) the SDE (34) admits a invariant measure
µε ∈ P(Rn). Here

fε =

(
f1
1

ε
f2

)
, γε =

(
γ1 0
0 γε2

)
, γ1 = σ1σ

T
1 , γε2 =

1

ε
γ2, γ2 = σ2σ

T
2 , (35)

with fε : Rn → Rn, γε : Rn → Rn×n and n = nx + ny. As explained above, the coarse-grained dynamics is
the slow variable ξ(Zεt ) = Xε

t , and its law ρ̂εt = law(Xε
t ) = law(ξ(Zεt )) = ξ#ρ

ε
t evolves according to

∂tρ̂
ε = ∇x · (F̂ ερ̂ε) +∇2

x : Γ̂ερ̂ε, (36)

where the coefficients F̂ ε : [0, T ]× Rnx → Rnx , Γ̂ε : [0, T ]× Rnx → Rnx×nx are

F̂ ε(t, x) =

∫
Rny

−f1(x, y) dρ̄εt,x(y), Γ̂ε(t, x) =

∫
Rny

γ1(x, y) dρ̄εt,x(y).

As before we have used ρ̄εt,x ∈ P(Rny ) for the conditional measure corresponding to ρεt under the mapping
ξ. The effective dynamics ηεt is the closure of the slow variable Xt using the invariant measure and satisfies
the evolution

∂tη
ε = ∇x · (F εηε) +∇2

x : Γεηε, (37)
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where the coefficients F ε : Rnx → Rnx , Γε : Rnx → Rnx×nx are

F ε(x) =

∫
Rny

−f1(x, y) dµ̄εx(y), Γε(x) =

∫
Rny

γ1(x, y) dµ̄εx(y),

with µ̄x ∈ P(Rny ) as the conditional invariant measure.

The entropy-dissipation result (recall (16)) in the current setting of (34) reads

d

dt
H(ρεt |µε) = −

∫ t

0

Rγε(ρεs|µε)ds = −
∫ t

0

∫
Rn

∣∣∣∣∇x log
ρεt
µε

∣∣∣∣2
γ1

ρεt −
1

ε

∫ t

0

∫
Rn

∣∣∣∣∇y log
ρεt
µε

∣∣∣∣2
γ2

ρεt . (38)

To simplify the analysis, throughout this section we will assume that the initial datum is independent of ε.

Before we proceed with writing the time-marginal estimates in this setup, we briefly recall the dynamics
of (34) in the limit of ε→ 0 (see [60, Theorem 4] for proof).

Theorem 3.1 (Classical averaging). Assume that for any fixed x ∈ Rnx , the fast dynamics admits an
invariant measure µav

x ∈ P(Rny ), i.e.

∇y · [f2(x, ·)µav
x ] +∇2

y : [γ2(x, ·)µav
x ] = 0.

Then law((Xε
t )0≤t≤T )

ε→0−−−→ law((Xav
t )0≤t≤T ) weakly in C([0, T ],Rnx), where Xav is the unique solution in

law of
dXav

t = F av(Xav
t )dt+

√
2γav(Xav

t )dWt, (39)

where Wt is a Brownian motion in Rnx . The coefficients F av : Rnx → Rnx and σav : Rnx → Rnx×nx are
given by

F av(x) =

∫
Rny

f1(x, y) dµav
x (y), γav(x) =

∫
Rny

γ1(x, y)dµav
x (y).

In what follows, we refer to the limit dynamics (39) as the averaged dynamics.

3.1 Error estimates for fixed ε > 0

In the next three propositions, we recast the relative entropy entropy result in Theorem 2.4, the Wasserstein
result in Theorem 2.7 and the path-space result in Theorem 2.9 into the current setting for a fixed value of
ε > 0.

Proposition 3.2 (Relative entropy). Fix ε > 0 and and in addition to Assumption 2.1 assume that

1. The conditional invariant measure µ̄εx satisfies the Talagrand and the Log-Sobolev inequality uniformly
in x ∈ Rnx with constant αεTI and αεLSI respectively.

2. There exists κεH > 0 such that

κεH := sup
x∈Rnx

sup
y,y′∈Rny

|Fε(y)−Fε(y′)|(Γε)−1/2(x)

|y − y′|
<∞,

where Fε : Rn → Rny is defined as Fε := f1 −∇x · γ1 − (γ1 − Γε)∇x logµε.

3. There exists λεH > 0 such that λεH :=
∥∥ ∣∣(Γε)−1/2(γ1 − Γε)

∣∣ ∥∥
L∞(Rn)

<∞.

Then for any t > 0

H(ρ̂εt |ηεt ) ≤ H(ρ̂0|η0) +

(
(λεH)2

λmin(γ1)
+ ε

(κεH)2

αεTIα
ε
LSIλmin(γ2)

)
[H(ρ0|µε)−H(ρεt |µε)] , (40)

where λmin(B) is the smallest eigenvalue of matrix B.
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The proof follows on the lines of Theorem 2.4 upto (71), which gives∫ T

0

∫
Rk

|hεt |2(Γε)−1 dρ̂εt dt ≤ (λεH)2(1 + τ)

∫ T

0

∫
Rn

∣∣∣∣∇x log
ρεt
µε

∣∣∣∣2 dρεtdt+
(κεH)2

αεTIα
ε
LSI

(
1 +

1

τ

)∫ T

0

∫
Rn

∣∣∣∣∇y log
ρεt
µε

∣∣∣∣2 dρεtdt
≤ (λεH)2

λmin(γ1)
(1 + τ)

∫ T

0

∫
Rn

∣∣∣∣∇x log
ρεt
µε

∣∣∣∣2
γ1

dρεtdt+
ε(κεH)2

αεTIα
ε
LSIλmin(γ2)

(
1 +

1

τ

)∫ T

0

∫
Rn

∣∣∣∣∇y log
ρεt
µε

∣∣∣∣2
γε
2

dρεtdt.

Here hεt := (F ε +∇x · Γε) − (F̂ ε +∇x · Γ̂ε) + (Γε − Γ̂ε)∇x log ρ̂εt . The final result then follows by choosing

τ =
ε(κε
H)2λmin(γ1)

αε
TIα

ε
LSIλ

2
Hλmin(γ2)

, using (38), and substituting the bound back into (66).

Remark 3.3. In the case when the diffusion coefficient of the slow variable Xt only depends on the slow
variable, i.e. σ1 = σ1(x), it follows that Γε = γ1 and therefore λH = 0 and F = f −∇x · γ1 is independent
of ε. Thus, we arrive at the sharper estimate

H(ρ̂εt |ηεt ) ≤ H(ρ̂0|η0) + ε
(κH)2

αεTIα
ε
LSIλmin(γ2)

[H(ρ0|µε)−H(ρεt |µε)] ,

where κH is the Lipschitz constant of f −∇x · γ1.

Proposition 3.4 (Wasserstein distance). Fix ε > 0 and and in addition to Assumption 2.1 assume that

1. The conditional invariant measure µ̄εx satisfies the Talagrand and the Log-Sobolev inequality uniformly
in x ∈ Rnx with constant αεTI and αεLSI respectively.

2. The coefficients of the slow variable ξ(Zεt ) = Xε
t are Lipschitz with constants 0 < κW , λW <∞, i.e.

κW := ‖|∇yf1|‖L∞(Rn), λW :=
∥∥∥|∇y√γ1|F

∥∥∥
L∞(Rn)

,

where the second norm above is the operator norm for the three tensor in Rnx×nx×ny .

Then for any t ∈ [0, T ]

W2
2 (ρ̂εt , η

ε
t ) ≤ eC

ε
W t

(
W2

2 (ρ̂0, η0) + ε
λ2
W + κ2

W
αεTIα

ε
LSIλmin(γ1)

[H(ρ0|µε)−H(ρεt |µε)]
)

(41)

where CεW := 1 + max{2‖|∇x
√

Γε|F ‖2L∞(Rn), ‖|∇xF
ε|‖L∞(Rn)} and λmin(γ1) is defined in (11).

The proof of this result follows as in the proof of Theorem 2.7 upto (75), which in this context gives

W2
2 (ρ̂εt , η

ε
t ) ≤ eC

ε
W t

(
W2

2 (ρ̂0, η0) +

(
λ2
W + κ2

W
αεTIα

ε
LSI

)∫ t

0

∫
Rnx

(∫
Rny

∣∣∣∣∇y (log
ρ̄εs,x(y)

µ̄εx(y)

)∣∣∣∣2 dρ̄εs,x
)

(y)dρ̂εs(x)ds

)

≤ eC
ε
W t

(
W2

2 (ρ̂0, η0) + ε

(
λ2
W + κ2

W
αεTIα

ε
LSIλmin(γ2)

)∫ t

0

∫
Rnx

(∫
Rny

∣∣∣∣∇y (log
ρεs
µε

)∣∣∣∣2
γε
2

dρ̄s,x

)
(y)dρ̂εs(x)ds

)

≤ eC
ε
W tW2

2 (ρ̂0, η0) + ε

(
λ2
W + κ2

W
αεTIα

ε
LSIλmin(γ2)

)∫ t

0

∫
Rn

∣∣∣∣∇y (log
ρεs
µε

)∣∣∣∣2
γε
2

dρεsds

≤ eC
ε
W tW2

2 (ρ̂0, η0) + ε

(
λ2
W + κ2

W
αεTIα

ε
LSIλmin(γ2)

)∫ t

0

∫
Rn

∣∣∣∣∇(log
ρεs
µε

)∣∣∣∣2
γε

dρεsds.

Here the second inequality follows since ∇yρ̂εt (x) = ∇yµ̂ε(x) = 0, the third inequality follows from the
disintegration theorem, and the final inequality follows by adding |∇x log(ρεs/µ

ε)|2γ1 .
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Remark 3.5 (Behaviour of CεW). By definition, to estimate CεW we need to show that the effective coefficients

F ε,Γε are Lipschitz, which in turn implies that ∇xF ε,∇x
√

Γε ∈ L∞(Rn) (since Γε is bounded away from
zero). In Lemma C.1 we show that this is indeed the case, when f1, γ1 are Lipschitz and the invariant
measure ∇2

xy logµε ∈ L∞(Rn), and we have

‖|∇xF ε|‖L∞(Rn) ≤ ‖|∇xf1|‖L∞(Rn) +
1

αεLSI

‖|∇yf1|‖L∞(Rn)‖|∇2
xy logµε|‖L∞(Rn).

A similar estimate holds for Γε. Therefore to estimate CεW we need uniform in ε bounds on ∇2
xy logµε, which

holds in the settings of (nonlinear) reversible and the linear non-reversible diffusions as we shall discuss in
the coming sections. Note that the estimates on ∇xF ε,∇xΓ in Lemma C.1 imply the well-posedness of the
effective dynamics as well (following the arguments in [21, Section 2.4]).

Proposition 3.6 (Error in path space). Fix ε > 0, T > 0 and in addition to Assumption 2.1 assume that

1. The diffusion of the slow variable Xt is independent of the fast variable Yt, i.e. γ1 = γ1(x).

2. The first component of the drift f1 is Lipschitz in y with constant κW uniformly in x. Furthermore,
ρ̄εt,x has finite second moments uniformly in x ∈ Rnx , t ∈ [0, T ], i.e.,

sup
t∈[0,T ]

sup
x∈Rnx

∫
Rny

|y|2dρ̄εt,x(y) <∞ .

This implies that

Varε(f1) := sup
t∈[0,T ]

sup
x∈Rnx

∫ (
f1(x, y)−

∫
f1(x, y′) dρ̄εt,x(y′)

)2

dρ̄εt,x(y) <∞.

3. f1 − F ε satisfies the Novikov’s condition, i.e. E[exp(
∫ T

0
|f1 − F ε|2γ−1

1

ds)] <∞.

Then

H(ρ̂ε|ν̂) ≤ H(ρ0|ν0) + T
Varε(f1)

2λmin(γ1)
+ ε

κ2
W

4αεTIα
ε
LSIλmin(γ1)λmin(γ2)

H(ρ0|µε). (42)

The proof is the same as before, with λmin(γ2) being replaced by λmin(γ2)/ε.

3.2 Reversible diffusions

In this section we consider the case of reversible diffusions with diagonal diffusion matrix. As mentioned
in the introduction, this subclass has two distinct features. Firstly, the fact that the invariant measure,
and hence the corresponding LSI constant, are independent of ε, which makes the asymptotic analysis
considerably simpler. Secondly, in our setting, the dynamics derived via averaging (see Theorem 3.1) and
the conditional expectation approach (see (23)) agree since the conditional invariant measure µ̄x is the same
as µav

x for any x ∈ Rnx (recall Theorem 3.1). Therefore the conditional expectation estimates offer a new
insight into proving error estimates for averaging problems. It should be noted that this agreement between
the two dynamics is particular to the reversible setting and fails in the non-reversible setting as we shall
discuss in the next section.

To the best of our knowledge, the time-marginal estimates presented below (see (44), (45)) based on
earlier sections, are the first quantitative results for averaging in the general setting when the slow diffusion
coefficient depends on the full state space. However this analysis is limited to reversible SDEs.

Consider the SDE

dXε
t = [−(γ1∇xV )(Xε

t , Y
ε
t ) +∇x · γ1(Xε

t , Y
ε
t )] dt+

√
2σ1(Xε

t , Y
ε
t ) dW 1

t , Xt=0 = X0,

dY εt =
1

ε
[−(γ2∇yV )(Xε

t , Y
ε
t ) +∇y · γ2(Xε

t , Y
ε
t )] +

√
2

ε
σ2(Xε

t , Y
ε
t ) dW 2

t , Yt=0 = Y0,
(43)
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where V : Rn → R, γi = σiσ
T
i and the rest of the coefficients are as defined earlier. Under fairly general

growth conditions on V and using this compact form, it is easy to see that (43) admits the Boltzmann-Gibbs
measure

dµ(x, y) = Z−1e−V (x,y)dx dy,

as an invariant measure, where Z =
∫

Rn e
−V (z)dz is the normalisation constant. The projected dynamics

ρ̂t = law(Xt) evolves according to (36) with the coefficients given by

F̂ ε(t, x) =

∫
Rny

[γ1∇xV −∇x · γ1] (x, y) dρ̄εt,x(y), Γ̂ε(t, x) =

∫
Rny

γ1(x, y) dρ̄εt,x(y).

Since the invariant measure µ, and therefore the conditional invariant measure µ̄x, are independent of ε, the
same holds for the effective dynamics given by,

∂tη = ∇x · (Fη) +∇2
x : Γη,

with coefficients

F (x) =

∫
Rny

[γ1∇xV −∇x · γ1] (x, y) dµ̄x(y), Γ(x) =

∫
Rny

γ1(x, y) dµ̄x(y).

Note that in this case µ̄x = µav
x for any x ∈ Rnx , where µav

x is defined in Theorem 3.1.

The relative entropy result (40) in this setting is

H(ρ̂εt |ηt) ≤ H(ρ̂0|η0) + (CH + εDH)H(ρ0|µ), (44)

where we have used H(ρt|µ) ≤ H(ρ0|µ) (which is a consequence of the entropy-dissipation result (38)), and
the ε-independent constants are given by

CH =

∥∥|∇y [Γ−1/2(γ1 − Γ)
]
|F
∥∥2

L∞(Rn)

λmin(γ1)
and DH =

∥∥|Γ1/2∇xV |
∥∥2

L∞(Rn)

αTIαLSIλmin(γ2)
.

The Wasserstein result (41) in this setting is

W2
2 (ρ̂εt , ηt) ≤ eCW tW2

2 (ρ̂0, η0) + εDWe
CW tH(ρ0|µ), (45)

where the ε-independent constants are given by

CW = 1 + max{2‖|∇x
√

Γ|F ‖2L∞(Rn), ‖|∇xF |‖L∞(Rn)},

DW =
‖|∇y [−γ1∇xV +∇x · γ1] |‖2L∞(Rn) +

∥∥|∇y√γ1|F
∥∥2

L∞(Rn)

αTIαLSIλmin(γ1)
.

The relative entropy estimate (44) is sharp only if CH = 0 which corresponds to the case γ1(x, y) = Γ(x), i.e.
the diffusion matrix of the slow variable is only a function of the slow variable γ1 = γ1(x) (recall Remark 3.3).
This issue does not appear in the Wasserstein estimate (45), which is sharp in the limit of ε→ 0. However
the relative entropy estimate has a better behaviour in time since the relative entropy estimate applies for
any t > 0, while the Wasserstein estimate holds for t ∈ [0, T ] (for any fixed T > 0) due to the exponential
pre-factor.

3.3 Non-reversible linear diffusions

The introductory example in Section 1.1 already demonstrated that the coarse-graining method of averaging
(see Theorem 3.1) and the effective dynamics derived by conditional expectations (see (23)) can give different
results for finite ε. In this section we state sufficient conditions under which the conditional measure µ̄εx
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converges to the averaging measure µav in the setting of linear diffusions (see Proposition 3.9), which leads
to the convergence of the corresponding dynamics (see Remark 3.11 below). The conditions allow for a
degenerate diffusion matrix which has been excluded in all the preceding results. Before we state these
conditions, in the following remark we present a simple example where the dynamics derived from averaging
and conditional expectation do not agree even in the limit ε→ 0.

Remark 3.7. Consider the following two-dimensional example

dXt = (−Xt + Yt) dt, X0 = x0 ,

dYt = −1

ε
Yt dt+

1√
ε
dW 2

t , Y0 = y0 .
(46)

The invariant measure of the fast process (which is independent of Xt) is µav = N
(
0, 1

2

)
, and thus the

averaging principle yields
dXav

t = −Xav
t dt , Xav

0 = x0.

The process (Xt, Yt)t≥0 admits the unique invariant measure µε = N (0,Kε), where the covariance is

Kε =

(
ε

2(1+ε)
ε

2(1+ε)
ε

2(1+ε)
1
2

)
.

Hence, the conditional invariant measure reads µ̄εx = N
(
x, 1

2 −
ε

2(ε+1)

)
, and the effective dynamics are

given by
dX̄t = 0 dt, X̄0 = x0 .

This simple example shows that the two approaches of averaging and conditional expectation need not agree
even in the limit when dealing with non-reversible diffusions.

In this section we consider linear diffusions which in matrix form can be written as(
dXε

t

dY εt

)
=

(
B11 B12
1
εB21

1
εB22

)
︸ ︷︷ ︸

=:Bε

(
Xε
t

Y εt

)
dt+

(
A11 0
0 1√

ε
A22

)
︸ ︷︷ ︸

=:Aε

(
dW 1

t

dW 2
t

)
, (47)

where the constant matrices B11 ∈ Rnx×nx , B12 ∈ Rnx×ny , B21 ∈ Rny×nx , B22 ∈ Rny×ny , A11 ∈ Rnx×nx ,
A22 ∈ Rny×ny , and W 1

t ,W
2
t are standard Brownian motions in Rnx and Rny respectively. The construction

of the effective dynamics requires the existence of an invariant measure for (47), which is ensured by the
following assumptions (note that Aε need not be positive definite).

Assumption 3.8. Throughout this section we assume that for any ε > 0

1. The matrix Bε ∈ Rn×n is Hurwitz, i.e. its spectrum lies in the open left-plane.

2. The pair (Bε, Aε) is controllable, i.e. rank(Aε, BεAε, (Bε)2Aε, . . . , (Bε)n−1Aε) = n.

Then for any ε > 0 the SDE (47) admits a unique invariant measure given by a Gaussian µε ∈ P(Rn)
(see [5, Theorem 3.1])

µε ∼ N (0,Kε).

The covariance Kε is the unique positive definite solution of the Lyapunov equation

BεKε +Kε(Bε)T = −Aε(Aε)T .

As before, the CG map ξ : Rn → Rnx is the coordinate projection onto the slow variable Xt, and the
conditional invariant measure for any x ∈ Rnx is also a normal distribution given by (see e.g. [24])

µ̄εx ∼ N (mc
x(ε),Kc(ε)) , mc

x(ε) = Kε
21(Kε

11)−1x, Kc(ε) = Kε
22 −Kε

21(Kε
11)−1Kε

12. (48)
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The coefficients of the projected dynamics ρ̂εt = law(Xε
t ) (see (36)) and the effective dynamics ηεt (see (37)),

in this setting are Γ̂ε = Γε = A11A
T
11 and

F̂ ε(t, x) =

∫
Rny

[B11x+B12y] dρ̄εt,x(y), F ε(x) =

∫
Rny

[B11x+B12y] dµ̄εx(y) = (B11 +B12K
ε
21(Kε

11)−1)x.

The relative entropy estimate (40) and the Wasserstein estimate (41), which hold under the additional
assumption that Aε is positive definite, lead to

H(ρ̂εt |ηεt ) ≤ H(ρ̂0|η0) + ε
DH

αεTIα
ε
LSI

H(ρ0|µε), with DH =
|(A11A

T
11)−1/2B12|2

λmin(A22AT22)
, (49)

W2
2 (ρ̂εt , η

ε
t ) ≤ eC

ε
W t

(
W2

2 (ρ̂0, η0) + ε
DW

αεTIα
ε
LSI

H(ρ0|µε)
)
, with CεW = |B11 +B12K

ε
21(Kε

11)−1|, (50)

DW =
|B12|2

λmin(A22AT22)
,

and the estimate for the law of paths for fixed T > 0, with ρ̂ε = law((Xε)0≤t≤T ), ν̂ = law(
(
X̄ε
)

0≤t≤T ) is

H(ρ̂ε|ν̂) ≤ H(ρ0|ν0) + TCεLP + ε
DLP

αεTIα
ε
LSI

H(ρ0|µε), with CεLP =
Varρ̄εt,x(B12y)

2λmin(A11AT11)
, (51)

DLP =
|B12|2

4λmin(A11AT11)λmin(A22AT22)
.

It may happen that µε becomes singular as ε→ 0, for example, in the system considered in Remark 3.7. In
this case the initial datum ρ0 should be adapted such that H(ρ0|µε) < C, where C is independent of ε. This
can be achieved, for instance, by requiring that the initial datum ρε0(x, y) = ρ̂ε0(x)ρ̄εx,0(y), depends on ε in
such a way that ρ̂ε=0

0 (x) = δ0, i.e. the initial condition for X has to be chosen as X0 = 0.

We now discuss the asymptotic behaviour of the right hand side of these estimates. First we give a
formal asymptotic proof for the ε → 0 limit of the conditional invariant measure µ̄εx. This will be useful in
determining the limit of the effective dynamics.

Proposition 3.9. In addition to Assumption 3.8, assume that

1. The matrix B22 ∈ Rny×ny is Hurwitz, i.e. its spectrum lies in the open left-plane.

2. The pair (B22, A22) is controllable, i.e. rank(A22, B22A22, B
2
22A22, . . . , B

ny−1
22 A22) = ny.

3. B11 −B12B
−1
22 B21 is Hurwitz and the pair (

(
B11 −B12B

−1
22 B21

)
, A11) is controllable.

Then for any x ∈ Rnx the conditional invariant measure µ̄εx
ε→0−−−→ N (−B−1

22 B21x,Σ), where the limiting
covariance is the unique positive-definite solution to the Lyapunov equation

B22Σ + ΣBT22 = −A22A
T
22. (52)

Remark 3.10. The final assumption guarantees that K
(0)
11 > 0 (see equation (57) and (59) below). The

first and second assumption guarantees that K
(0)
22 −K

(0)
21 (K

(0)
11 )−1K

(0)
12 > 0. Hence, together they guarantee

K0 = lim
ε→0

Kε > 0.

Note that the example presented in Remark 3.7 violates the assumptions above since B21 = 0 and

A11 = 0. In particular by (56) and (55) it follows that K
(0)
11 = K

(0)
12 = 0 which leads to a non-trivial change

of the conditional mean mc
x(ε) =

(
K

(1)
21

(
K

(1)
11

)−1

+O(ε)
)
x due to the order ε terms in the covariance.
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Proof of Proposition 3.9. Writing out the equation for Kε in its different components yields the following
three equations

B11K
ε
11 +B12K

ε
21 + Kε

11B
T
11 +Kε

12B
T
12 = −A11A

T
11 (53)

B11K
ε
12 +B12K

ε
22 +

1

ε

(
Kε

11B
T
21 +Kε

12B
T
22

)
= 0 (54)

B21K
ε
12 +B22K

ε
22 + Kε

21B
T
21 +Kε

22B
T
22 = −A22A

T
22 . (55)

Due to the structure of these equations, we consider the following asymptotic expansion of Kε,

Kε = K(0) + εK(1) +O(ε2).

Collecting the 1/ε power terms in (54) we find that

K
(0)
12 = −K(0)

11 B
T
21B

−T
22 . (56)

Case 1 B21 6= 0: Plugging (56) into (53) and collecting the order 1 terms we find that(
B11 −B12B

−1
22 B21

)
K

(0)
11 + K

(0)
11

(
B11 −B12B

−1
22 B21

)T
= −A11A

T
11 (57)

This, together with the assumption that (
(
B11 −B12B

−1
22 B21

)
, A11) is controllable and

(
B11 −B12B

−1
22 B21

)
being Hurwitz, implies that K

(0)
11 is invertible (cf. [69, Theorem 1.2]). Thus

(Kε
11)−1 = (K

(0)
11 + εK

(1)
11 +O(ε2))−1 = (K

(0)
11 )−1 − ε(K(0)

11 )−1(K
(1)
11 )(K

(0)
11 )−1 +O(ε2). (58)

As a result, combining (56)-(58), we find for the conditional mean

mc
x(ε) = Kε

21(Kε
11)−1x =

(
−B−1

22 B21 +O(ε)
)
x,

and therefore it follows that mc
x(ε)→ −B−1

22 B21x as ε→ 0. By (58) the conditional variance can be written
as

Kc(ε) = K
(0)
22 −K

(0)
21 (K

(0)
11 )−1K

(0)
12 +O(ε).

At the same time, using (56), the order 1 term equation of (55) reads

B22(K
(0)
22 −K

(0)
21 (K

(0)
11 )−1K

(0)
12 ) + (K

(0)
22 −K

(0)
21 (K

(0)
11 )−1K

(0)
12 )BT22 = −A22A

T
22,

i.e., Kc(ε)→ Σ which solves (52).

Case 2 B21 = 0: By (56) B21 = 0 implies K
(0)
12 = 0. Collecting the order 1 terms of (53) thus yields

B11K
(0)
11 + K

(0)
11 B

T
11 = −A11A

T
11 (59)

which implies by our assumptions that K
(0)
11 is invertible and we get the same representation for its inverse

as in (58). Hence the conditional mean reads

mc
x(ε) = Kε

21(Kε
11)−1x = ε

(
K

(1)
21

(
K

(0)
11

)−1

+O(ε)

)
x,

which goes to 0 as ε → 0 and thus agrees with the postulated mean. For the covariance we have that

Kc(ε) = K
(0)
22 +O(ε) and collecting the order one 1 terms of (55) we find

B22K
(0)
22 +K

(0)
22 B

T
22 = −A22A

T
22,

i.e., also the claim for the limit of the covariance holds true.
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In the following two remarks we summarise the ε→ 0 behaviour of the objects studied in this section.

Remark 3.11 (Effective dynamics converges to averaged dynamics). The assumption that B22 is Hurwitz
and the pair (B22, A22) is controllable in Proposition 3.9) implies that the fast variable Y εt is ergodic for a
fixed value of the slow variable Xε

t = x, and therefore using [5, Theorem 3.1] it follows that

µav
x ∼ N (−B−1

22 B21x,Σ),

where µav
x ∈ P(Rny ) appears in the classical averaging result (see Theorem 3.1). Therefore as a result of

Proposition 3.9, it follows that µ̄εx
ε→0−−−→ µav

x for every x ∈ Rnx , and consequently the effective dynamics
converges to the averaged dynamics and the result of Theorem 3.1 also applies to the effective dynamics
X̄t.

Remark 3.12 (ε → 0 behaviour of estimates (49)-(51)). Since the limiting covariance for the µε satisfies
limε→0K

ε > 0 (recall Remark 3.10), it follows that the covariance for µεx is also uniformly bounded away
from zero (see (26)). Therefore by the Bakry-Emery criterion αεLSI → α as ε→ 0. for some constant α > 0
independent of ε. Since 0 ≤ αεLSI ≤ αεTI, we have α−1

TI ≤ α−1
LSI → α. This concludes the ε→ 0 behaviour of

the time-marginal relative entropy estimate (49). For the Wasserstein estimate (50), we note that CεW stays
bounded as ε→ 0 by using Remark 3.5 and noting that in this case |∇2

xy logµε| ∈ L∞(Rn) (again using the
bounds on the covariance). For the law of path estimates we need to bound CεLP . Since B12 is a constant
matrix, we only need to consider V arρ̄εt,x(y) = tr(Kc

t (ε)) where Kc
t (ε) = (Kε

t )22 − (Kε
t )21((Kε

t )11)−1(Kε
t )12,

which is well-defined since the time-dependent covariance for ρεt is well-defined. The latter follows because
of the bounds on the limiting covariance (see [53, Ex. 2.14] for an explicit formula of the time-dependent
covariance for ρεt ).

An interesting property of linear diffusions is that the LSI constant can directly be connected to the
coefficients of the system, a feature that we discuss below. While this bound is new, it does not offer any
additional control in the presence of scale separation, and therefore we present the result in the absence of
scale separation.

Proposition 3.13. Consider the linear SDE

dZt = BZt dt+AdWt, (60)

where Zt = (Xt, Yt) with Xt ∈ Rnx , Yt ∈ Rny , n = nx + ny, and Wt is a m-dimensional Brownian motion.
Assume that the matrix B ∈ Rn×n is Hurwitz and and the pair (B,A) is controllable with A ∈ Rn×m.
Furthermore the eigenvector v associated to the largest eigenvalue λmax(K) satisfies v 6∈ ker(AAT ). Then

αLSI ≥
λmin(B +BT )

λmax(AAT )
.

Note that while this bound directly connects the Log-Sobolev constant to the eigenvalues of the coefficients
of the full dynamics, it need not be sharp since in general λmin(B +BT ) need not be positive.

Proof. Following the assumptions on the coefficients, (60) admits an invariant measure µ ∼ N (0,K) where
K solves the Lyapunov equation

BK +KBT = −AAT .

As in the rest of this section we assume ξ(x, y) = x. Our aim here is to connect the Log-Sobolev constant
αLSI for the conditional invariant measure µ̄x ∈ P(Rny ) to the eigenvalues of the coefficients B,A of the full
dynamics. We will use α := λmin(K−1) = 1/λmax(K).

The conditional invariant measure is explicitly given by µ̄x ∼ N
(
K21(K11)−1x,Kc

)
, where Kc = K22 −

K21(K11)−1K12 and we write K =
(
K11 K12

K21 K22

)
in the block-matrix form. Since µ̄x is a normal distribution,

24



we have αLSI = λmin(K−1
cond). Using the same idea as in (26), it follows that αLSI ≥ α. Multiplying the

Lyapunov equation from the left by vT and the right by v we find

vTBKv + vTKBT v = −vTAAT v ⇐⇒ 1

α
vT (B +BT )v = vTAAT v,

where we use that K−1v = αv ⇔ Kv = α−1v. This relation implies the required bound

αLSI ≥ α =
vT (B +BT )v

vTAAT v
≥ λmin(B +BT )

λmax(AAT )
.

In the following remark we briefly discuss a different scaling and present the corresponding error estimates.
We will use these results and this scaling to explain why the averaging and the effective dynamics do not
always agree (recall Remark 3.7) using the notion of degree of irreversibility in Section 5.

Remark 3.14 (Different ε-scaling). Consider the multiscale problem(
dXε

t

dY εt

)
=

(
B11 B12
1
εB21

1
εB22

)
︸ ︷︷ ︸

=:Bε

(
Xε
t

Y εt

)
dt+

(√
εpA11 0

0 1√
ε
A22

)
︸ ︷︷ ︸

=:Aε

(
dW 1

t

dW 2
t

)
, (61)

and note that p = 0 corresponds to the usual averaging problem. The results of Proposition 3.9 as well as
the averaging result (see Theorem 3.1) still hold as long as p < 1. The relative entropy estimate (40) and
the Wasserstein estimate (41), which hold under the assumption Aε(Aε)T > 0, now give

H(ρ̂εt |ηεt ) ≤ H(ρ̂0|η0) + ε1−p CH
αεTIα

ε
LSI

H(ρ0|µε),with CH =
|(A11A

T
11)−1/2B12|2

λmin(A22AT22)
,

W2
2 (ρ̂εt , η

ε
t ) ≤ eC

ε
W t

(
W2

2 (ρ̂0, η0) + ε
DW

αεTIα
ε
LSI

H(ρ0|µε)
)
, with CW = ||B11 +B12K

ε
21(Kε

11)−1|,

DW =
|B12|2

λmin(A22AT22)
.

It is interesting to note that the estimate in relative entropy is affected by the change in the ε-scaling (visible
in ε1−p) as opposed to the Wasserstein estimate which scales linearly in ε as in the p = 0 setting.

In this section we have focussed our attention to the setting of linear diffusions since it allows us to derive
precise conditions under which the averaging dynamic and the effective dynamics agree. In Section 5 we
conjecture that this agreement also applies in the general setting under related conditions.

4 Numerical comparision

In this section we numerically probe the sharpness of the time-marginal relative entropy bound (49) and
the path measure bound (51). Furthermore, we compare averaging to effective dynamics for finite values of
ε > 0, by computing relative entropy error for the time-t marginals and the law of paths. To this end, we
consider the following two-dimensional Ornstein-Uhlenbeck process (higher-dimensional averaging examples
yield similar behaviour and so, to keep the presentation simple, we only focus on this 2d example)(

dXε
t

dY εt

)
=

(
−3/2 3/4
1/(4ε) −3/(2ε)

)(
Xε
t

Y εt

)
dt+

(
1 0
0 1/

√
ε

)(
dW 1

t

dW 2
t

)
. (62)
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The process (Xε
t , Y

ε
t ) admits the unique invariant measure µ = N

(
0,

(
2(6+7ε)
33(1+ε)

2(1+3ε)
33(1+ε)

2(1+3ε)
33(1+ε)

2(17+18ε)
99(1+ε)

))
, whose condi-

tional for every x ∈ R is given by µεx = N
(

1+3ε
6+7εx,

2(9+ε(19+9ε))
9(1+ε)(6+7ε)

)
, with the Log-Sobolev constant αεLSI =

9(1+ε)(6+7ε)
2(9+ε(19+9ε)) . The effective dynamics is given by

dX̄ε
t =

(
−3

2
+

3

4

(
1 + 3ε

6 + 7ε

))
X̄ε
t dt+ dW 1

t ,

with time marginal ηεt = law(X̄ε
t ). For given Xε

t = x, the invariant measure of Y εt is µav
x = N ( 1

6x,
1
3 ) and

the averaged dynamics read

dXav
t = −4

3
Xav
t dt+ dW 1

t ,

with time marginal ηav
t = law(Xav

t ). Throughout we choose the initial condition (Xε
0 , Y

ε
0 ) = (0, 0).

Error of the time marginals in relative entropy and comparison to averaging. We first illustrate
the time-marginal error bound (49) in relative entropy. For example (62), we find DH = 9/16. We compute
max
t>0
H(ρ̂εt |ηεt ) for ε ∈

{
100, 10−1, 10−2, 10−3, 10−4

}
and depict it in the left panel of Figure 1 on a doubly-

logarithmic scale (in red) together with the right hand side of (49) (in blue) and the error max
t>0
H(ρ̂εt |ηav

t ) of

the averaged dynamics (in green). We find that the error indeed scales linearly in ε as given in the estimate
(49). There is a small difference between the effective and averaged dynamics for ε = 1, with the effective
dynamics slightly outperforming the averaged dynamics. Note, however, that for a different example or even
different initial conditions, averaging can also outperform the effective dynamics for ε = 1. Thus, a clear
judgement regarding which of the methods in general yields better results is not possible.

In order to clarify that this overlapping behaviour of averaging and conditional expectation is not due
to the particular choice of relative entropy as a measure of error, in the middle panel of Figure 1, we also
present the pathwise error E(supt∈[0,2] |Xε

t − X̄ε
t |) (in red) and E(supt∈[0,2] |Xε

t −Xav
t |) (in green). We have

used standard Monte-Carlo techniques to compute these pathwise results. Note that the for small ε, this
error scales like

√
ε which is reminiscent of pathwise averaging results (see for instance [46, Equation (61)]).

Being interested also in the time dependence of H(ρ̂εt |ηεt ), in the right panel of Figure 1 we plot H(ρ̂εt |ηεt )
against t for ε ∈

{
100, 10−1, 10−2, 10−3, 10−4

}
and observe that, at first it increases, but afterwards mono-

tonically relaxes to zero. This also clarifies that studying max
t>0
H(ρ̂εt |ηεt ) as above is indeed reasonable.

10
-4

10
-2

10
0

10
-6

10
-4

10
-2

10
0

10
-4

10
-2

10
0

10
-2

10
-1

0 0.5 1 1.5 2
0

0.01

0.02

0.03
 = 1

 = 0.1

 = 0.01

 = 0.001

 = 0.0001

Figure 1: Left: Plot of max
t>0
H(ρ̂εt |ηεt ) (in red), max

t>0
H(ρ̂εt |ηav

t ) (in green) against ε, and the right hand side

of estimate (49) (in blue). Middle: Plot of E(supt∈[0,2] |Xε
t − X̄ε

t |) (in red) and E(supt∈[0,2] |Xε
t −Xav

t |) (in

green). Right: Plot of H(ρ̂εt |ηεt ) as a function of time for ε ∈
{

100, 10−1, 10−2, 10−3, 10−4
}

.

Error in path space. Next we numerically illustrate the path-space estimate (51) for a fixed ε = 0.05.
We make use of H(ρ|ν) being explicitly computable when ρ and ν are path-measures of Ornstein-Uhlenbeck
processes (see Appendix C for details). Recall that, for T > 0 fixed – we make the dependence on T explicit
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Figure 2: Plot of H(ρ[0,T ]|ν[0,T ]) (in red) and the upper bound in (42) (in blue) against T , where ρ[0:T ], ν[0,T ]

are the path-measures of (62) and (63) respectively.

now – ρ[0:T ] is the path measure of (Xε
t , Y

ε
t )0≤t≤T as given in (62) and ν[0:T ] is the path measure of (with

the choice ε = 0.05)
dX̄ε

t = −1.3642 X̄ε
t dt+ dW 1

t ,

dYt = 10 X̄t − 30Yt dt+
1√
0.05

dW 2
t .

(63)

Figure 2 shows the explicit errorH(ρ[0:T ]|ν[0,T ]) of the path-measures in relative entropy (in red) as a function
of T . The upper bound as given by the right hand side of (42) is presented in blue.

Note that H(ρ|ν) is an upper bound for the error of the marginals in X, i.e. H(ρ|ν) ≥ H(ρ̂|ν̂) hence the
red line itself is an upper bound for the actual error of interest.

5 Discussion

Since the seminal work of Legoll & Lelièvre in [45], mathematical coarse-graining and the notion of effective
dynamics has received considerable attention. In this article we generalise these ideas to the setting of non-
reversible SDEs and nonlinear CG maps and provide several time-marginal and law of path error estimates.
Furthermore, this work presents first results comparing effective dynamics derived via conditional expectation
to the averaging literature.

We now comment on some related issues and conjectures.

Conjecture on agreement of averaging and conditional expectations. In Proposition 3.9 we have presented
conditions under which µ̄εx → µav

x as ε → 0, which in turn implies the convergence of the corresponding
dynamics (recall Remark 3.11), in the setting of linear diffusions. We now discuss the condition under which
similar limit behaviour can be expected in the general setting as well. To this end consider the system (34)
with invariant measure µ, whose associated generator L can be decomposed into a slow and a fast component,

L = Lslow +
1

ε
Lfast with Lslowf = f1 · ∇x + γ1 : ∇2

x, Lfast = f2 · ∇y + γ2 : ∇2
y .

Recall that the measure µav
x satisfies L∗fastµ

av
x = 0. We assume that the marginal and conditional invariant

measures admit formal asymptotic expansions of the form

µ̂ = µ̂0 + εµ̂1 +O(ε2) and µ̄x = µ̄0
x + εµ̄1

x +O(ε2)

for sufficiently well behaved µ̂0, µ̂1, µ̄0
x, µ̄

1
x.

We conjecture that if
∀x ∈ Rnx : µ̂0(x) > 0, (64)
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i.e. µ̂0 = lim
ε→0

µ̂ε has full support, then µ̄εx → µav
x as ε → 0 for any x ∈ Rnx . Formally this follows since we

can write
µε = µ̄0

xµ̂
0 + ε (µ̄1

xµ̂
0 + µ̄0

xµ̂
1) +O(ε2) .

Rewriting L∗µε = 0 using this ansatz, the leading order, i.e. O(1/ε), term is L∗fast(µ̄
0
xµ̂

0) = 0. Since L∗fast

contains differential operators only in the y variable, it does not act on µ̂0 which depends only on x. Therefore

L∗fast(µ̄
0
xµ̂

0) = 0 ⇔ µ̂0L∗fast(µ̄
0
x) = 0 .

Finally, observe that µ̂0L∗fastµ̄
0
x = 0, ∀x ∈ Rnx implies that either L∗fastµ̄

0
x = 0 or µ̂0 = 0. If (64) holds, then

for any x ∈ Rnx we find
L∗fast(µ̄

0
xµ̂

0) = 0 ⇔ L∗fastµ̄
0
x = 0,

which is precisely the statement that the O(1) term of µ̄εx agrees with µav
x , i.e., µ̄εx → µav

x .

Degree of irreversibility. The difference between the examples given in (46) and (61) lies in the noise,
which is degenerate for the first example and non-degenerate for the second one. The parameter p in the
second example characterises how fast the noise becomes degenerate as ε→ 0, i.e. for larger p we will approach
the setting of the first example faster, whereas p = 0 will keep the noise non-degenerate. Remark 3.14 states
that for p < 1 the result of Proposition 3.9 still holds, i.e. averaging and conditional expectations give the
same result in the limit ε→ 0. Consider the following modification of (46) on the lines of (61),

dXt = (−Xt + Yt) dt,+
√
εp dW 1

t ,

dYt = −1

ε
Yt dt+

1√
ε
dW 2

t .
(65)

Using (48), the mean of the conditional invariant measure satisfies

mc
x(ε) =

x

1 + εp−1 + εp
ε→0−−−→


x , p > 1,
1
2x , p = 1,

0 , p < 1.

This means that for p < 1 we will find the same limit equations by averaging and conditional expectations,
whereas for p ≥ 1 they differ.

This raises the question whether it is possible to link p to the degree of irreversibility of the dynamics, as
introducing irreversibility destroys the conformity of the two methods in the first place (see Section 3.2 for
a discussion of this). We now compute the degree of irreversibility for the modified system (65), and relate
it to the conformity of averaging and effective dynamics.

The degree of irreversibility can be measured by the entropy production rate given by the relative entropy
between the path-measure ρ+

[0,T ] of the forward process described by (65) and the path-measure of the

associated time-reversed process ρ−[0,T ]. (For a definition of the time-reversed process see [32]; cf. [36].)

Computing the degree of irreversibility then gives

lim
T→∞

1

T
H(ρ+

[0,T ]|ρ
−
[0,T ]) =

2

εp(1 + ε)

ε→0−−−→

{
∞ , p > 0

2 , p = 0 .

This indicates that the degree of irreversibility being infinite is necessary (but not sufficient) for the two
methods to differ, whereas a finite degree of irreversibility is a sufficient criterion for their conformity. This
insight regarding degree of irreversibility offers another viewpoint on the conformity of these techniques.

Estimates when the slow process is deterministic. A crucial assumption made throughout this work (and
most works on effective dynamics) is that the diffusion matrix is non-degenerate. In particular this means
that both the slow and fast part of the system are SDEs, thereby excluding the case when the fast variable is
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an ODE. However the averaging literature provides ample results for such systems. The question of proving
error estimates comparing the deterministic slow variable and the effective dynamics, however, is still open.
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Appendices

A Proofs for the linear CG map estimates

We first prove the relative entropy result for the coordinate projection CG map

Proof of Theorem 2.4. To prove this result we need to boundH(ρ̂t|ηt), where ρ̂t, ηt solve two different Fokker-
Planck equations. To achieve this we will make use of a recent result [14, Theorem 1.1], which gives

H(ρ̂T |ηT ) ≤ H(ρ̂0|η0) +

∫ T

0

∫
Rk

|ht|2Γ−1 dρ̂t dt, (66)

with
ht = (F +∇x · Γ)− (F̂ +∇x · Γ̂) + (Γ− Γ̂)∇x log ρ̂t. (67)

Note that while here we only focus on the case of the projected and effective dynamics, this bound applies
in fair generality to any two Fokker-Planck equations and the integral term can be interpreted as a large-
deviation rate functional, [21, Theorem 2.18].

The proof is divided into three parts, first we rewrite ht in a more recognisable form, second we estimate
|ht|2Γ−1 and finally we arrive at the claimed estimate. Using the explicit form (15) of the conditional measure,
we calculate

∇x · Γ =

∫
Rny

[∇x · γ11(x, y) + γ11(x, y)∇x logµ(x, y)− γ11(x, y)∇x log µ̂(x)] dµ̄x(y)

= Eµ̄x
[∇x · γ11 + γ11∇x logµ]− Γ∇x log µ̂.

A similar calculation yields∇x·Γ̂ = Eρ̄t,x [∇x · γ11 + γ11∇x log ρt]−Γ̂∇x log ρ̂t. Substituting these expressions
into (67) we find

ht = (F − F̂ ) +
(
Eµ̄x

[∇x · γ11 + γ11∇x logµ]− Eρ̄t,x [∇x · γ11 + γ11∇x log ρt]
)

+ Γ∇x log

(
ρ̂t
µ̂

)
. (68)

Using the explicit formulation (14) of the marginal measures, it follows that

Γ∇x log

(
ρ̂t
µ̂t

)
=

∫
Rny

Γ∇x log ρtdρ̄t,x(y)−
∫

Rny

Γ∇x logµdµ̄x(y),

Substituting this back into (68) and adding and subtracting Eρ̄t,x ((γ11 − Γ)∇x logµ) we arrive at

ht =

∫
Rny

(f1 −∇x · γ11 − (γ11 − Γ)∇x logµ) (dρ̄t,x − dµ̄x)− Eρ̄t,x

[
(γ11 − Γ)∇x log

(
ρ

µ

)]
=: I + II. (69)

Recall from (66) that we need to estimate |ht|2Γ−1 = |Γ−1/2ht|2 ≤ 2|Γ−1/2I|2 + 2|Γ−1/2II|2. For any coupling
Π ∈ P(Rny×ny ) of ρ̄t,x and µ̄x, we can write

|Γ−1/2I|2 =

∣∣∣∣∫
Rny

Γ−1/2 (f1 −∇x · γ11 − (γ11 − Γ)∇x logµ) (dρ̄t,x − dµ̄x)

∣∣∣∣2
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=

∣∣∣∣∫
Rny×ny

Γ−1/2(x) (F(x, y)−F(x, y′)) dΠ(y, y′)

∣∣∣∣2 ≤ κ2
H

∫
Rny×ny

|y − y′|2dΠ(y, y′)

≤ κ2
HW2

2 (ρ̄t,x, µ̄x) ≤ κ2
H

αLSIαTI

∫
Rny

∣∣∣∣∇y log

(
ρ̄x
µ̄x

)∣∣∣∣2 dρ̄t,x(y) =
κ2
H

αLSIαTI

∫
Rny

∣∣∣∣∇y log

(
ρt
µ

)∣∣∣∣2 dρ̄t,x(y).

(70)

Here we have used F := f1 − ∇x · γ11 − (γ11 − Γ)∇x logµ, the first inequality follows from (R2) and the
second inequality follows by taking infimum over all admissible couplings Π. The final inequality follows
from Assumption (R1) and the final equality follows since ∇yρ̂t = ∇yµ̂ = 0.

Using Assumption (R3) and the Jensen’s inequality, for the second term on the right hand side of (69)
we find

|Γ−1/2II|2 ≤ λ2
H

∫
Rny

∣∣∣∣∇x log

(
ρt
µ

)∣∣∣∣2 dρ̄t,x(y). (71)

Substituting the bounds (70), (71) into (66) and using the disintegration theorem we arrive at

H(ρ̂T |ηT ) ≤ H(ν0|η0) + 2λ2
H

∫ T

0

∫
Rn

∣∣∣∣∇x log

(
ρt
µ

)∣∣∣∣2 dρt(z)dt+
2κ2
H

αLSIαTI

∫ T

0

∫
Rn

∣∣∣∣∇y log

(
ρt
µ

)∣∣∣∣2 dρt(z)dt
≤ H(ν0|η0) +

2

λmin(γ)

(
λ2
H +

κ2
H

αLSIαTI

)∫ T

0

∫
Rn

∣∣∣∣∇ log

(
ρt
µ

)∣∣∣∣2
γ

dρt(z)dt

= H(ν0|η0) +
2

λmin(γ)

(
λ2
H +

κ2
H

αLSIαTI

)
[H(ρ0|µ)−H(ρt|µ)] .

Here λmin(γ) is defined in (11), and the final inequality follows from the entropy-dissipation identity (16).

We now prove the Wasserstein result for the coordinate projection CG map.

Proof of Theorem 2.7. The proof is based on using a standard synchronous coupling argument and the
Gronwall’s lemma (see for instance the proof of [21, Theorem 2.23]), and we only outline the main steps
here. We start with a coupling Θt ∈ P(R2nx) of the projected dynamics ρ̂t (20) and the effective dynamics
ηt (22), which solves

∂tΘ = ∇ ·

[(
F̂ (t, x1)

F (x2)

)
Θ

]
+∇2 :

 Γ̂(t, x1)

√
Γ̂(t, x1)

√
Γ(x2)T√

Γ̂(t, x1)
√

Γ(x2)T
√

Γ(x2)

Θ


Θ|t=0 = Θ0,

(72)

where Θ0 is the optimal Wasserstein-2 coupling of the initial data for the projected and the effective dynamics.
As already mentioned, this coupling is the Fokker-Planck equation corresponding to the synchronous coupling
(see [16] for details) of the projected and effective SDEs.

Using the evolution (72) of Θt and integrating by parts we find (here onwards we use R2nx = Rnx × Rnx

to simplify notation)

d

dt

∫
R2nx

1

2
|x1 − x2|2dΘt(x1, x2) =

∫
R2nx

∣∣∣∣√Γ̂(t, x1)−
√

Γ(x2)

∣∣∣∣2
F

dΘt(x1, x2)

−
∫

R2nx

(x1 − x2) ·
[
F̂ (t, x1)− F (x2)

]
dΘt(x1, x2).

(73)

Adding and subtracting
√

Γ(x1) and using the triangle inequality, the first term in the right hand side of (73)
can be estimated as∫

R2nx

∣∣∣∣√Γ̂(t, x1)−
√

Γ(x2)

∣∣∣∣2
F

dΘt(x1, x2) ≤ 2

∫
Rnx

∣∣∣∣√Γ̂(t, x1)−
√

Γ(x1)

∣∣∣∣2
F

dρ̂t(x1)
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+2‖|∇x
√

Γ|F ‖2L∞(Rn)

∫
R2nx

|x1 − x2|2dΘt(x1, x2).

Recall that |∇x
√

Γ|F is the tensor norm induced from the Frobenius norm for matrices. Proceeding similarly
with the second term in the right hand side of (73) and substituting back we arrive at

d

dt

∫
R2nx

1

2
|x1 − x2|2dΘt(x1, x2) ≤ CW

∫
R2nx

|x1 − x2|2dΘt(x1, x2)

+ 2

∫
Rnx

∣∣∣√Γ(t, x1)−
√

Γ(x1)
∣∣∣2
F
dρ̂t(x1) +

∫
Rnx

∣∣∣F̂ (t, x1)− F (x1)
∣∣∣2 dρ̂t(x1),

(74)

where CW := 1 + max{2‖|∇x
√

Γ|F ‖2L∞(Rn), ‖|∇xF |‖L∞(Rn)}. For strictly positive definite matrices A,B,

by Lieb’s concavity theorem (see [13, Theorem IX.6.1]) the mapping (A,B) 7→ |
√
A −

√
B|2F is convex.

Therefore, using the two-component Jensen’s inequality we find∣∣∣∣√Γ̂(t, x)−
√

Γ(x)

∣∣∣∣2
F

≤
∫

R2ny

tr

[(√
γ11(x, y1)−

√
γ11(x, y2)

)2
]
dΠ(y1, y2) ≤ λ2

W

∫
2Rny

d|y1 − y2|2dΠ(y1, y2)

≤ λ2
WW2

2 (ρ̄t,x, µ̄x) ≤ 2λ2
W

αTI
H(ρ̄t,x|µ̄x),

where Π is a coupling of ρ̄t,x and µ̄x, and λW is defined in Assumption (W3). Similarly, using the Jensen’s
inequality along with Assumption (W2), for the last term in (74) we find∣∣∣F̂ (t, x1)− F (x1)

∣∣∣2 ≤ 2κ2
W

αTI
H(ρ̄t,x|µ̄x).

Substituting these bounds back into (74) and applying Gronwall-type estimate we arrive at

W2
2 (ρ̂t, ηt) ≤ eCW tW2

2 (ρ̂0, η0) + 2

(
λ2
W + κ2

W
αTI

)∫ t

0

∫
Rnx

H(ρ̄t,s|µ̄x)dρ̂s(x)eCW(t−s)ds

≤ eCW tW2
2 (ρ̂0, η0) +

(
λ2
W + κ2

W
αTIαLSI

)∫ t

0

∫
Rnx

(∫
Rny

∣∣∣∣∇y (log
ρ̄s,x
µ̄x

)∣∣∣∣2 dρ̄s,x
)
dρ̂s(x)eCW(t−s)ds (75)

≤ eCW tW2
2 (ρ̂0, η0) + eCW t

(
λ2
W + κ2

W
αTIαLSI

)∫ t

0

∫
Rn

∣∣∣∣∇(log
ρs
µ

)∣∣∣∣2 dρs(x)ds

≤ eCW tW2
2 (ρ̂0, η0) + eCW t

(
λ2
W + κ2

W
αTIαLSIλmin(γ)

)∫ t

0

∫
Rn

∣∣∣∣∇(log
ρs
µ

)∣∣∣∣2
γ

dρs(x)ds,

where CW := 1 + max{2‖|∇x
√

Γ|F ‖2L∞(Rn), ‖|∇xF |‖L∞(Rn)} and λmin(γ) is defined in (11). Here the second

inequality follows from Assumption (W1), and the third inequality follows by using the disintegration theorem
and ∇yρ̂t = ∇yµ̂ = 0. The required result then follows by using the entropy-dissipation identity (16).

B Proof of Theorem 2.11

The proof of Theorem 2.11 follows the same proof strategy as the linear counterpart. However due to the
non-affine nature of the CG map, the derivatives and certain bounds need to be handled differently. In the
proof below we outline these differences.

Proof of Theorem 2.11. As in the case of linear CG maps, we will make use of [14, Theorem 1.1]), which
gives

H(ρ̂T |ηT ) ≤ H(ν0|η0) +

∫ T

0

∫
Rk

|ht|2Γ−1 dρ̂t dt, (76)
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with
ht = (F +∇x · Γ)− (F̂ +∇x · Γ̂) + (Γ− Γ̂)∇x log ρ̂t. (77)

As in the linear setting, we divide the proof we divide into three steps – in the first step we rewrite ht
in a more recognisable form, in the second step we estimate |ht|2Γ−1 and in the final step we arrive at the
claimed estimate.

Step 1. Using M := ∇ξγ∇ξT and G = ∇ξ∇ξT alongwith (33) we calculate

∇x · Γ = ∇x ·
∫

Σx

Mdµ̄x = ∇x ·
∫

Σx

M
µ

µ̂ ◦ ξ
dHd−k

Jac ξ
=

∫
Σx

∇ ·
(
MG−1∇ξ µ

µ ◦ ξ

)
dHd−k

Jac ξ

=

∫
Σx

(
G−1∇ξ∇ ·M +M∇ · (G−1∇ξ) +MG−1∇ξ∇ logµ−MG−1∇ξ∇ξT (∇x log µ̂) ◦ ξ

) µ

µ ◦ ξ
dHd−k

Jac ξ

=

∫
Σx

(
G−1∇ξ∇ ·M +M∇ · (G−1∇ξ) +MG−1∇ξ∇ logµ

)
dµ̄x −

(∫
Σx

Mdµ̄x

)
∇x log µ̂

=

∫
Σx

Nµµ̄x − Γ∇x log µ̂,

where Nµ := G−1∇ξ∇·M +M∇· (G−1∇ξ) +MG−1∇ξ∇ logµ. Here we have used the explicit form (32) of
the conditional measures. A similar calculation with Nρ := G−1∇ξ∇ ·M +∇ · (G−1∇ξ) +MG−1∇ξ∇ log ρ
yields

∇x · Γ̂ =

∫
Σx

Nρdρ̄t,x − Γ̂∇x log ρ̂t.

Substituting these expressions into (77) and adding and subtracting Nµρ̄t,x we find

ht = (F − F̂ ) +

∫
Σx

Nµ(dµ̄x − dρ̄t,x) +

∫
Σx

(Nµ −Nρ)dρ̄t,x + Γ∇x log
ρ̂t
µ̂

=

∫
Σx

(
∇ξf + γ : ∇2ξ −Nµ

)
(dρ̄t,x − dµ̄x)−

∫
Σx

MG−1∇ξ
(
∇ log

ρt
µ

)
dρ̄t,x + Γ∇x log

ρ̂t
µ̂
. (78)

Using the explicit definition of the marginal measure (31) alongwith (33) we calculate

∇xρ̂t =

∫
Σx

(
G−1∇ξ∇ log ρt +∇ · (G−1∇ξ)

)
ρt
dHd−k

Jac ξ
.

Similarly calculating ∇xµ̂ and substituting into the final term in (78) we find

Γ∇x log
ρ̂t
µ̂

= Γ

(
1

ρ̂t
∇xρ̂t −

1

µ̂
∇xµ̂

)
=

∫
Σx

Γ
(
G−1∇ξ∇ logµ+∇ · (G−1∇ξ)

)
(dρ̄t,x − dµ̄x) +

∫
Σx

ΓG−1∇ξ
(
∇ log

ρt
µ

)
dρ̄t,x,

where the final equality follows by adding and subtracting
∫

Σx
ΓG−1∇ξ(∇ logµ)ρ̄t,x. With these calculations

we can rewrite ht as

ht =

∫
Σx

F(dρ̄t,x − dµ̄x)−
∫

Σx

(M − Γ)G−1∇ξ
(
∇ log

ρt
µ

)
dρ̄t,x, (79)

with F := ∇ξf + γ : ∇2ξ −G−1∇ξ∇ ·M − (M − Γ)
[
∇ · (G−1∇ξ) +G−1∇ξ∇ logµ

]
.

Step 2. We now estimate |ht|2Γ−1 = |Γ−1/2ht|2, by estimating each term in (79). Repeating the coupling
argument as in the proof of Theorem 2.4 along with (RN2) we find∣∣∣∣∫

Σx

F(dρ̄t,x − dµ̄x)

∣∣∣∣2
Γ−1

≤ κ2
H

αTIαLSI

∫
Σx

∣∣∣∣∇Σx log
ρt
µ

∣∣∣∣2 dρ̄t,x.
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Using Assumption (RN3), for the second term we find∣∣∣∣Γ−1/2

∫
Σx

(M − Γ)G−1∇ξ
(
∇ log

ρt
µ

)
dρ̄t,x

∣∣∣∣2 ≤ λ2
H

∫
Σx

∣∣∣∣(∇ξ∇ξT )−1/2∇ξ
(
∇ log

ρt
µ

)∣∣∣∣2 dρ̄t,x.
Combining these bounds and using the Young’s inequality, for any τ > 0 we find

|ht|2Γ−1 ≤ λ2
H(1 + τ)

∫
Σx

∣∣∣∣(∇ξ∇ξT )−1/2∇ξ
(
∇ log

ρt
µ

)∣∣∣∣2 dρ̄t,x
+

κ2
H

αTIαLSI

(
1 +

1

τ

)∫
Σx

∣∣∣∣∇Σx log
ρt
µ

∣∣∣∣2 dρ̄t,x.
(80)

Step 3. We now substitute |ht|2Γ−1 back into (76) and complete the proof. Using (80) and the disintegra-
tion theorem it follows that∫ T

0

∫
Rk

|ht|2Γ−1 dρ̂t dt ≤ λ2
H(1 + τ)

∫ T

0

∫
Rn

∣∣∣∣(∇ξ∇ξT )−1/2∇ξ
(
∇ log

ρt
µ

)∣∣∣∣2 dρtdt
+

κ2
H

αTIαLSI

(
1 +

1

τ

)∫ T

0

∫
Rn

∣∣∣∣∇Σx
log

ρt
µ

∣∣∣∣2 dρtdt.
(81)

By definition ∇ = ∇Σx
+∇ξG−1∇ξT∇ and since for any z ∈ Rn

|∇ξTG−1∇ξz|2 = zT∇ξTG−1∇ξz = |(∇ξ∇ξT )−1/2∇ξz|2,

it follows that the integral terms in (81) satisfy∫
Rn

∣∣∣∣(∇ξ∇ξT )−1/2∇ξ
(
∇ log

ρt
µ

)∣∣∣∣2 dρ̄t,x +

∫
Rn

∣∣∣∣∇Σx log
ρt
µ

∣∣∣∣2 dρ̄t,x =

∫
Rn

∣∣∣∣∇ log
ρt
µ

∣∣∣∣2 ρt.
Therefore choosing τ =

κ2
H

αTIαLSIλ2
H

, the pre-factors in the two integrals in (81) become equal and we arrive at

∫ T

0

∫
Rk

|ht|2Γ−1 dρ̂t dt ≤
(
λ2
H +

κ2
H

αTIαLSI

)∫ T

0

∫
Rn

∣∣∣∣∇ log
ρt
µ

∣∣∣∣2 ρtdt
≤ 1

λmin(γ)

(
λ2
H +

κ2
H

αTIαLSI

)∫ T

0

∫
Rn

∣∣∣∣∇ log
ρt
µ

∣∣∣∣2
γ

ρtdt, (82)

where λmin(γ) is defined in (11). Using (16), for any t > 0 we find

H(ρ̂T |ηT ) ≤ H(ν0|η0) +
1

λmin(γ)

(
λ2
H +

κ2
H

αTIαLSI

)
[H(ρ0|µ)−H(ρt|µ)] ,

which is the required result.

C Proof of auxiliary results

The following lemma summarises the assumptions under which the ε-dependent effective dynamics (37)
has Lipschitz coefficients. Analogous estimates can also be derived similarly in the general (ε-independent)
setting discussed in Section 2.1, 2.2.

33



Lemma C.1. Assume that the coefficients |∇f1| , |∇γ1| ∈ L∞(Rn) and log of the invariant measure satisfies
|∇2

xy logµε| ∈ L∞(Rn). Then we have the bounds

‖|∇xF ε|‖L∞(Rn) ≤ ‖|∇xf1|‖L∞(Rn) +
1

αεLSI

‖|∇yf1|‖L∞(Rn)‖|∇2
xy logµε|‖L∞(Rn),

‖|∇xΓε|F ‖ ≤ ‖|∇xγ1|‖L∞(Rn) +
1

αεLSI

‖|∇yγ1|‖L∞(Rn)‖|∇2
xy logµε|‖L∞(Rn).

Proof. Using the explicit characterisation (15) of the conditional invariant measure, we find

−∇xF ε(x) =

∫
Rny

(∇xf1(x, y) + f1(x, y)∇x logµε(x, y)− f1(x, y)∇x log µ̂ε(x)) dµ̄εx(y)

=

∫
Rny

∇xf1(x, y)dµ̄εx(y) +

∫
Rny

f1(x, y)∇x logµε(x, y)dµ̄εx(y)− F ε(x)∇x log µ̂ε(x)

=

∫
Rny

∇xf1(x, y)dµ̄εx(y) +

∫
Rny

(f1(x, y)− F ε(x))∇x logµε(x, y)dµ̄εx(y)

=

∫
Rny

∇xf1(x, y)dµ̄εx(y) +

∫
Rny

[f1(x, y)− F ε(x)]
(
∇x logµε(x, y)−

∫
Rny

∇x logµε(x, y)dµ̄εx(y)
)
dµ̄εx(y)

≤ ‖|∇xf1|‖L∞(Rn) +
(

Varµ̄ε
x
(f1) Varµ̄ε

x
(∇x logµε)

)1/2

≤ ‖|∇xf1|‖L∞(Rn) +
( 1

αεLSI

∫
Rny

|∇yf1(x, y)|2dµ̄εx(y)
)1/2( 1

αεLSI

∫
Rny

|∇y∇x logµε(x, y)|2dµ̄εx(y)
)1/2

≤ ‖|∇xf1|‖L∞(Rn) +
1

αεLSI

‖|∇yf1|‖L∞(Rn)‖|∇2
xy logµε|‖L∞(Rn),

where the second equality follows since µ̂ = µ̂(x), and the third equality follows since

∇x log µ̂ε(x) =
1

µ̂ε(x)

∫
Rny

∇xµε(x, y)dy =

∫
Rny

∇x logµε(x, y)dµ̄εx(y).

The first inequality follows from the Cauchy-Schwarz inequality and the second inequality follows by using the
Poincaré inequality with respect to the conditional invariant measure, which is implied by the Log-Sobolev
assumption with respective constants 0 ≤ αεLSI ≤ αεPI (see [57]). In conclusion

‖|∇xF ε|‖L∞(Rn) ≤ ‖|∇xf1|‖L∞(Rn) +
1

αεLSI

‖|∇yf1|‖L∞(Rn)‖|∇2
xy logµε|‖L∞(Rn).

A similar calculation yields the required estimate for Γε.

Recall from page 13, that for path measures ρ, ν we have the identity

H(ρ|ν) = H(ρ0|ν0) +
1

2

∫ T

0

Eρt
(
|f1(Zt)− F (Zt)|2γ−1

1

)
dt. (83)

The integral term above (and thereby the relative entropy) can be explicitly calculated in the case of Ornstein-
Uhlenbeck processes as we now show.

Lemma C.2. Let B,A ∈ Rn×n, assume that B is Hurwitz and (B,A) is controllable. Consider the following
linear SDEs in Rn

dZt = BZt dt+AdBt , B =
(
B11 B12

B21 B22

)
,

dZ̄t = B̄Z̄t dt+AdBt , B̄ =
(
B̄11 0
B̄21 B̄22

)
,
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where B̄11 = B11 +B12Σ21Σ−1
11 , B̄21 = B21, B̄22 = B22 and Σ is the unique solution to

BΣ + ΣBT = −AAT .

Then with γ1 = A11A
T
11, we find

Eρt(|f1(Zt)− F (Zt)|2γ−1
1

) = tr(Var(Yt)B
T
12γ
−1
1 B12)− 2 tr(Cov(Xt, Yt)B

T
12γ
−1
1 Σ21Σ−1

11 )

+ tr(Var(Xt)Σ
−1
11 Σ12B

T
12γ
−1
1 B12Σ21Σ−1

11 ) + |E(Yt)− Σ21Σ−1
11 E(Xt)|2BT

12γ
−1
1 B12

.

Proof. Note that f1(Zt) = B11Xt +B12Yt and F (Zt) = (B11 +B12Σ21Σ−1
11 )Xt and thus

Eρt(|f1(Zt)− F (Zt)|2γ−1
1

) = Eρt
[
|(B12Yt −B12Σ21Σ−1

11 Xt)|2γ−1
1

]
= Eρt

[
|(Yt −my

t +my
t − Σ21Σ−1

11 (Xt −mx
t +mx

t ))|2
BT

12γ
−1
1 B12

]
= Eρt

[
(Yt −my

t )TBT12γ
−1
1 B12(Yt −my

t )
]

+ Eρt
[
(Xt −mx

t )TΣ−1
11 Σ12B

T
12γ
−1
1 B12Σ21Σ−1

11 (Xt −mx
t )
]

− 2Eρt
[
(Xt −mx

t )TΣ−1
11 Σ12B

T
12γ
−1
1 B12(Yt −my

t )
]

+ (my
t − Σ21Σ−1

11 m
x
t )TBT12γ

−1
1 B12(my

t − Σ21Σ−1
11 m

x
t )

= tr(Var(Yt)B
T
12γ
−1
1 B12)− 2 tr(Cov(Xt, Yt)B

T
12γ
−1
1 B12Σ21Σ−1

11 )

+ tr(Var(Xt)Σ
−1
11 Σ12B

T
12γ
−1
1 B12Σ21Σ−1

11 ) + |my
t − Σ21Σ−1

11 m
x
t |2BT

12γ
−1
1 B12

.
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[70] W. Zhang, C. Hartmann, and C. Schütte. Effective dynamics along given reaction coordinates, and
reaction rate theory. Faraday Discussions, 195:365–394, 2016.

38



(C. Hartmann) Institut für Mathematik, Brandenburgische Technische Universität Cottbus-Senftenberg,
Konrad-Wachsmann-Allee 1, D-03046 Cottbus, Germany
E-mail address: carsten.hartmann@b-tu.de

(L. Neureither) Institut für Mathematik, Brandenburgische Technische Universität Cottbus-Senftenberg,
Konrad-Wachsmann-Allee 1, D-03046 Cottbus, Germany
E-mail address: neurelar@b-tu.de

(U. Sharma) Freie Universität Berlin, Fachbereich Mathematik und Informatik, Arnimallee 9, 14195 Berlin,
Germany
E-mail address: upanshu.sharma@fu-berlin.de

39

mailto:carsten.hartmann@b-tu.de
mailto:neurelar@b-tu.de
mailto:upanshu.sharma@fu-berlin.de

	Introduction
	Key observations
	Relevant previous works
	Main results, novelty and outline

	Quantitative estimates
	Estimates for linear CG maps
	Preliminaries
	Projected and effective dynamics
	Relative entropy and Wasserstein estimates
	Error in path space

	Analogous estimates for nonlinear CG maps
	Preliminaries
	Error estimates


	Scale separation and averaging
	Error estimates for fixed >0
	Reversible diffusions
	Non-reversible linear diffusions

	Numerical comparision
	Discussion
	Appendices
	Proofs for the linear CG map estimates
	Proof of Theorem 2.11
	Proof of auxiliary results

