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Abstract

In this paper we present a stochastic homogenization result for a class of Hilbert space
evolutionary gradient systems driven by a quadratic dissipation potential and a Λ-convex energy
functional featuring random and rapidly oscillating coefficients. Specific examples included in
the result are Allen-Cahn type equations and evolutionary equations driven by the p-Laplace
operator with p ∈ (1,∞). The homogenization procedure we apply is based on a stochastic two-
scale convergence approach. In particular, we define a stochastic unfolding operator which can
be considered as a random counterpart of the well-established notion of periodic unfolding. The
stochastic unfolding procedure grants a very convenient method for homogenization problems
defined in terms of (Λ-)convex functionals.
Keywords: Stochastic homogenization, stochastic unfolding, two-scale convergence, gradient
system.

1 Introduction

Homogenization theory deals with the derivation of effective, macroscopic models for problems
that involve two or more length (or time) scales. In stochastic homogenization the considered
models are described in terms of coefficient fields that are randomly varying on a small scale,
say 0 < ε ≪ 1. A typical situation involves stationary random coefficient fields of the form
R
d ∋ x 7→ a(ω, x

ε
) = a0(τx

ε
ω) where ω ∈ Ω stands for a “random configuration” and a0 is defined

on a probability space (Ω,F , P ) that is equipped with a measure preserving action τx : Ω → Ω, see
Section 2 for the precise description of random coefficients.

In this paper we consider stochastic homogenization of gradient flows defined in terms of two
integral functionals with random and rapidly-oscillating integrands—a quadratic dissipation func-
tional Rε : Y → R and a Λ-convex energy functional Eε : Y → R ∪ {∞}. In particular, these
functionals are defined on a state space Y = L2(Ω ×Q) (the dual space is denoted by Y ∗), where
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Q ⊂ R
d is open and bounded, and they admit the form

Rε(ẏ) =
1

2

∫

Ω

∫

Q

r(τx
ε
ω, x)|ẏ(ω, x)|2dxdP (ω),

Eε(y) =

∫

Ω

∫

Q

V (τx
ε
ω, x,∇y(ω, x)) + f(τx

ε
ω, x, y(ω, x))dxdP (ω).

Besides usual measurability statements, the main assumptions for V (ω, x, ·) are convexity and p-
growth conditions with p ∈ (1,∞), and we assume that f(ω, x, ·) has θ-growth with θ ∈ [2,∞) and
it is λ-convex, i.e., there exists λ ∈ R such that f(ω, x, ·)− λ

2 | · |
2 is convex. The latter implies that

Eε(·)−ΛRε(·) is convex for suitable Λ ∈ R, i.e., Eε is Λ-convex w.r.t. Rε. For the precise definitions
and assumptions, see Section 2.

The evolution of the gradient flow is described by a state variable y ∈ H1(0, T ;Y ) and it is
determined by the following differential inclusion

0 ∈ DRε(ẏ(t)) + ∂FEε(y(t)) for a.e. t ∈ (0, T ), y(0) = y0 ∈ Y. (1)

Above, ∂FEε : Y → 2Y
∗
denotes the Frechét subdifferential (see [25]), which is, in the specific case

of a Λ-convex energy Eε, given by: ξ ∈ ∂FEε(y) if

Eε(y) ≤ Eε(ỹ) + 〈ξ, y − ỹ〉Y ∗,Y − ΛRε(ỹ − y) for all ỹ ∈ Y.

In this regard, the differential inclusion from (1) is equivalent to the evolutionary variational in-
equality (EVI )

〈DRε(ẏ(t)), y(t) − ỹ〉Y ∗,Y ≤ Eε(ỹ)− Eε(y(t))− ΛRε(y(t)− ỹ), (EVI)

for all ỹ ∈ Y . We refer to the textbooks [10, 51, 42, 3] for a general and detailed theory of gradient
flows. In the simple case V (ω, x, F ) = A(ω, x)F · F and f(ω, x, α) = α4 − α2, (1) corresponds to
the weak formulation of an Allen-Cahn equation. Also, in the case that V (ω, x, F ) = a(ω, x)|F |p

with p ∈ (1,∞), the evolution is driven by the p-Laplace operator with oscillatory coefficients.
In the limit ε → 0, we derive an effective gradient flow given in terms of a state space Y0 =

L2
inv(Ω) ⊗ L2(Q) and homogenized functionals Rhom : Y0 → R, Ehom : Y0 → R ∪ {∞}, see Section

2 for the specific definitions. In particular, we obtain the following well-prepared E-convergence
statement for the limit ε→ 0:

If yε(0) → y(0) strongly in Y, Eε(yε(0)) → Ehom(y(0)),

then for all t ∈ [0, T ], yε(t) → y(t) strongly in Y, Eε(yε(t)) → Ehom(y(t)),

where yε and y denote the unique solutions to the gradient flows given in terms of (Y, Eε,Rε) and
(Y0, Ehom,Rhom), respectively (see Theorem 2.3).

The proof of this homogenization result relies on a general approach for asymptotic analysis of
gradient flows and on the stochastic unfolding procedure, which we briefly explain in the following:

General approach. In the last decades, a number of general strategies for asymptotic analysis
of sequences of abstract gradient systems were developed, we refer to [30] for a comprehensive
overview. In particular, an early contribution in this field is obtained in [5, 6], where gradient flows
on an abstract Hilbert space with fixed dissipation potential Rε = R and convex energy functionals
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Eε are considered. In this setting, e.g., Mosco convergence Eε
M
→ E0 is sufficient to conclude well-

prepared E-convergence. Novel strategies have been developed in [43, 45] and [32], which allow the
treatment of very general problems with varying (nonquadratic, convex) dissipation potentials Rε

and possibly nonconvex energy functionals Eε. They are based on De Giorgi’s (R,R∗) formulation
(see, e.g., [30, Introduction]). Also, using an integrated version of the (EVI) formulation, in [15]
a method for sequences with Λ-convex energies is proposed (see also [29]). In [47], the Brezis-
Ekeland-Nayroles principle is utilized for the development of a procedure for E-convergence for
convex dissipation and energy functionals.

Many approaches for proving E-convergence for problems with nonconvex energy functionals
rely on the relative compactness in Y of the energy “sublevels” {y ∈ Y : Eε(y) ≤ c, ∀ε} (or a similar
strong-type compactness property). In our specific problem (which involves a nonconvex, Λ-convex
energy functional) we only have compactness in weak topologies at our disposal. The lack of
compactness in a strong topology is due to two reasons. The first reason comes from the fact that
we consider convergence in the L2-probability space: While in the deterministic periodic case (i.e.,
when x 7→ τxω is periodic almost surely), the compact embedding H1(Q) ⊂⊂ L2(Q) yields strong
compactness of the energy sublevels if p = 2, in the general stochastic setting, the embedding
of L2(Ω) ⊗ H1(Q) into L2(Ω × Q) is not compact. The second reason is a possible mismatch
between the growth of f and the growth control via V : If p < 2 and d is large, then even in the
deterministic periodic case we are not able to obtain apriori strong L2-type compactness. For this
reason, we consider a modified approach that we briefly describe in the following and we refer to
Sections 2 and 4 for details.

We define a new time-dependent energy functional Ẽε : [0, T ] × Y → R ∪ {∞},

Ẽε(t, u) = e2ΛtEε(e
−Λtu)− ΛRε(u),

for which Ẽε(t, ·) is convex. If yε satisfies (EVI) a.e., then using the Fenchel equivalence the new
variable uε(t) := eΛtyε(t) fulfills (cf. Lemma 4.1)

〈DRε(u̇ε(t)), uε(t)〉Y ∗,Y + Ẽε(t, uε(t)) + Ẽ∗
ε (t,−DRε(u̇ε(t))) = 0, (2)

where Ẽ∗
ε (t, ·) denotes the convex conjugate of Ẽε(t, ·). Using the chain rule and the quadratic

structure of Rε in form of (DRε)
∗ = DRε, we have d

dt
Rε(uε(t)) = 〈DRε(uε(t)), u̇ε(t)〉Y ∗,Y =

〈DRε(u̇ε(t)), uε(t)〉Y ∗,Y . Hence, an integration of (2) over (0, T ) yields

Rε(uε(T )) +

∫ T

0
Ẽε(t, uε(t)) + Ẽ∗

ε (t,−DRε(u̇ε(t)))dt = Rε(uε(0)). (3)

This formulation is equivalent to (EVI) and it is convenient for passing to the limit ε→ 0 by only
using weak convergence of the solution yε (resp. uε). In fact, (3) is the analogue of the formulation
used in the general convex case in [5, 6] with the difference that in our case the energy functionals
are time dependent and that the dissipation functionals feature oscillations on scale ε.

Stochastic unfolding. In order to conduct the limit passage ε → 0 in (3), we are required
to treat objects with random and rapidly oscillating coefficients. For this task, we introduce the
stochastic unfolding method that allows a straightforward analysis and it presents a random coun-
terpart of the well-established periodic unfolding method.

The notion of periodic two-scale convergence [38, 2] (see also [27]) and the periodic unfolding
procedure [13] (see also [14, 49, 33]) are prominent and useful tools in multiscale modeling and
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homogenization suited for problems involving periodic coefficients. We refer to some of the many
problems treated using these methods [27, 12, 20, 33, 34, 31, 26, 21]. In the stochastic setting,
the notion of two-scale convergence is generalized in [9] (see also [4, 44]) and in [53] (see also
[28, 18, 22]). Yet, as far as we know, the concept of unfolding has not been investigated earlier in
the stochastic case.

We extend the idea of the periodic unfolding procedure to the stochastic case. Namely, we
introduce a linear isometric operator, the stochastic unfolding operator, that enjoys many similarities
to the periodic unfolding operator. Also, similarly as in the periodic case, stochastic two-scale
convergence in the mean from [9] might be equivalently characterized as weak convergence of the
unfolded sequence. In this respect, we develop a general procedure for stochastic homogenization
problems, see also [48] for a detailed analysis of this method, and [36] for an extension to abstract,
linear evolution systems in an operator theoretic framework. Stochastic unfolding has first been
introduced by the second and third author in a discrete version in [35] where the discrete-to-
continuum limit of a rate-independent evolution is analyzed.

Related results. In the periodic setting homogenization results of this type are obtained for
quasilinear parabolic equations, e.g., in [37, 50, 19] (via two-scale convergence and unfolding), for
reaction-diffusion systems with different diffusion length scales in [31] (via unfolding), for Cahn-
Hilliard type gradient flows in [26] (via unfolding). In the stochastic case, parabolic type equations
are treated in [52, 16, 23, 17]. However, the approach we consider is different, it relies on the more
general gradient flow formulation and we do not rely on differentiability of the integrands V and f
and on continuity assumptions on their derivatives.

Structure of the paper. In Section 2 we present the main stochastic homogenization result of
this paper. Section 3 is dedicated to the introduction of the stochastic unfolding procedure. In
Section 4 we present the proof of the main Theorem 2.3.

Notation. (Ω,F , P ) denotes a complete and separable probability space, the corresponding math-
ematical expectation is denoted by 〈·〉 =

∫
Ω ·dP (ω). For Q ⊂ R

d open, we denote by L(Q) the
Lebesgue σ-algebra. For a Banach space X, its dual space is denoted by X∗ and the Borel σ-
algebra on X is given by B(X). For p ∈ (1,∞), Lp(Ω) and Lp(Q) are the usual Banach spaces of
p-integrable functions defined on (Ω,F , P ) and Q, respectively. We introduce function spaces for
functions defined on Ω×Q as follows: For closed subspaces X ⊂ Lp(Ω) and Z ⊂ Lp(Q), we denote
by X ⊗ Z the closure of

X
a
⊗ Z :=

{
n∑

i=1

ϕiηi : ϕi ∈ X, ηi ∈ Z, n ∈ N

}

in Lp(Ω×Q). Note that in the case X = Lp(Ω) and Z = Lp(Q), we have X ⊗Z = Lp(Ω×Q). Up
to isometric isomorphisms, we may identify Lp(Ω×Q) with the Bochner spaces Lp(Ω;Lp(Q)) and
Lp(Q;Lp(Ω)). Slightly abusing the notation, for closed subspaces X ⊂ Lp(Ω) and Z ⊂ W 1,p(Q),
we denote by X ⊗ Z the closure of

X
a
⊗ Z :=

{
n∑

i=1

ϕiηi : ϕi ∈ X, ηi ∈ Z, n ∈ N

}

in Lp(Ω;W 1,p(Q)). In this regard, we may identify u ∈ Lp(Ω) ⊗W 1,p(Q) with the pair (u,∇u) ∈
Lp(Ω×Q)1+d. We mostly focus on the space Lp(Ω ×Q) and the above notation is convenient for
keeping track of its various subspaces.
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2 Homogenization of gradient flows

First, we briefly recall the standard functional analytic setting for stochastic homogenization intro-
duced by Papanicolaou and Varadhan in [39] (see also [24]). In the second part of this section we
present the main homogenization result.

Assumption 2.1. Let (Ω,F , P ) be a complete and separable probability space. Let τ = {τx}x∈Rd

denote a group of invertible measurable mappings τx : Ω → Ω such that:

(i) (Group property). τ0 = Id and τx+y = τx ◦ τy for all x, y ∈ R
d.

(ii) (Measure preservation). P (τxE) = P (E) for all E ∈ F and x ∈ R
d.

(iii) (Measurability). (ω, x) 7→ τxω is
(
F ⊗ L(Rd),F

)
-measurable.

Throughout the paper we assume that (Ω,F , P, τ) satisfies Assumption 2.1. The separability
assumption on the measure space implies that Lp(Ω) is separable. We say that (Ω,F , P, τ) is ergodic
(〈·〉 is ergodic), if

every shift invariant E ∈ F (i.e., τxE = E for all x ∈ R
d) satisfies P (E) ∈ {0, 1} .

We introduce two auxiliary subspaces of Lp(Ω) that are important for the homogenization
procedure. We consider the group of isometric operators {Ux}x∈Rd , Ux : Lp(Ω) → Lp(Ω) defined
by Uxϕ(ω) = ϕ(τxω). This group is strongly continuous (see [24, Section 7.1]). For i = 1, ..., d, we
consider the one-parameter group of operators {Uhei}h∈R ({ei} being the usual basis of Rd) and its
infinitesimal generator Di : Di ⊂ Lp(Ω) → Lp(Ω),

Diϕ = lim
h→0

Uheiϕ− ϕ

h
,

which we refer to as the stochastic derivative. Di is a linear and closed operator and its domain Di

is dense in Lp(Ω). We set W 1,p(Ω) = ∩d
i=1Di and define for ϕ ∈ W 1,p(Ω) the stochastic gradient

as Dϕ = (D1ϕ, ...,Ddϕ). In this manner, we obtain a linear, closed and densely defined operator
D : W 1,p(Ω) → Lp(Ω)d, and we denote by

L
p
pot(Ω) := ran(D) ⊂ Lp(Ω)d

the closure of the range of D in Lp(Ω)d. We denote the adjoint of D by D∗ : D∗ ⊂ Lq(Ω)d → Lq(Ω)
which is a linear, closed and densely defined operator, D∗ denotes the domain of D∗ and q = p

p−1 .

Note that W 1,q(Ω)d ⊂ D∗ and for all ϕ ∈ W 1,p(Ω) and ψ ∈ W 1,q(Ω) we have the integration by
parts formula, i = 1, ..., d,

〈ψDiϕ〉 = −〈ϕDiψ〉 ,

and thus D∗ψ = −
∑d

i=1Diψi for ψ ∈W 1,q(Ω)d. We define the subspace of shift-invariant functions
in Lp(Ω) by

L
p
inv(Ω) =

{
ϕ ∈ Lp(Ω) : Uxϕ = ϕ for all x ∈ R

d
}
,

and denote by Pinv : Lp(Ω) → L
p
inv(Ω) the conditional expectation with respect to the σ-algebra

of shift invariant sets
{
E ∈ F : τxE = E for all x ∈ R

d
}
. Pinv is a contractive projection and for
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p = 2 it coincides with the orthogonal projection onto L2
inv(Ω). Also, if 〈·〉 is ergodic, then it holds

L
p
inv(Ω) ≃ R and Pinvϕ = 〈ϕ〉.

Heterogeneous system. Let Q ⊂ R
d be open and bounded. Let p ∈ (1,∞) and θ ∈ [2,∞). The

system that we consider is defined on a state space

Y = L2(Ω ×Q).

The dissipation functional is given by Rε : Y → [0,∞),

Rε(ẏ) =
1

2

〈∫

Q

r(τx
ε
ω, x)|ẏ(ω, x)|2dx

〉
.

The energy functional Eε : Y → R ∪ {∞} is defined as

Eε(y) =

〈∫

Q

V (τx
ε
ω, x,∇y(ω, x)) + f(τx

ε
ω, x, y(ω, x))dx

〉
,

for y ∈ (Lp(Ω)⊗W
1,p
0 (Q))∩Lθ(Ω×Q) =: dom(Eε) and Eε = ∞ otherwise. Above, r : Ω×Q→ R,

V : Ω × Q × R
d → R and f : Ω × Q × R → R and we consider the following assumptions: There

exists c > 0 such that:

(A1) r is F ⊗ L(Q)-measurable and for a.e. (ω, x) ∈ Ω×Q, we have 1
c
≤ r(ω, x) ≤ c.

(A2) V (·, ·, F ) is F ⊗ L(Q)-measurable for all F ∈ R
d, V (ω, x, ·) is convex for a.e. (ω, x) ∈ Ω ×Q

and
1

c
|F |p − c ≤ V (ω, x, F ) ≤ c(|F |p + 1) (4)

for a.e. (ω, x) ∈ Ω×Q and all F ∈ R
d.

(A3) f(·, ·, α) is F ⊗ L(Q)-measurable for all α ∈ R. There exists λ ∈ R such that for a.e.
(ω, x) ∈ Ω×Q

f(ω, x, ·) is λ-convex, i.e., α 7→ f(ω, x, α)−
λ

2
|α|2 is convex,

1

c
|α|θ − c ≤ f(ω, x, α) ≤ c(|α|θ + 1) for all α ∈ R. (5)

We remark that the above assumptions imply that there exists Λ ∈ R such that y 7→ Eε(y)−ΛRε(y)
is convex, i.e. Eε is Λ-convex w.r.t. Rε. In particular, if λ < 0, then we set Λ = λc, and in the case
λ ≥ 0, Λ = λ

c
.

Let T > 0 be a finite time horizon. We consider the evolutionary variational inequality (EVI)
formulation of the gradient flow (Y, Eε,Rε): Find y ∈ H1(0, T ;Y ) such that for a.e. t ∈ (0, T ),

〈DRε(ẏ(t)), y(t) − ỹ〉Y ∗,Y ≤ Eε(ỹ)− Eε(y(t))− ΛRε(y(t)− ỹ) for all ỹ ∈ Y. (6)

Remark 2.2 (Existence and uniqueness). Assumptions (A1)-(A3) imply that Eε is proper, l.s.c.,
coercive and Λ-convex w.r.t. Rε. In this respect, the classical theory of maximal monotone op-
erators with Lipschitz perturbations implies that for an initial datum y0 ∈ dom(Eε), there exists
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a unique y ∈ H1(0, T ;Y ) which satisfies (6) and y(0) = y0, see [10, 7], where the Yosida reg-
ularization technique is used for the proof of this result. In view of the continuous embedding
H1(0, T ;Y ) ⊂ C([0, T ], Y ), we identify functions in H1(0, T ;Y ) by their continuous representa-
tives. Moreover, the following standard apriori estimate holds

∫ t

0
Rε(ẏ(s))ds ≤ Eε(y

0)− Eε(y(t)) for all t ∈ [0, T ], (7)

which follows by testing (1) with ẏ(s) and by the chain rule for the Λ-convex functional Eε. (7) in
combination with the growth conditions (4) and (5) yields

‖y(t)‖p
Lp(Ω)⊗W

1,p
0 (Q)

+ ‖y(t)‖θLθ(Ω×Q) ≤ c
(
Eε(y

0) + 2c
)
. (8)

Effective system. In the limit ε → 0, we derive an effective gradient flow which is described as
follows. The state space is given by

Y0 = L2
inv(Ω)⊗ L2(Q).

The effective dissipation potential is given by Rhom : Y0 → [0,∞),

Rhom(ẏ) =

〈∫

Q

r(ω, x)|ẏ(ω, x)|2dx

〉
.

The energy functional is Ehom : Y0 → R ∪ {∞},

Ehom(y) = inf
χ∈Lp

pot(Ω)⊗Lp(Q)

〈∫

Q

V (ω, x,∇y(ω, x) + χ(ω, x)) dx

〉

+

〈∫

Q

f(ω, x, y(ω, x))dx

〉 (9)

for y ∈ (Lp
inv(Ω) ⊗W

1,p
0 (Q)) ∩

(
Lθ
inv(Ω)⊗ Lθ(Q)

)
=: dom(Ehom) and Ehom = ∞ otherwise. We

remark that Ehom(·)− ΛRhom(·) is convex with the same Λ ∈ R as for Eε.
The gradient flow (Y0, Ehom,Rhom) in the EVI formulation also admits a unique solution, i.e.,

for an initial datum y0 ∈ dom(Ehom), there exists a unique y ∈ H1(0, T ;Y0) such that y(0) = y0

and for a.e. t ∈ (0, T ),

〈DRhom(ẏ(t)), y(t) − ỹ〉Y ∗
0 ,Y0

≤ Ehom(ỹ)− Ehom(y(t))− ΛRhom(y(t)− ỹ), (10)

for all ỹ ∈ Y0.
The main result of this paper is the following homogenization theorem. In particular, the

proof relies on the modified abstract strategy discussed in the introduction and on the stochastic
unfolding procedure that is explained in Section 3.

Theorem 2.3 (Homogenization). Let p ∈ (1,∞), θ ∈ [2,∞) and Q ⊂ R
d be open and bounded.

Assume (A1)-(A3), and consider y0 ∈ dom(Ehom), y
0
ε ∈ dom(Eε) such that, as ε→ 0,

y0ε → y0 strongly in Y, lim sup
ε→0

Eε(y
0
ε) <∞.
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Let yε ∈ H1(0, T ;Y ) be the unique solution to the EVI (6) with yε(0) = y0ε . Then, for all t ∈ (0, T ],
as ε→ 0,

yε(t) → y(t) strongly in Y,

where y ∈ H1(0, T ;Y0) is the unique solution to the EVI (10) with y(0) = y0. Moreover, if we
additionally assume that Eε(y

0
ε) → Ehom(y

0), then it holds that ẏε → ẏ strongly in L2(0, T ;Y ) and
Eε(yε(t)) → Ehom(y(t)) for all t ∈ [0, T ].
(For the proof see Section 4.)

Remark 2.4 (Convergence of gradients). We remark that in the proof we additionally show that

yε(t)
2
⇀ y(t) in Lθ(Ω×Q) and in Lp(Ω×Q), where “

2
⇀” is weak stochastic two-scale convergence

in the mean defined in Definition 3.2. Also, it holds Pinv∇yε(t) ⇀ ∇y(t) weakly in Lp(Ω × Q)d.
If we additionally assume that V (ω, x, ·) is strictly convex, we may obtain that for all t ∈ (0, T ] it
holds

∇yε(t)
2
⇀ ∇y(t) + χ(t) in Lp(Ω×Q)d,

where χ(t) ∈ Lp
pot(Ω)⊗ Lp(Q) is the unique minimizer in the corrector problem

inf
χ∈Lp

pot(Ω)⊗Lp(Q)

〈∫

Q

V (ω, x,∇y(t, ω, x) + χ(ω, x))dx

〉
.

Remark 2.5 (Ergodic case). If we additionally assume that 〈·〉 is ergodic, the limit system is
driven by deterministic functionals. In particular, the state space reduces to Y0 = L2(Q). The
dissipation potential is given by

Rhom(ẏ) =

∫

Q

rhom(x)|ẏ(x)|
2dx,

where rhom(x) = 〈r(ω, x)〉. The energy functional boils down to

Ehom(y) =

∫

Q

Vhom (x,∇y(x)) + fhom(x, y(x))dx

in W
1,p
0 (Q) ∩ Lθ(Q) and otherwise ∞. Above, fhom(x, α) = 〈f(ω, x, α)〉 for x ∈ Q and α ∈ R,

and Vhom(x, F ) = infχ∈Lp
pot(Ω) 〈V (x, ω, F + χ(ω))〉 for x ∈ Q, F ∈ R

d. Moreover, Vhom satisfies

analogous p-growth conditions as V . The identification of Ehom can be obtained by a measurable
selection argument from Remark A.5 (cf. proof of Lemma 4.4).

3 Stochastic unfolding method

In this section we introduce the stochastic unfolding method. In particular, in Section 3.1 we define
the unfolding operator and present its main properties. In Section 3.2 we obtain weak two-scale
type compactness statements and we construct suitable recovery sequences. To keep the exposition
simple, the proofs are presented in the end, in Section 3.3.
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3.1 Stochastic unfolding operator and two-scale convergence in the mean

Lemma 3.1. Let ε > 0, p ∈ (1,∞), q = p
p−1 , and Q ⊂ R

d be open. There exists a unique linear
isometric isomorphism

Tε : L
p(Ω×Q) → Lp(Ω×Q)

which satisfies

for all u ∈ Lp(Ω)
a
⊗ Lp(Q), (Tεu)(ω, x) = u(τ−x

ε
ω, x) a.e. in Ω×Q.

Moreover, its adjoint is the unique linear isometric isomorphism T ∗
ε : Lq(Ω×Q) → Lq(Ω×Q) that

satisfies for all u ∈ Lq(Ω)
a
⊗ Lq(Q), (T ∗

ε u)(ω, x) = u(τx
ε
ω, x) a.e. in Ω×Q.

(For the proof see Section 3.3.)

Definition 3.2 (Unfolding operator and two-scale convergence in the mean). The operator Tε :
Lp(Ω×Q) → Lp(Ω×Q) from Lemma 3.1 is called the stochastic unfolding operator. We say that
a sequence (uε) ⊂ Lp(Ω ×Q) weakly (strongly) two-scale converges in the mean in Lp(Ω × Q) to
u ∈ Lp(Ω×Q) if, as ε→ 0,

Tεuε → u weakly (strongly) in Lp(Ω×Q).

In this case we write uε
2
⇀ u (resp. uε

2
→ u) in Lp(Ω×Q).

The below lemma directly follows from the isometry property of Tε and the usual properties of
weak and strong convergence in Lp(Ω×Q); therefore, we do not present its proof.

Lemma 3.3 (Basic properties). Let p ∈ (1,∞), q = p
p−1 and Q ⊂ R

d be open. Consider sequences
(uε) in L

p(Ω×Q) and (vε) in L
q(Ω×Q).

(i) If uε
2
⇀ u in Lp(Ω×Q), then supε∈(0,1) ‖uε‖Lp(Ω×Q) <∞ and

‖u‖Lp(Ω×Q) ≤ lim inf
ε→0

‖uε‖Lp(Ω×Q) .

(ii) If lim supε→0 ‖uε‖Lp(Ω×Q) < ∞, then there exist a subsequence ε′ and u ∈ Lp(Ω × Q) such

that uε′
2
⇀ u in Lp(Ω ×Q).

(iii) uε
2
→ u in Lp(Ω×Q) if and only if uε

2
⇀ u in Lp(Ω ×Q) and ‖uε‖Lp(Ω×Q) → ‖u‖Lp(Ω×Q).

(iv) If uε
2
⇀ u in Lp(Ω×Q) and vε

2
→ v in Lq(Ω ×Q), then

〈∫

Q

uε(ω, x)vε(ω, x)dx

〉
→

〈∫

Q

u(ω, x)v(ω, x)dx

〉
.

For homogenization of variational problems, in particular problems driven by convex integral
functionals, the following transformation and (lower semi-)continuity properties are very useful.

Proposition 3.4. Let p ∈ (1,∞) and Q ⊂ R
d be open and bounded. Let V : Ω × Q × R

m → R

be such that V (·, ·, F ) is F ⊗ L(Q)-measurable for all F ∈ R
m and V (ω, x, ·) is continuous for a.e.

(ω, x) ∈ Ω×Q. Also, we assume that there exists c > 0 such that for a.e. (ω, x) ∈ Ω×Q

|V (ω, x, F )| ≤ c(1 + |F |p), for all F ∈ R
m.
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(i) For all u ∈ Lp(Ω×Q)m, we have

〈∫

Q

V (τx
ε
ω, x, u(ω, x))dx

〉
=

〈∫

Q

V (ω, x,Tεu(ω, x))dx

〉
. (11)

(ii) If uε
2
→ u in Lp(Ω×Q)m, then

lim
ε→0

〈∫

Q

V (τx
ε
ω, x, uε(ω, x))dx

〉
=

〈∫

Q

V (ω, x, u(ω, x))dx

〉
.

(iii) We additionally assume that for a.e. (ω, x) ∈ Ω × Q, V (ω, x, ·) is convex. Then, if uε
2
⇀ u

in Lp(Ω ×Q)m,

lim inf
ε→0

〈∫

Q

V (τx
ε
ω, x, uε(ω, x))dx

〉
≥

〈∫

Q

V (ω, x, u(ω, x))dx

〉
.

(For the proof see Section 3.3.)

Remark 3.5 (Comparison to the notion of [9]). The notion of weak two-scale convergence in the
mean of Definition 3.2, i.e., weak convergence of unfolded sequences, coincides with the convergence
notion introduced in [9] (see also [4]). More precisely, for a bounded sequence (uε) ⊂ Lp(Ω×Q) we

have uε
2
⇀ u in Lp(Ω×Q) (in the sense of Definition 3.2) if and only if uε stochastically two-scale

converges in the mean to u in the sense of [9], i.e.

lim
ε→0

〈∫

Q

uε(ω, x)ϕ(τx
ε
ω, x)dx

〉
=

〈∫

Q

u(ω, x)ϕ(ω, x)dx

〉
, (12)

for any ϕ ∈ Lq(Ω×Q) that is admissible (in the sense that the mapping (ω, x) 7→ ϕ(τx
ε
ω, x) is well-

defined). Indeed, with help of Tε (and its adjoint) we might rephrase the integral on the left-hand
side in (12) as 〈∫

Q

uε(T
∗
ε ϕ) dx

〉
=

〈∫

Q

(Tεuε)ϕdx

〉
, (13)

which proves the equivalence. For the reason of this equivalence, we use the terms weak and strong
stochastic two-scale convergence in the mean instead of talking about weak or strong convergence
of unfolded sequences.

The arguments in this paper are inspired by both, the unfolding approach—we transform intre-
grals with oscillations into integrals without (or controlable) oscillations—and two-scale convergence
in the sense that we make use of oscillating test-functions.

3.2 Two-scale limits of gradients

The following proposition presents a weak two-scale compactness statement for sequences of gradi-
ent fields.
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Proposition 3.6 (Compactness). Let p ∈ (1,∞) and Q ⊂ R
d be open. Let (uε) be a bounded

sequence in Lp(Ω)⊗W 1,p(Q). Then, there exist u ∈ L
p
inv(Ω)⊗W 1,p(Q) and χ ∈ L

p
pot(Ω)⊗ Lp(Q)

such that, up to a subsequence,

uε
2
⇀ u in Lp(Ω ×Q), ∇uε

2
⇀ ∇u+ χ in Lp(Ω×Q)d. (14)

If, additionally, 〈·〉 is ergodic, then u = Pinvu = 〈u〉 ∈W 1,p(Q) and 〈uε〉⇀ u weakly in W 1,p(Q).
(For the proof see Section 3.3.)

We remark that the above result is already established in [9] in the context of two-scale con-
vergence in the mean in the L2-space setting. We recapitulate its short proof from the perspective
of stochastic unfolding, see Section 3.3.

Remark 3.7. Note that the proof of the above proposition reveals that Pinvuε ⇀ u weakly in
L
p
inv(Ω)⊗W 1,p(Q) (see Lemma 3.12). If we consider a closed subspace X ⊂ W 1,p(Q) and assume

that uε(ω) ∈ X P -a.e., then Pinvuε ∈ L
p
inv(Ω) ⊗ X. Therefore, it follows that u ∈ L

p
inv(Ω) ⊗ X.

This observation is useful if we consider boundary value problems, e.g., if X = W
1,p
0 (Q). We may

argue similarly for closed convex subsets in W 1,p(Q).

Lemma 3.8 (Recovery sequence). Let p, θ ∈ (1,∞) and Q ⊂ R
d be open. For χ ∈ L

p
pot(Ω)⊗L

p(Q)

and δ > 0, there exists a sequence gδ,ε(χ) ∈ Lp(Ω)⊗W
1,p
0 (Q) such that

‖gδ,ε(χ)‖Lθ(Ω×Q) ≤ εc(δ), lim sup
ε→0

‖Tε∇gδ,ε(χ)− χ‖Lp(Ω×Q)d ≤ δ,

where c(δ) > 0 does not depend on ε.
(For the proof see Section 3.3.)

3.3 Proofs of the statements in Section 3

Before presenting the proofs, we recall some basic facts from functional analysis which will be
helpful in the following.

Remark 3.9. Let p ∈ (1,∞) and q = p
p−1 .

(i) 〈·〉 is ergodic ⇔ L
p
inv(Ω) ≃ R ⇔ Pinvf = 〈f〉.

(ii) The following orthogonality relations hold (for a proof see [11, Section 2.6]): We identify the
dual space Lp(Ω)∗ with Lq(Ω), and define for a set A ⊂ Lq(Ω) its orthogonal complement
A⊥ ⊂ Lp(Ω) as

A⊥ = {ϕ ∈ Lp(Ω) : 〈ϕψ〉 = 0 for all ψ ∈ A} .

It holds
ker(D) = ran(D∗)⊥, L

p
pot(Ω) = ran(D) = ker(D∗)⊥. (15)

Above, ker(·) denotes the kernel and ran(·) the range of an operator.

Proof of Lemma 3.1. We first define Tε on A := {u(ω, x) = ϕ(ω)η(x) : ϕ ∈ Lp(Ω), η ∈ Lp(Q) } ⊂
Lp(Ω × Q) by setting (Tεu)(ω, x) = ϕ(τ−x

ε
ω)η(x) for all u = ϕη ∈ A. In view of Assumption 2.1

(iii), Tεu is F ⊗ L(Q)-measurable and using the measure preserving property of τ , we have

‖Tεu‖
p

Lp(Ω×Q) =

∫

Q

〈
|ϕ(τ−x

ε
ω)|p

〉
|η(x)|p dx = ‖ϕ‖p

Lp(Ω)‖η‖
p

Lp(Q) = ‖u‖p
Lp(Ω×Q).
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Since span(A) is dense in Lp(Ω×Q), Tε extends to a linear isometry from Lp(Ω×Q) to Lp(Ω×Q).
We define a linear isometry T−ε : Lq(Ω × Q) → Lq(Ω × Q) analogously as Tε, with ε replaced by

−ε. Then for any ϕ ∈ Lp(Ω)
a
⊗ Lp(Q) and ψ ∈ Lq(Ω)

a
⊗ Lq(Q) we have (thanks to the measure

preserving property of τ and Fubini):

〈∫

Q

(Tεϕ)ψ dx

〉
=

∫

Q

〈
ϕ(τ−x

ε
ω, x)ψ(ω, x)

〉
dx

=

∫

Q

〈
ϕ(ω, x)ψ(τx

ε
ω, x)

〉
dx =

〈∫

Q

ϕ(T−εψ)dx

〉
.

Since Lp(Ω)
a
⊗ Lp(Q) and Lq(Ω)

a
⊗ Lq(Q) are dense in Lp(Ω×Q) and Lq(Ω×Q), respectively, we

conclude that T ∗
ε = T−ε. Since T ∗

ε is an isometry, it follows that Tε is surjective (see [11, Theorem
2.20]). Analogously, T ∗

ε is also surjective.

Proof of Proposition 3.4. We first note that V is a Carathéodory integrand in the sense of Remark
A.2 (if necessary we tacitly redefine it by V (ω, x, ·) = 0 for (ω, x) in a set of measure 0) and
therefore it follows that V is a normal integrand (see Appendix A). For fixed ε > 0, the mapping
(ω, x) 7→ (τx

ε
ω, x) is (F ⊗ L(Q),F ⊗ L(Q))-measurable and therefore (ω, x, F ) 7→ V (τx

ε
ω, x, F )

defines as well a Carathéodory and thus normal integrand. Hence, with the help of the growth
condition, all the integrals in the statement of the proposition are well-defined.

Proof of (i): We first consider the case u ∈ Lp(Ω)
a
⊗Lp(Q)m. By Fubini’s theorem, the measure

preserving property of τ , and by the transformation ω 7→ τ−x
ε
ω, we have

〈∫

Q

V (τx
ε
ω, x, u(ω, x))dx

〉
=

∫

Q

〈
V (τx

ε
ω, x, u(ω, x))

〉
dx

=

∫

Q

〈
V (ω, x, u(τ−x

ε
ω, x))

〉
dx.

Since u ∈ Lp(Ω)
a
⊗ Lp(Q), we have u(τ−x

ε
ω, x) = Tεu(ω, x), and thus (11) follows. The general case

follows by an approximation argument. Indeed, for any u ∈ Lp(Ω × Q)m we can find a sequence

uk ∈ Lp(Ω)
a
⊗ Lp(Q)m such that uk → u strongly in Lp(Ω×Q)m, and by passing to a subsequence

(not relabeled) we may additionally assume that uk → u pointwise a.e. in Ω×Q. By continuity of
V in its last variable, we thus have V (τx

ε
ω, x, uk(ω, x)) → V (τx

ε
ω, x, u(ω, x)) for a.e. (ω, x) ∈ Ω×Q.

Since |V (τx
ε
ω, x, uk(ω, x))| ≤ c(1 + |uk(ω, x)|

p) a.e. in Ω ×Q, the dominated convergence theorem
([8, Theorem 2.8.8]) implies that

lim
k→∞

〈∫

Q

V (τx
ε
ω, x, uk(ω, x))dx

〉
=

〈∫

Q

V (τx
ε
ω, x, u(ω, x))dx

〉
.

In the same way we conclude that

lim
k→∞

〈∫

Q

V (ω, x,Tεuk(ω, x))dx

〉
=

〈∫

Q

V (ω, x,Tεu(ω, x))dx

〉
.

Since the integrals on the left-hand sides are the same, (11) follows.
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Proof of (ii): We obtain
〈∫

Q
V (τx

ε
ω, x, uε(ω, x))dx

〉
=

〈∫
Q
V (ω, x,Tεuε(ω, x))dx

〉
using part

(i). Since by assumption Tεuε → u strongly in Lp(Ω × Q)m, using the growth conditions of
V and the dominated convergence theorem, it follows, similarly as in part (i), that we have

limε→0

〈∫
Q
V (ω, x,Tεuε(ω, x))dx

〉
=

〈∫
Q
V (ω, x, u(ω, x))dx

〉
.

Proof of (iii): The functional Lp(Ω ×Q)m ∋ u 7→
〈∫

Q
V (ω, x, u(ω, x))dx

〉
is convex and lower

semi-continuous, therefore it is weakly lower semi-continuous (see [11, Corollary 3.9]). Combin-
ing this fact with the transformation formula from (i) and the weak convergence Tεuε ⇀ u (by
assumption), the claim follows.

Before stating the proof of Proposition 3.6, we present some auxiliary lemmas.

Lemma 3.10. Let p ∈ (1,∞) and q = p
p−1 .

(i) If ϕ ∈
{
D∗ψ : ψ ∈W 1,q(Ω)d

}⊥
, then ϕ ∈ L

p
inv(Ω).

(ii) If ϕ ∈
{
ψ ∈W 1,q(Ω)d : D∗ψ = 0

}⊥
, then ϕ ∈ Lp

pot(Ω).

Proof. Proof of (i). First, we note that

ϕ ∈ L
p
inv(Ω) ⇔ UheiUyϕ = Uyϕ for all y ∈ R

d, h ∈ R, i = 1, ..., d.

We consider ϕ ∈
{
D∗ψ : ψ ∈W 1,q(Ω)d

}⊥
and we show that ϕ ∈ L

p
inv(Ω) using the above equiv-

alence. Let ψ ∈ W 1,q(Ω) and i ∈ {1, ..., d}. Then by the group property we have U−heiψ − ψ =∫ h

0 U−teiD
∗
i ψdt and therefore

〈(Uheiϕ− ϕ)ψ〉 = 〈ϕ(U−heiψ − ψ)〉 = 〈ϕ

∫ h

0
U−teiD

∗
i ψdt〉 =

∫ h

0
〈ϕD∗

i (U−teiψ)〉 dt.

Since U−teiψ ∈ W 1,q(Ω) for any t ∈ [0, h], we obtain 〈ϕD∗
i (U−teiψ)〉 = 0 and thus Uheiϕ = ϕ.

Furthermore, for any y ∈ R
d, we have 〈(UheiUyϕ− Uyϕ)ψ〉 = 〈(Uheiϕ− ϕ)U−yψ〉 = 0 by the same

argument.
Proof of (ii). In view of Lp

pot(Ω) = ker(D∗)⊥ (see (15)), it is sufficient to prove that the set{
ϕ ∈W 1,q(Ω)d : D∗ϕ = 0

}
is dense in ker(D∗). This follows by an approximation argument as in

[24, Section 7.2]. Let ϕ ∈ ker(D∗) and we define for t > 0

ϕt(ω) =

∫

Rd

pt(y)ϕ(τyω)dy, where pt(y) =
1

(4πt)
d
2

e−
|y|2

4t .

Then the claimed density follows, since ϕt ∈W 1,q(Ω)d, D∗ϕt = 0 for any t > 0 and ϕt → ϕ strongly
in Lq(Ω)d as t → 0. The last statement can be seen as follows. By the continuity property of Uy,
for any ε > 0 there exists δ > 0 such that 〈|ϕ(τyω)− ϕ(ω)|q〉 ≤ ε for any y ∈ Bδ(0). It follows that

〈
|ϕt − ϕ|q

〉
=

〈∣∣∣∣
∫

Rd

pt(y) (ϕ(τyω)− ϕ(ω)) dy

∣∣∣∣
q〉

≤

∫

Rd

pt(y) 〈|ϕ(τyω)− ϕ(ω)|q〉 dy

=

∫

Bδ

pt(y) 〈|ϕ(τyω)− ϕ(ω)|q〉 dy +

∫

Rd\Bδ

pt(y) 〈|ϕ(τyω)− ϕ(ω)|q〉 dy.
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The first term on the right-hand side of the above inequality is bounded by ε as well as the second
term for sufficiently small t > 0.

Lemma 3.11. Let p ∈ (1,∞) and Q ⊂ R
d be open. Let uε ∈ Lp(Ω)⊗W 1,p(Q) be such that uε

2
⇀ u

in Lp(Ω×Q) and ε∇uε
2
⇀ 0 in Lp(Ω×Q)d. Then u ∈ Lp

inv(Ω)⊗ Lp(Q).

Proof. Consider a sequence vε = εT ∗
ε (ϕη) such that ϕ ∈ W 1,q(Ω) and η ∈ C∞

c (Q). Note that
Tεvε = εϕη and we have, for i = 1, ..., d and as ε→ 0,

〈∫

Q

∂iuεvεdx

〉
=

〈∫

Q

(Tε∂iuε)(Tεvε)dx

〉
=

〈∫

Q

(Tε∂iuε)εϕηdx

〉
→ 0.

Moreover, it holds that ∂ivε = T ∗
ε (Diϕη + εϕ∂iη) and therefore

〈∫

Q

∂iuεvεdx

〉
= −

〈∫

Q

uε∂ivεdx

〉
= −

〈∫

Q

uεT
∗
ε (Diϕη + εϕ∂iη)dx

〉

= −

〈∫

Q

(Tεuε)Diϕη + ε(Tεuε)ϕ∂iηdx

〉
.

The last expression converges to −
〈∫

Q
uDiϕηdx

〉
as ε→ 0. As a result of this, 〈u(x)Diϕ〉 = 0 for

almost every x ∈ Q and therefore u ∈ L
p
inv(Ω)⊗ Lp(Q) by Lemma 3.10 (i).

Lemma 3.12. Let p ∈ (1,∞) and Q ⊂ R
d be open. Let uε be a bounded sequence in Lp(Ω) ⊗

W 1,p(Q). Then there exists u ∈ L
p
inv(Ω)⊗W 1,p(Q) such that (up to a subsequence)

uε
2
⇀ u in Lp(Ω×Q), Pinvuε

2
⇀ u in Lp(Ω×Q), Pinv∇uε

2
⇀ ∇u in Lp(Ω×Q)d.

In particular, it holds that Pinvuε ⇀ u weakly in Lp
inv(Ω)⊗W 1,p(Q).

Proof. Step 1. Proof of the identity Pinv ◦ Tε = Tε ◦ Pinv = Pinv. The second identity holds by
definition of Pinv. To show that Pinv ◦ Tε = Pinv, we consider v ∈ Lp(Ω × Q), ϕ ∈ Lq(Ω) and
η ∈ Lq(Q). We have

〈∫

Q

(PinvTεv)(ϕη)dx

〉
=

〈∫

Q

(Tεv)P
∗
inv(ϕη)dx

〉
=

〈∫

Q

vP ∗
inv(ϕη)dx

〉

=

〈∫

Q

(Pinvv)(ϕη)dx

〉
,

where we use the fact that T ∗
ε P

∗
inv = P ∗

inv since the adjoint P ∗
inv of Pinv satisfies ran(P ∗

inv) ⊂ L
q
inv(Ω).

The claim follows by an approximation argument since Lq(Ω)
a
⊗ Lq(Q) is dense in Lq(Ω×Q).

Step 2. Convergence of Pinvuε. Pinv is bounded and it commutes with ∇, and therefore

lim sup
ε→0

〈∫

Q

|Pinvuε|
p + |∇Pinvuε|

pdx

〉
<∞.

As a result of this and with help of Lemma 3.3 (ii) and Lemma 3.11, it follows that Pinvuε
2
⇀ v and

∇Pinvuε
2
⇀ w (up to a subsequence), where v ∈ Lp

inv(Ω)⊗ Lp(Q) and w ∈ L
p
inv(Ω)⊗ Lp(Q)d.
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Let ϕ ∈W 1,q(Ω) and η ∈ C∞
c (Q). On the one hand, we have, as ε→ 0,

〈∫

Q

(∂iPinvuε)T
∗
ε (ϕη)dx

〉
=

〈∫

Q

Tε(∂iPinvuε)(ϕη)dx

〉
→

〈∫

Q

wiϕηdx

〉
.

On the other hand, using ∂iT
∗
ε (ϕη) =

1
ε
T ∗
ε (ηDiϕ) + T ∗

ε (ϕ∂iη) and TεPinv = Pinv,

〈∫

Q

(∂iPinvuε)T
∗
ε (ϕη)dx

〉
= −

1

ε

〈∫

Q

(Pinvuε)(Diϕη)dx

〉
−

〈∫

Q

(Pinvuε)ϕ∂iηdx

〉
.

The first term on the right-hand side vanishes since Pinvuε(·, x) ∈ L
p
inv(Ω) for almost every x ∈ Q

and by (15). The second term converges to −
〈∫

Q
vϕ∂iηdx

〉
as ε → 0. Consequently, we obtain

w = ∇v and therefore v ∈ L
p
inv(Ω)⊗W 1,p(Q). Moreover, using Step 1, we have Pinvuε ⇀ u weakly

in Lp
inv(Ω)⊗W 1,p(Q).
Step 3. Convergence of uε. Since uε is bounded, by Lemma 3.3 (ii) and Lemma 3.11 there exists

u ∈ L
p
inv(Ω)⊗ Lp(Q) such that uε

2
⇀ u in Lp(Ω ×Q). Also, Pinv is a linear and bounded operator

which, together with Step 1, implies that Pinvuε ⇀ u. Using this, we conclude that u = v.

Proof of Proposition 3.6. Lemma 3.12 implies that uε
2
⇀ u in Lp(Ω × Q) (up to a subsequence),

where u ∈ L
p
inv(Ω) ⊗W 1,p(Q). Moreover, it follows that there exists v ∈ Lp(Ω × Q)d such that

∇uε
2
⇀ v in Lp(Ω×Q)d (up to another subsequence). We show that χ := v−∇u ∈ L

p
pot(Ω)⊗L

p(Q).

Let ϕ ∈W 1,q(Ω)d with D∗ϕ = 0 and η ∈ C∞
c (Q). We have, as ε→ 0,

〈∫

Q

∇uε · T
∗
ε (ϕη)dx

〉
=

〈∫

Q

Tε∇uε · ϕηdx

〉
→

〈∫

Q

v · ϕηdx

〉
. (16)

On the other hand,

〈∫

Q

∇uε · T
∗
ε (ϕη)dx

〉
= −

〈∫

Q

uε

d∑

i=1

T ∗
ε (

1

ε
ηDiϕi + ϕi∂iη)dx

〉

=
1

ε

〈∫

Q

(Tεuε)(ηD
∗ϕ)dx

〉
−

〈∫

Q

(Tεuε)
d∑

i=1

ϕi∂iηdx

〉
.

(17)

Above, the first term on the right-hand side vanishes by assumption and the second converges to〈∫
Q
∇u · ϕη

〉
as ε→ 0. Using (17), (16) and Lemma 3.10 (ii) we complete the proof.

Proof of Lemma 3.8. For χ ∈ Lp
pot(Ω)⊗L

p(Q) and δ > 0, by definition of the space Lp
pot(Ω)⊗L

p(Q)

and by density of ran(D) in Lp
pot(Ω), we find gδ =

∑n(δ)
i=1 ϕ

δ
i η

δ
i with ϕδ

i ∈W 1,p(Ω) and ηδi ∈ C∞
c (Q)

such that
‖χ−Dgδ‖Lp(Ω×Q)d ≤ δ.

Note that we can choose ϕδ
i above so that ϕδ

i ∈ Lθ(Ω). This can be seen by a standard truncation
and mollification argument (see [9, Lemma 2.2] for the L2-case) that we present here for the
convenience of the reader. For a given ϕ ∈ W 1,p(Ω), by density of L∞(Ω) in Lp(Ω), we find
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a sequence ϕk ∈ L∞(Ω) such that ϕk → ϕ in Lp(Ω). For a sequence of standard mollifiers
ρn ∈ C∞

c (Rd), ρn ≥ 0, we define

ϕn
k =

∫

Rd

ρn(y)Uyϕkdy, ϕn =

∫

Rd

ρn(y)Uyϕdy.

It holds ϕn
k ∈ L∞(Ω) ∩W 1,p(Ω), Diϕ

n
k =

∫
Rd −∂iρn(y)Uyϕkdy and Diϕ

n =
∫
Rd −∂iρn(y)Uyϕdy =∫

Rd ρn(y)UyDiϕdy. Similarly as in the proof of Lemma 3.10 (ii), it follows that Dϕn → Dϕ in
Lp(Ω)d as n → ∞. In the following we show that for fixed n ∈ N, Diϕ

n
k → Diϕ

n in Lp(Ω) as
k → ∞, which yields the claim (up to extraction of a subsequence k(n)). We have, as k → ∞,

〈|Diϕ
n
k −Diϕ

n|p〉 =

〈∣∣
∫

Rd

−∂iρn(y) (Uyϕk − Uyϕ) dy
∣∣p
〉

≤ c(n) 〈|ϕk − ϕ|p〉 → 0,

where in the last inequality we use that ∂iρn is compactly supported and L∞, and Jensen’s inequal-
ity. This means that in the definition of gδ above, we can choose ϕδ

i ∈ Lθ(Ω) ∩W 1,p(Ω).
We define gδ,ε = εT −1

ε gδ and note that gδ,ε ∈ Lp(Ω) ⊗ W
1,p
0 (Q) ∩ Lθ(Ω × Q) and ∇gδ,ε =

T −1
ε Dgδ + T −1

ε ε∇gδ. As a result of this and with help of the isometry property of T −1
ε , the claim

of the lemma follows.

4 Proof of Theorem 2.3

Before presenting the main proof, we provide three auxiliary lemmas. Lemma 4.1 provides the
reduction of the Λ-convex gradient flows to convex gradient flows. Lemmas 4.3 and 4.4 provide a
suitable recovery sequence that is helpful in the treatment of the term

∫ T

0 Ẽ∗
ε (t,−DRε(u̇ε(t)))dt in

(3) (cf. (18)).

Lemma 4.1 (Convex reduction). Let the assumptions of Theorem 2.3 be satisfied. Let Ẽε : [0, T ]×
Y → R ∪ {∞} and Ẽhom : [0, T ]× Y0 → R ∪ {∞} be given by

Ẽε(t, u) = e2ΛtEε(e
−Λtu)− ΛRε(u), Ẽhom(t, u) = e2ΛtEhom(e

−Λtu)− ΛRhom(u).

Then:

(i) Ẽε and Ẽhom are convex normal integrands (see Definition A.1).

(ii) y ∈ H1(0, T ;Y ) satisfies (6) if and only if u(t) := eΛty(t) satisfies

Rε(u(T )) +

∫ T

0
Ẽε(t, u(t)) + Ẽ∗

ε (t,−DRε(u̇(t)))dt = Rε(u(0)), (18)

where Ẽ∗
ε (t, ·) denotes the convex conjugate of Ẽε(t, ·).

(iii) y ∈ H1(0, T ;Y0) satisfies (10) if and only if u(t) := eΛty(t) satisfies

Rhom(u(T )) +

∫ T

0
Ẽhom(t, u(t)) + Ẽ∗

hom(t,−DRhom(u̇(t)))dt = Rhom(u(0)),

where Ẽ∗
hom(t, ·) denotes the convex conjugate of Ẽhom(t, ·).
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Proof. Proof of (i). For fixed t, convexity of Ẽε(t, ·) follows from Λ-convexity of Eε. Ẽε(t, ·) is proper
and l.s.c. Indeed, this follows by continuity of Rε and by the fact that Eε is proper and l.s.c. In
the following we show that Ẽε is L(0, T ) ⊗ B(Y )-measurable that implies the claim for Ẽε. First,
we note that −ΛRε is B(Y )-measurable since it is continuous, therefore it is sufficient to show that
the mapping (t, u) 7→ e2ΛtEε(e

−Λtu) is L(0, T ) ⊗ B(Y )-measurable. We note that Eε(e
−Λtu) is the

composition of the continuous mapping (t, u) 7→ e−Λtu (thus (B(0, T )⊗ B(Y ),B(Y ))-measurable)
and the l.s.c. functional Eε that is, thus, B(Y )-measurable. As a result of this, it is B(0, T )⊗B(Y )-
measurable. Finally, the expression e2ΛtEε(e

−Λtu) is a product of a continuous and a measurable
functional and therefore it is L(0, T )⊗ B(Y )-measurable. For Ẽhom, the claim follows analogously.

Proof of (ii). Since Rε is quadratic we have Rε(ỹ) =
1
2 〈DRε(ỹ), ỹ〉Y ∗,Y . Combined with (6), a

simple rearrangement yields for all ỹ ∈ Y ,

〈DRε (ẏ(t) + Λy(t)) , y(t)− ỹ〉Y ∗,Y + Eε(y(t))− ΛRε(y(t)) ≤ Eε(ỹ)− ΛRε(ỹ).

We multiply the above inequality with e2Λt and use linearity of DRε (resp. quadratic structure of
Rε) to obtain,

〈
DRε

(
eΛtẏ(t) + ΛeΛty(t)

)
, eΛt(y(t)− ỹ)

〉
Y ∗,Y

+e2ΛtEε(e
−ΛteΛty(t))− ΛRε(e

Λty(t))

≤ e2ΛtEε(e
−ΛteΛtỹ)− ΛRε(e

Λtỹ) for all ỹ ∈ Y.

With u(t) = eΛty(t), the definition of Ẽε, and with the test-function ỹ = e−Λtŷ, the above inequality
reads

〈DRε(u̇(t)), u(t) − ŷ〉Y ∗,Y + Ẽε(t, u(t)) ≤ Ẽε(t, ŷ) for all ŷ ∈ Y,

where we used that u̇(t) = eΛtẏ(t) + ΛeΛty(t). Since Ẽε(t, ·) is convex for each t, the Fenchel
equivalence implies that u satisfies for a.e. t ∈ (0, T ),

〈DRε(u̇(t)), u(t)〉Y ∗,Y + Ẽε(t, u(t)) + Ẽ∗
ε (t,−DRε(u̇(t))) = 0. (19)

Since d
dt
Rε(u(t)) = 〈DRε(u(t)), u̇(t)〉Y ∗,Y = 〈DRε(u̇(t)), u(t)〉Y ∗,Y , integration of the above identity

over (0, T ) yields (18). On the other hand, if (18) holds, then we have

∫ T

0
〈DRε(u̇(t)), u(t)〉Y ∗,Y + Ẽε(t, u(t)) + Ẽ∗

ε (t,−DRε(u̇(t)))dt = 0.

The integrand on the left-hand side is nonnegative by the definition of the convex conjugate and
therefore it follows that u satisfies (19). This completes the proof.

Proof of (iii). The argument is the same as in part (ii).

Remark 4.2 (Extended unfolding). For p ∈ (1,∞), the stochastic unfolding operator Tε : L
p(Ω×

Q) → Lp(Ω ×Q) can be extended to a (not relabeled) linear isometry Tε : L
p(0, T ;Lp(Ω ×Q)) →

Lp(0, T ;Lp(Ω × Q)). In particular, for functions of the form u = ηϕ ∈ Lp(0, T ;Lp(Ω × Q)) with
η ∈ Lp(0, T ) and ϕ ∈ Lp(Ω×Q), we define the unfolding by

Tεu(t, ·) = η(t)Tεϕ(·).

By the density of {
∑

i ηiϕi : ηi ∈ Lp(0, T ), ϕi ∈ L
p(Ω×Q)} in Lp(0, T ;Lp(Ω×Q)) we may extend

the unfolding operator to a uniquely determined isometry on Lp(0, T ;Lp(Ω×Q)). In the following,
we use this extension.
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Lemma 4.3 (Recovery sequence). Let p ∈ (1,∞), θ ∈ [2,∞) and Q ⊂ R
d be open and bounded.

Let w ∈ Lp(0, T ;Lp
inv(Ω)⊗W

1,p
0 (Q))∩Lθ(0, T ;Lθ

inv(Ω)⊗L
θ(Q)) and χ ∈ Lp(0, T ;Lp

pot(Ω)⊗L
p(Q)).

Then, there exists wε ∈ Lp(0, T ;Lp(Ω)⊗W
1,p
0 (Q)) ∩ Lθ(0, T ;Lθ(Ω ×Q)) such that, as ε→ 0,

Tεwε → w strongly in Lθ(0, T ;Lθ(Ω×Q)),

Tε∇wε → ∇w + χ strongly in Lp(0, T ;Lp(Ω×Q)d).

Proof. Since χ ∈ Lp(0, T ;Lp
pot(Ω) ⊗ Lp(Q)), we find a sequence ψk =

∑k
i=1 η

k,iχk,i with ηk,i ∈

C∞
c (0, T ) and χk,i ∈ L

p
pot(Ω)⊗ Lp(Q), such that

‖ψk − χ‖Lp(0,T ;Lp(Ω×Q)d) → 0 as k → ∞.

In view of Lemma 3.8, for each χk,i we find gk,iδ,ε ∈ (Lp(Ω)⊗W
1,p
0 (Q)) ∩ Lθ(Ω×Q) such that

‖gk,iδ,ε‖Lθ(Ω×Q) ≤ εck,i(δ), lim sup
ε→0

‖Tε∇g
k,i
δ,ε − χk,i‖Lp(Ω×Q)d ≤ δ.

We define wk
δ,ε = w +

∑k
i=1 η

k,ig
k,i
δ,ε and we estimate

‖Tεw
k
δ,ε − w‖Lθ(0,T ;Lθ(Ω×Q)) + ‖Tε∇w

k
δ,ε − (∇w + χ)‖Lp(0,T ;Lp(Ω×Q)d)

≤ ‖

k∑

i=1

ηk,ig
k,i
δ,ε‖Lθ(0,T ;Lθ(Ω×Q)) + ‖

k∑

i=1

ηk,i
(
Tε∇g

k,i
δ,ε − χk,i

)
‖Lp(0,T ;Lp(Ω×Q)d)

+
∥∥∥ψk − χ

∥∥∥
Lp(0,T ;Lp(Ω×Q)d)

≤ ε

k∑

i=1

ck,i(δ) +

k∑

i=1

ck,i

∥∥∥Tε∇gk,iδ,ε − χk,i
∥∥∥
Lp(Ω×Q)d

+
∥∥∥ψk − χ

∥∥∥
Lp(0,T ;Lp(Ω×Q)d)

.

Letting first ε → 0, secondly δ → 0, and finally k → ∞, the right-hand side above vanishes. As a

result of this, we can extract diagonal sequences k(ε) and δ(ε) such that wε := w
k(ε)
δ(ε),ε satisfies the

claim of the lemma.

Lemma 4.4 (Measurable selection). Let the assumptions of Lemma 4.1 be satisfied. Let ξ ∈
L2(0, T ;Y ∗

0 ). There exists w ∈ Lp(0, T ;Lp
inv(Ω)⊗W

1,p
0 (Q)) ∩ Lθ(0, T ;Lθ

inv(Ω)⊗ Lθ(Q)) such that

∫ T

0
Ẽ∗
hom(t, ξ(t))dt =

∫ T

0
〈ξ(t), w(t)〉Y ∗

0 ,Y0
dt−

∫ T

0
Ẽhom(t, w(t))dt.

Moreover, there exists χ ∈ Lp(0, T ;Lp
pot(Ω)⊗ Lp(Q)) such that

∫ T

0
inf

χ∈Lp
pot(Ω)⊗Lp(Q)

〈∫

Q

e2ΛtV (ω, x, e−Λt∇w(t) + χ)dx

〉
dt

=

∫ T

0

〈∫

Q

e2ΛtV (ω, x, e−Λt∇w(t) + χ(t))dx

〉
dt. (20)

18



Proof. First we note that Ẽhom is a convex normal integrand by Lemma 4.1 (i) and
∫ T

0 Ẽhom(t, 0)dt <
∞. Therefore, Proposition A.4 in Appendix A implies that

∫ T

0
Ẽ∗
hom(t, ξ(t))dt

= sup
w∈L2(0,T ;Y0)

(∫ T

0
〈ξ(t), w(t)〉Y ∗

0 ,Y0
dt−

∫ T

0
Ẽhom(t, w(t))dt

)
.

(21)

Using the direct method of the calculus of variations, with the help of the growth conditions of V
and f , we conclude that the supremum on the right-hand side is attained by some w ∈ L2(0, T ;Y0).

As a result of this, we have
∫ T

0 Ẽhom(t, w(t))dt < ∞, which implies that w ∈ Lp(0, T ;Lp
inv(Ω) ⊗

W
1,p
0 (Q)) ∩ Lθ(0, T ;Lθ

inv(Ω)⊗ Lθ(Q)).
To show (20), we define an integrand I : [0, T ] ×

(
L
p
pot(Ω)⊗ Lp(Q)

)
→ R ∪ {∞} by I(t, χ) =

e2Λt
〈∫

Q
V (ω, x, e−Λt∇w(t)(ω, x) + χ(ω, x)dx

〉
. We remark that I is finite everywhere (up to con-

sidering a suitable representative of ∇w) and for all t ∈ [0, T ], I(t, ·) is convex and l.s.c. (using the
growth conditions of V ), in fact, I(t, ·) is continuous. Moreover, for each fixed χ ∈ Lp

pot(Ω)⊗L
p(Q),

I(·, χ) is L(0, T )-measurable. Indeed, this follows by the observation that I(·, χ) is a composition
of the mappings g1 : [0, T ] → [0, T ] × Lp(Ω × Q)d, g1(t) =

(
t, e−Λt∇w(t) + χ

)
, and g2 : [0, T ] ×

Lp(Ω×Q)d → R, g2(t, ϕ) = e2Λt
〈∫

Q
V (ω, x, ϕ(ω, x))dx

〉
. g1 is

(
L(0, T ),L(0, T ) ⊗ B(Lp(Ω×Q)d)

)
-

measurable and g2 is a Carathéodory integrand and thus
(
L(0, T )⊗ B(Lp(Ω ×Q)d)

)
-measurable.

The above statements imply that I is a convex Carathéodory integrand, thus a normal convex
integrand (see Appendix A). As a result of this, Proposition A.4 (and in particular Remark A.5)
in Appendix A implies that

∫ T

0
inf

χ∈Lp
pot(Ω)⊗Lp(Q)

I(t, χ)dt = inf
χ∈Lp(0,T ;Lp

pot(Ω)⊗Lp(Q))

∫ T

0
I(t, χ(t))dt.

The infimum on the right-hand side is attained at some χ ∈ Lp(0, T ;Lp
pot(Ω) ⊗ Lp(Q)), using the

direct method of the calculus of variations. This concludes the proof.

Proof of Theorem 2.3. Step 1. Compactness. The apriori estimate (8) and the boundedness of
Eε(y

0
ε) yield, for all t ∈ [0, T ],

‖yε(t)‖
p

Lp(Ω)⊗W 1,p(Q)
+ ‖yε(t)‖

θ
Lθ(Ω×Q) ≤ c. (22)

Also, by the isometry property of Tε and since θ ≥ 2, the above implies that ‖Tεyε(t)‖
θ
Y ≤ c. We

remark that Tεyε ∈ H1(0, T ;Y ) since ˙(·) and Tε commute, i.e., d
dt
(Tεyε) = Tεẏε, where on the left-

hand side Tεyε is pointwise defined as Tεyε(t) and on the right-hand side Tε is the extension defined
on L2(0, T ;Y ). As a result of this and using the isometry property of Tε, the apriori estimate (7)
implies that

‖Tεyε‖
2
H1(0,T ;Y ) ≤ c, ‖Tεyε(t)− Tεyε(s)‖

2
Y ≤ c|t− s| for all s, t ∈ [0, T ].

We extract a (not relabeled) subsequence and y ∈ H1(0, T ;Y ) such that Tεyε ⇀ y weakly in
H1(0, T ;Y ), and this implies that Tεẏε ⇀ ẏ weakly in L2(0, T ;Y ). We apply the Arzelà-Ascoli
theorem to the sequence Tεyε to obtain that (up to another subsequence) for all t ∈ [0, T ],

Tεyε(t)⇀ y(t) weakly in Y. (23)
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Using (22) and Proposition 3.6, we conclude that y(t) ∈ (Lp
inv(Ω)⊗W

1,p
0 (Q)) ∩

(
Lθ
inv(Ω)⊗ Lθ(Q)

)

and Tεyε(t) ⇀ y(t) weakly in Lθ(Ω × Q) and in Lp(Ω × Q) (see also Remark 3.7). This also
implies that y ∈ H1(0, T ;Y0). Moreover, for each t ∈ [0, T ] we find χ(t) ∈ L

p
pot(Ω)⊗ Lp(Q) and a

subsequence ε(t) such that Tε(t)∇yε(t)(t) ⇀ ∇y(t) + χ(t) weakly in Lp(Ω ×Q)d. This implies that

Pinv∇yε(t)⇀ ∇y(t) weakly in Lp(Ω×Q)d for the whole (sub)sequence ε. Note that the assumption
on the initial data implies that Tεyε(0) → y0 strongly in Y and hence we have y(0) = y0.

In the following step, using Lemma 4.1, we restate (6) as a convex problem. For this reason, we
define the new variables uε(t) = eΛtyε(t) and u(t) = eΛty(t). Note that u̇ε(t) = ΛeΛtyε(t)+ e

Λtẏε(t)
and analogously for u̇. The above convergence statements result in

Tεuε ⇀ u weakly in H1(0, T ;Y ),

Tεuε(t)⇀ u(t) weakly in Lθ(Ω ×Q) and Lp(Ω×Q), for all t ∈ [0, T ].
(24)

Step 2. Reduction to a convex problem. In view of Lemma 4.1 (ii), we have

Rε(uε(T )) +

∫ T

0
Ẽε(t, uε(t)) + Ẽ∗

ε (t,−DRε(u̇ε(t)))dt = Rε(uε(0)). (25)

Step 3. Passage to the limit ε → 0 in (25). Note that uε(0) = y0ε
2
→ y0 = u(0) in Y and

therefore using Proposition 3.4 (ii), for the right-hand side of (25), we have

lim
ε→0

Rε(uε(0)) = Rhom(u(0)). (26)

The first term on the left-hand side is treated similarly, using Proposition 3.4 (iii) and (24), we
have

lim inf
ε→0

Rε(uε(T )) ≥ Rhom(u(T )). (27)

We treat the second term on the left-hand side of (25) as follows. By Fatou’s lemma we have

lim inf
ε→0

∫ T

0
Ẽε(t, uε(t))dt

≥

∫ T

0
lim inf
ε→0

〈∫

Q

e2ΛtV (τx
ε
ω, x, e−Λt∇uε(t))dx

〉
dt

+

∫ T

0
lim inf
ε→0

〈∫

Q

e2Λtf(τx
ε
ω, x, e−Λtuε(t))−

Λ

2
r(τx

ε
ω, x)|uε(t)|

2dx

〉
dt.

For fixed t, the lim inf in the first term is a limit for a subsequence ε(t) and as in Step 1 we find

χ(t) ∈ L
p
pot(Ω)⊗Lp(Q) such that, up to another (not relabeled) subsequence, it holds ∇uε(t)(t)

2
⇀

∇u(t) + eΛtχ(t) in Lp(Ω×Q)d. Also, we notice that e2ΛtV (ω, x, e−Λt·) is convex and has p-growth
properties and therefore Proposition 3.4 (iii) implies that

lim inf
ε→0

〈∫

Q

e2ΛtV (τx
ε
ω, x, e−Λt∇uε(t))dx

〉

≥

〈∫

Q

e2ΛtV (ω, x, e−Λt∇u(t) + χ(t))dx

〉

≥ inf
χ∈Lp

pot(Ω)⊗Lp(Q)

〈∫

Q

e2ΛtV (ω, x, e−Λt∇u(t) + χ)dx

〉
.
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On the other hand, we remark that the integrand e2Λtf(ω, x, e−Λt·) − Λ
2 r(ω, x)| · |

2 is convex and
satisfies θ-growth conditions. As a result of this and by (24), Proposition 3.4 (iii) yields

lim inf
ε→0

〈∫

Q

e2Λtf(τx
ε
ω, x, e−Λtuε(t))−

Λ

2
r(τx

ε
ω, x)|uε(t)|

2dx

〉

≥

〈∫

Q

e2Λtf(ω, x, e−Λtu(t)) −
Λ

2
r(ω, x)|u(t)|2dx

〉
.

Using the above two statements we conclude that

lim inf
ε→0

∫ T

0
Ẽε(t, uε(t))dt ≥

∫ T

0
Ẽhom(t, u(t))dt. (28)

In order to complete the limit passage, it is left to treat the third term on the left-hand side of
(25). Using Lemma 4.4, we find w ∈ Lp(0, T ;Lp

inv(Ω)⊗W
1,p
0 (Q)) ∩ Lθ(0, T ;Lθ

inv(Ω)⊗ Lθ(Q)) such
that

∫ T

0
Ẽ∗
hom(t,−DRhom(u̇(t)))dt =

∫ T

0
〈−DRhom(u̇(t)), w(t)〉Y ∗

0 ,Y0
− Ẽhom(t, w(t))dt.

Moreover, by the second claim of Lemma 4.4, we find χ ∈ Lp(0, T ;Lp
pot(Ω)⊗ Lp(Q)) such that

∫ T

0
Ẽhom(t, w(t))dt =

∫ T

0
e2Λt

〈∫

Q

V (ω, x, e−Λt∇w(t) + χ(t)) + f(ω, x, e−Λtw(t))

〉

− ΛRhom(w(t))dt. (29)

For the pair
(
w, eΛ·χ(·)

)
(eΛ· denotes the function t 7→ eΛt) Lemma 4.3 implies the existence of

wε ∈ Lp(0, T ;Lp(Ω)⊗W
1,p
0 (Q)) ∩ Lθ(0, T ;Lθ(Ω×Q)) such that

Tεwε → w strongly in Lθ(0, T ;Lθ(Ω ×Q)),

Tε∇wε → ∇w + eΛ·χ strongly in Lp(0, T ;Lp(Ω×Q)d).
(30)

Using the definition of the convex conjugate Ẽ∗
ε , we have

∫ T

0
Ẽ∗
ε (t,−DRε(u̇ε(t)))dt ≥

∫ T

0
〈−DRε(u̇ε(t)), wε(t)〉Y ∗,Y − Ẽε(t, wε(t))dt.

For the first term on the right-hand side we have, using the fact that the extended unfolding
operator is unitary, as ε→ 0,

∫ T

0
〈−DRε(u̇ε(t)), wε(t)〉Y ∗,Y dt = −

∫ T

0

〈∫

Q

r(ω, x)Tεu̇ε(t)Tεwε(t)dx

〉
dt (31)

→ −

∫ T

0

〈∫

Q

r(ω, x)u̇(t)w(t)dx

〉
dt =

∫ T

0
〈−DRhom(u̇(t)), w(t)〉Y ∗

0 ,Y0
dt.
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The above convergence follows since (31) is a scalar product of a strongly and a weakly convergent
sequence. Moreover, by Proposition 3.4 (i),

∫ T

0
Ẽε(t, wε(t))dt

=

∫ T

0
e2Λt

〈∫

Q

V (ω, x, e−ΛtTε∇wε(t)) + f(ω, x, e−ΛtTεwε(t))dx

〉
dt

−

∫ T

0

〈∫

Q

Λr

2
|Tεwε(t)|

2dx

〉
dt.

As ε→ 0, this expression converges to

∫ T

0
e2Λt

〈∫

Q

V (ω, x, e−Λt∇w(t) + χ(t)) + f(ω, x, e−Λtw(t))−
Λr

2e2Λt
|w(t)|2dx

〉
dt.

This follows completely analogously as in the proof of Proposition 3.4 (ii) using the strong conver-
gences (30) and the growth conditions of the integrands (standard argument using Fatou’s lemma).

By (29), the last expression equals
∫ T

0 Ẽhom(t, w(t))dt and therefore collecting the above statements
we conclude that

lim inf
ε→0

∫ T

0
Ẽ∗
ε (t,−DRε(u̇ε(t)))dt ≥

∫ T

0
Ẽ∗
hom(t,−DRhom(u̇(t)))dt. (32)

Collecting (26), (27), (28) and (32), we obtain that

∫ T

0
Ẽhom(t, u(t)) + Ẽ∗

hom(t,−DRhom(u̇(t)))dt

≤ −Rhom(u(T )) +Rhom(u(0)) =

∫ T

0
〈−DRhom(u̇(t)), u(t)〉Y ∗

0 ,Y0
dt.

This inequality is, in fact, an equality by the Fenchel-Young inequality. Since u(t) = eΛty(t),
Lemma 4.1 (iii) implies that y is the unique solution to (10) with y(0) = y0. Furthermore, using
(26) and (27) we obtain

lim sup
ε→0

(−Rε(uε(T )) +Rε(uε(0))) ≤ −Rhom(u(T )) +Rhom(u(0)).

Also, exploiting the equality (25) and the liminf inequalities (28), (32), we obtain

lim inf
ε→0

(−Rε(uε(T )) +Rε(uε(0))) ≥

∫ T

0
Ẽhom(t, u(t)) + Ẽ∗

hom(t,−DRhom(u̇(t)))dt

= −Rhom(u(T )) +Rhom(u(0)).

This results in

lim
ε→0

e2ΛT

2

〈∫

Q

r(ω, x)|Tεyε(T )|
2dx

〉
= lim

ε→0
Rε(uε(T )) = Rhom(u(T )),
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where we use that Rε(uε(0)) converges to Rhom(u(0)). Moreover, we note that Rhom(u(T )) =
e2ΛT

2

〈∫
Q
r(ω, x)|y(T )|2dx

〉
; therefore, the above and (23) imply that Tεyε(T ) → y(T ) strongly in

Y . Since Tεy(T ) = y(T ) by shift-invariance of y(T ), we obtain that yε(T ) → y(T ) strongly in Y .
We may replace T by any t ∈ (0, T ] in the above procedure to obtain yε(t) → y(t) strongly in Y .
Convergence for the entire sequence is obtained by a standard contradiction argument using the
uniqueness of the solution for the limit problem.

Step 4. Convergence of ẏε and Eε(yε(t)). The EVI (6) is equivalent to the differential inclusion
(cf. (1) in the Introduction)

0 ∈ DRε(ẏε(t)) + ∂FEε(yε(t)) for a.e. t ∈ (0, T ).

This and the chain rule for the Λ-convex functional Eε (see, e.g., [41]) imply that d
dt
Eε(yε(t)) =

−〈DRε(ẏε(t)), ẏε〉Y ∗,Y . An integration over (0, t), for an arbitrary t ∈ (0, T ], yields

∫ t

0
〈DRε(ẏε(s)), ẏε(s)〉Y ∗,Y ds = Eε(yε(0)) − Eε(yε(t)).

Since yε(t) → y(t) strongly in Y and by (24), we obtain that lim infε→0 Eε(yε(t)) ≥ Ehom(y(t)),
which follows using Proposition 3.4 (cf. (28)). As a consequence, using the additional assumption
Eε(yε(0)) → Ehom(y(0)), we obtain

lim sup
ε→0

∫ t

0
〈DRε(ẏε(s)), ẏε(s)〉Y ∗,Y ds ≤ Ehom(y(0)) − Ehom(y(t))

=

∫ t

0
〈DRhom(ẏ(s)), ẏ(s)〉Y ∗

0 ,Y0
ds,

where in the last equality we use that y is the solution to the limit problem. Note that it holds∫ t

0 〈DRε(ẏε(s)), ẏε(s)〉Y ∗,Y ds =
∫ t

0

〈∫
Q
r|Tεẏε(s)|

2dx
〉
ds and since Tεẏε ⇀ ẏ weakly in L2(0, T ;Y ),

it follows that

lim inf
ε→0

∫ t

0
〈DRε(ẏε(s)), ẏε(s)〉Y ∗,Y ds ≥

∫ t

0
〈DRhom(ẏ(s)), ẏ(s)〉Y ∗

0 ,Y0
ds.

Combining the last two inequalities and the weak convergence Tεẏε ⇀ ẏ, we conclude that for all
t ∈ (0, T ],

ẏε → ẏ strongly in L2(0, t;Y ), Eε(yε(t)) → Ehom(y(t)).

A Normal integrands and integral functionals

In the following we recall some key facts about measurable integrands and conjugates of integral
functionals. A detailed and more general theory can be found in [40].

Let (S,Σ, µ) be a complete measure space with a σ-finite measure µ and let X be a separable
reflexive Banach space with dual space X∗. The product-σ-algebra of Σ and B(X) (Borel σ-algebra
on X) is denoted by Σ⊗B(X). In the following we refer to a function f : S ×X → R∪ {∞} as an
integrand. For s ∈ S, we denote the function x 7→ f(s, x) by fs.
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Definition A.1 (Normal integrand). We say that an integrand f is normal if the following two
conditions hold:

(i) f is Σ⊗ B(X)-measurable.

(ii) For each s ∈ S, the function fs is proper and l.s.c.

If additionally, for each s ∈ S, fs is convex, we say that f is a convex normal integrand.

Note that if f is a normal integrand and x : S → X is a (Σ,B(X))-measurable function, then
s 7→ f(s, x(s)) defines a Σ-measurable mapping.

Remark A.2 (Carathéodory integrand). We call an integrand f Carathéodory if f is finite every-
where, f(·, x) is Σ-measurable for all x ∈ X, and f(s, ·) is continuous for all s ∈ S. If an integrand
is Carathéodory, then it is normal (for the proof see, e.g., [1, Lemma 4.51]).

Let f be a normal integrand. We define f∗ : S ×X∗ → R ∪ {∞} to be the convex conjugate of
f in its second variable, i.e., f∗(s, ξ) = f∗s (ξ) is defined by

f∗s (ξ) = sup
x∈X

(
〈ξ, x〉X∗,X − fs(x)

)
.

Proposition A.3 ([40, Proposition 2]). Let f be a normal integrand. If for each s ∈ S, f∗s is
proper (this is true if, e.g., f ≥ −c for some c > 0), then f∗ is a convex normal integrand. If f is
a convex normal integrand, then (f∗)∗ = f .

Let p ∈ (1,∞) and q = p
p−1 be its dual exponent of integrability. Since µ is σ-finite, we may

identify Lp(S;X)∗ with Lq(S;X∗) (see [46, Theorem 1.5]). For a given normal integrand f , we
define an integral functional If : Lp(S;X) → R ∪ {±∞} by

If (x) =

∫

S

f(s, x(s))dµ(s),

if s 7→ f(s, x(s)) is integrable and otherwise we set If to be +∞. Analogously, we define If∗ :
Lq(S;X∗) → R ∪ {±∞}.

Proposition A.4 ([40, Theorem 2]). Let p ∈ (1,∞), q = p
p−1 . Let f be a normal integrand. If

there is an element x ∈ Lp(S;X) such that If (x) <∞, then for all ξ ∈ Lq(S;X∗), it holds

If∗(ξ) = sup
x∈Lp(S;X)

(∫

S

〈ξ(s), x(s)〉X∗,X dµ(s)− If (x)

)
. (33)

Remark A.5 (Measurable selection). The above theorem implies a measurable selection principle
for parametrized minimization problems. Namely, setting ξ = 0 above, we have

∫

S

inf
x∈X

f(s, x)dµ(s) = inf
x∈Lp(S;X)

∫

S

f(s, x(s))dµ(s).

In particular, if the minimum on the right-hand side is attained, the latter equality implies that
there exists a (Σ,B(X))-measurable function x : S → X such that infx∈X f(s, x) = f(s, x(s)) µ-a.e.
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