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ABSTRACT

We introduce a second-order numerical scheme for compressible atmo-

spheric motions at small to planetary scales. The collocated finite volume

method treats the advection of mass, momentum, and mass-weighted poten-

tial temperature in conservation form while relying on Exner pressure for the

pressure gradient term. It discretises the rotating compressible equations by

evolving full variables rather than perturbations around a background state,

and operates with time steps constrained by the advection speed only. Pertur-

bation variables are only used as auxiliary quantities in the formulation of the

elliptic problem. Borrowing ideas on forward-in-time differencing, the algo-

rithm reframes the authors’ previously proposed schemes into a sequence of

implicit midpoint, advection, and implicit trapezoidal steps that allows for a

time integration unconstrained by the internal gravity wave speed. Compared

with existing approaches, results on a range of benchmarks of nonhydrostatic-

and hydrostatic-scale dynamics are competitive. The test suite includes a

new planetary-scale inertia-gravity wave test highlighting the properties of

the scheme and its large time step capabilities. In the hydrostatic-scale cases

the model is run in pseudo-incompressible and hydrostatic mode with sim-

ple switching within a uniform discretization framework. The differences

with the compressible runs return expected relative magnitudes. By providing

seamless access to soundproof and hydrostatic dynamics, the developments

represent a necessary step towards an all-scale blended multimodel solver.
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1. Introduction33

a. Motivation: Blending of full and reduced dynamical flow models34

Atmospheric dynamics features a variety of scale-dependent motions which have been analyt-35

ically described by scale analysis and asymptotics (Pedlosky 1992; Klein 2010). Reduced dy-36

namical models emerging from the full compressible flow equations through generally singular37

asymptotic limits capture the essence of the phenomena of interest and reveal which effects are38

important – and which ones less so – for their description. Relevant examples include the anelas-39

tic and pseudo-incompressible models, the quasi-geostrophic and semi-geostrophic models, and40

the hydrostatic primitive model equations (Hoskins and Bretherton 1972; Lipps and Hemler 1982;41

Durran 1989; Pedlosky 1992; Bannon 1996; Cullen and Maroofi 2003; Klein 2010).42

Cullen (2007) argues that compressible atmospheric flow solvers should accurately reproduce43

the effective dynamics encoded by such reduced dynamical models with no degradation of solution44

quality as the respective limit regime is approached. Related numerical methods are known as45

asymptotic preserving or asymptotically adaptive schemes in the numerics literature, see Klein46

et al. (2001) and the review by Jin (2012) for references. If a scheme is designed such that it not47

only solves the compressible equations close to some limit regimes with the required accuracy but48

that it can also solve the limiting model equations when the respective asymptotic parameter is set49

to zero, this opens avenues to interesting applications and investigations.50

Implementations of different model equations normally use different numerical methods to rep-51

resent identical terms. For example, in a comparison of a compressible model with a pseudo-52

incompressible model, the former might discretize advection with a semi-Lagrangian scheme,53

while the latter uses a higher-order upwind finite volume formulation. In this case, differences in54

model results cannot be uniquely attributed to the differences in the underlying equations but may55
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as well be influenced by the use of different advection schemes (see Smolarkiewicz and Dörnbrack56

2007; Benacchio et al. 2014, for further examples).57

Using a numerical method for the compressible equations that defaults to soundproof dynamics58

for vanishing Mach number, Benacchio et al. (2014) suggested an application in the context of59

well-balanced data assimilation. They implement a blended scheme that can be tuned to solve any60

one of a continuous family of equations that interpolate between the compressible and pseudo-61

incompressible models, and use this feature to filter unwanted acoustic noise from some given or62

assimilated initial data. To properly capture a compressible flow situation with unknown balanced63

initial pressure distribution, they operate the scheme for some initial time steps in its pseudo-64

incompressible mode and then relax the model blending parameter towards its compressible mode65

over a few more steps. In this fashion, the pseudo-incompressible steps serve to find a balanced66

pressure field compatible with the velocity and potential temperature initial data, and the subse-67

quent compressible flow simulation is essentially acoustics-free.68

Continuing this line of development, we describe in this paper a semi-implicit scheme that allows69

us to access the compressible, pseudo-incompressible, and hydrostatic models within one and the70

same finite volume framework.71

b. Related numerical schemes in the literature72

A significant challenge in the dynamical description and forecast of weather and climate lies73

in the inherently multiscale nature of atmospheric flows. Driven by stratification and rotation,74

physical processes arise around a large-scale state of horizontal geostrophic, vertical hydrostatic75

balance. The compressible Euler equations are deemed the most comprehensive model to describe76

the principal fluid dynamical features of the system before parameterizations of unresolved pro-77

cesses are added. On the one hand, these equations allow for buoyancy-driven internal gravity78
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wave and pressure-driven sound wave adjustments. On the other hand, meteorologically relevant79

features such as cyclones and anticyclones in the midlatitudes involve motions much slower than80

the sound speed, thus forcing numerical stiffness into discretizations of the compressible model in81

the low Mach number regime. As a result, most if not all numerical schemes used in operational82

weather forecasting employ varying degrees of implicitness or multiple time stepping that enable83

stable runs with long time step sizes unconstrained by sound speed (see, e.g. the reviews Marras84

et al. (2016); Mengaldo et al. (2018) and references therein for a list). Typically, semi-implicit85

approaches integrate advective transport explicitly, then build an elliptic problem for the pressure86

variable by combining the equations of the discrete system. The solution of the problem yields87

updates that are then replaced into the other variables.88

Examples of operational dynamical cores using semi-implicit time-integrations strategies are the89

ECMWF1’s IFS (Hortal 2002), that discretizes the hydrostatic primitive equations, and the UK Met90

Office’s ENDGame (Wood et al. 2013; Benacchio and Wood 2016). In particular, ENDGame uses91

a double-loop structure in the implicit solver entailing four solves per time step in its operational92

incarnation, a strategy carried over in recent developments (Melvin et al. 2018), and allowing non-93

operational configurations to run stably and second-order accurately without additional numerical94

damping (for operational forecasts, a small amount of off-centering is usually employed for safety95

reasons). By contrast, many other semi-implicit or time-split explicit discretizations resort to off-96

centering, divergence damping (Bryan and Fritsch 2002), or otherwise artificial diffusion in order97

to quell numerical instabilities. In non-operational research, Dumbser et al. (2018), among others,98

present buoyancy- and acoustic-implicit second-order finite volume discretisations on staggered99

grids.100

1European Centre for Medium-Range Weather Forecasts
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In order to simplify the formulation of the semi-implicit method, the equation set is often cast101

in terms of perturbations around a hydrostatically balanced reference state, see, e.g., Restelli and102

Giraldo (2009); Smolarkiewicz et al. (2014, 2019). However, as noted by Weller and Shahrokhi103

(2014), whose model does not use pertubations, large deviations from the background state may104

question the assumptions underpinning the resulting system. Wood et al. (2013) and Melvin et al.105

(2018) use the model state computed at the previous time step as evolving background profile.106

To address the efficiency issues caused by spectral transforms in IFS at increasing global reso-107

lutions, a finite volume discretization is also used in FVM, the potential next-generation ECMWF108

dynamical core (Kühnlein et al. 2019). The time integration algorithm in FVM is built upon ex-109

tensive earlier experience with the EULAG model and the MPDATA advection scheme. Through110

appropriate correction of a first-order upwind discretization, a system is constructed that encom-111

passes transport and implicit dynamics in an elegant theoretical framework (Smolarkiewicz et al.112

2014, 2016, and references therein). The approach, which in its default configuration relies on time113

extrapolation of advecting velocities and subtraction of reference states, also contains soundproof114

analytical systems as subcases and has shown excellent performance in integrating atmospheric115

flows at all scales without instabilities. However, their transition from compressible to soundproof116

discretizations is not seamless in the sense of the present work, since the structure of their im-117

plicit pressure equations substantially differs from one model to the other. Similarly to the present118

approach, an optional variant of their scheme avoids extrapolations in time from earlier time levels.119

Drawing on the finite volume framework for soundproof model equations in Klein (2009), the120

authors of Benacchio (2014); Benacchio et al. (2014) devised a numerical scheme for the com-121

pressible Euler equations to simulate small- to mesoscale atmospheric motions, using a time step122

unconstrained by the speed of acoustic waves within the abovementioned soundproof-compatible123

switchable multimodel formulation. The underlying theoretical framework was extended by Klein124
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and Benacchio (2016) to incorporate the hydrostatic primitive equations and the anelastic, quasi-125

hydrostatic system of Arakawa and Konor (2009) with the introduction of a second blending pa-126

rameter.127

A major hurdle towards joining the numerical scheme of Benacchio et al. (2014) with the theo-128

retical setup of Klein and Benacchio (2016) is the former’s time step dependency on the speed of129

internal gravity waves, a severe constraint on the applicability of the numerical method to large-130

scale tests. The present study addresses this fundamental shortcoming.131

c. Contribution132

By reframing the schemes of Klein (2009) and Benacchio et al. (2014) as a two-stage-implicit133

plus transport system, this paper proposes a discretisation that:134

• Evolves the compressible equations with rotation in terms of full variables, using auxiliary135

perturbation variables only in formulating the buoyancy-implicit elliptic problem;136

• Has built-in conservation of mass and mass-weighted potential temperature, and is second-137

order accurate in all components, without artificial damping mechanisms;138

• Uses a time step constrained only by the underlying advection speed;139

• Works with a node-based implicit pressure equation only, thereby avoiding the usual cell-140

centered MAC-projection (see Almgren et al. 1998, and references therein);141

• Can be operated in the soundproof and hydrostatic modes without modifying the numerics;142

• Constitutes a basis for a multiscale formulation with access to hydrostasy and geostrophy.143

The method uses an explicit second-order MUSCL scheme for advection, while the pressure and144

momentum equations are stably integrated by solving two elliptic problems embedded in the im-145
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plicit midpoint and implicit trapezoidal stages. The scheme is validated against two-dimensional146

Cartesian benchmarks of nonhydrostatic and hydrostatic dynamics. Simulations of inertia-gravity147

wave tests at large scale and with rotation show competitive performance with existing approaches148

already at relatively coarse resolutions. In particular, a new planetary-scale extension of the149

hydrostatic-scale test of Skamarock and Klemp (1994) showcases the large time step capabili-150

ties of the present scheme. For the large-scale tests, we run the model in pseudo-incompressible151

mode and hydrostatic mode and analyse the difference with the compressible simulation. As ex-152

pected from theoretical normal mode analyses (Davies et al. 2003; Dukowicz 2013) (though see153

also Klein et al. (2010) for a discussion on regime of validity of soundproof models), the com-154

pressible/hydrostatic discrepancy shrinks with smaller vertical-to horizontal domain size aspect155

ratios, while the compressible/pseudo-imcompressible discrepancy grows with larger scales.156

The paper is organized as follows. Section 2 contains the governing equations that are discretized157

with the methodology summarised in section 3 and detailed in section 4. Section 5 documents the158

performance of the code on the abovementioned tests. Results are discussed and conclusions159

drawn in section 6.160

2. Governing equations161

The governing equations for adiabatic compressible flow of an inert ideal gas with constant

specific heat capacities under the influence of gravity and in a rotating coordinate system corre-
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sponding to a tangent plane approximation may be written as

ρt +∇‖ · (ρu)+(ρw)z = 0 (1a)

(ρu)t +∇‖ · (ρu◦u)+(ρwu)z =−
[
cpP∇‖π + f (y)k×ρu

]
(1b)

(ρw)t +∇‖ · (ρuw)+(ρw2)z =−(cpPπz +ρg) (1c)

Pt +∇‖ · (Pu)+(Pw)z = 0 . (1d)

Here ρ is the density, u = (u,v) and w are the horizontal and vertical components of the flow162

velocity,163

π =

(
p

pref

) R
cp

and P =
pref

R

(
p

pref

) cv
cp
≡ ρΘ (2)

are the Exner pressure and the mass-weighted potential temperature, with pref a suitable reference164

pressure, R the gas constant and cp and cv = cp−R the specific heat capacities at constant pressure165

and constant volume. Furthermore, g is the acceleration of gravity (taken as constant), f (y) =166

f0 + βy the local Coriolis parameter in the β -plane with constant f0 and β , k the vertical unit167

vector, and × the cross product. Subscripts as in Ux ≡ ∂xU := ∂U/∂x denote partial derivatives168

with respect to the first coordinate of a Cartesian (x,y,z) coordinate system or time t, and ∇‖ =169

(∂x,∂y,0) subsumes the horizontal derivatives.170

Given (1a) and (1d), the potential temperature Θ = P/ρ satisfies the usual advection equation171

Θt +u ·∇‖Θ+wΘz = 0 . (3)

3. Compact description of the time integration scheme172

In this section we describe the main structural features of the discretization, which evolves and173

joins aspects of the models in Klein (2009); Benacchio et al. (2014), and borrows key ideas from174
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the forward-in-time integration strategy suggested by Smolarkiewicz and Margolin (1993, 1997)175

in realizing the implicit discretization of the gravity term.176

a. Reformulation of the governing equations177

1) EVOLUTION OF THE PRIMARY VARIABLES178

The primary unknowns advanced in time by the present scheme are the same as in (1), i.e.,179

(ρ,ρu,ρw,P). Introducing a seamless blended discretization of the compressible Euler and180

pseudo-incompressible equations (Durran 1989) and following Klein (2009); Klein et al. (2010),181

in Benacchio et al. (2014) the authors observed that the pseudo-incompressible model is obtained182

from the compressible equations in (1) by simply dropping the time derivative of P = ρΘ from183

(1d). To take advantage of this simple structural model relationship in constructing a blended184

scheme that can be tuned seamlessly from solving the full compressible model equations to solv-185

ing the pseudo-incompressible model equations, they introduced the inverse of the potential tem-186

perature,187

χ = 1/Θ , (4)

and interpreted the mass balance (1a) as a transport equation for χ ,188

ρt +∇‖ · (ρu)+(ρw)z = (Pχ)t +∇‖ · (Pχu)+(Pχw)z = 0 , (5)

in which the field (Pv) takes the role of an advecting flux. Using this interpretation consistently

throughout the equation system, and introducing two blending parameters, αw and αP, for the
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non-hydrostatic/hydrostatic and compressible/pseudo-incompressible transitions, one obtains

ρt + ∇‖ · (Pu χ)+(Pw χ)z = 0 (6a)

(ρu)t +∇‖ · (Pu◦χu)+(Pw χu)z =−
[
cpP∇‖π + f (y)k×ρu

]
(6b)

αw

[
(ρw)t +∇‖ · (Pu χw)+(Pw χw)z

]
=−(cpPπz +ρg) (6c)

αP Pt + ∇‖ · (Pu)+(Pw)z = 0 . (6d)

System (6) is the analytical formulation used in this paper, and facilitates the extension of the189

blending of Benacchio et al. (2014) to hydrostasy along the lines of the theory described in Klein190

and Benacchio (2016). The quasi-geostrophic case will be addressed in forthcoming work.191

2) AUXILIARY PERTURBATION VARIABLES AND THEIR EVOLUTION EQUATIONS192

A crucial ingredient of any numerical scheme implicit with respect to the effects of compressibil-193

ity, buoyancy, and Earth rotation, is that it has separate access to the large-scale mean background194

stratifications of pressure and potential temperature, or its inverse, and to their local perturbations.195

Thus we split the Exner pressure π and inverse potential temperature χ into196

π(t,x,z) = π
′(t,x,z)+π(z) and χ(t,x,z) = χ

′(t,x,z)+χ(z) , (7)

with the hydrostatically balanced background variables satisfying197

dπ

dz
=− g

cp
χ and π(0) = 1 . (8)

Since, for the compressible case, P can be expressed as a function of π alone according to (2), and198

since π is time independent across a time step, the perturbation Exner pressure satisfies199

αP

(
∂P
∂π

)
π
′
t =−∇ · [P(π)v] , (9)
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which is a direct consequence of (6d). In turn, the perturbation form of the mass balance serves as

the evolution equation for χ ′, i.e.,

(Pχ
′)t +∇‖ · (Pu χ

′)+(Pw χ
′)z =−

[
∇‖ · (Pu χ)+(Pw χ)z

]
. (10)

Auxiliary discretizations of (9) and (10) will be used in constructing a numerical scheme for200

the full variable form of the governing equations in (6) that is stable for time steps limited only201

by the advection Courant number. After completion of a time step, the perturbation variables are202

synchronized with the full variables based on the definitions in (7) and (8). We remark that this203

is a fundamental feature of the present scheme, shared with the staggered grid scheme by Weller204

and Shahrokhi (2014). To the best of our knowledge, other models for atmospheric flows use the205

perturbation variables as prognostic quantities throughout.206

In the sequel, borrowing notation from Smolarkiewicz et al. (2014), we introduce207

Ψ = (χ,χu,χw,χ ′) (11)

and subsume the primary equations in (6) and the auxiliary equation for χ ′ in (10) as

(PΨ)t +A (Ψ;Pv) = Q(Ψ;P) (12a)

αP Pt +∇ · (Pv) = 0 . (12b)

Note that the π ′ equation in (9) is equivalent to (12b) and thus it is not listed separately, although208

it will be used in an auxiliary step in the design of a stable discretization of (12b).209
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b. Semi-implicit time discretization210

1) IMPLICIT MIDPOINT PRESSURE UPDATE AND ADVECTIVE FLUXES211

In the first step of the scheme, we determine advective fluxes at the half-time level, (Pv)n+1/2,212

which for αP = 1 immediately yield the update of the internal energy variable, P, through213

αP
(
Pn+1−Pn)=−∆t ∇̃ · (Pv)n+1/2 , (13)

where ∇̃· is the discrete approximation of the divergence. In contrast, for αP = 0 this equation214

represents the pseudo-incrompressible divergence constraint.215

Note that in the compressible case this update corresponds to a time discretization of the P-216

equation using the implicit midpoint rule. We recall here for future reference that an implemen-217

tation of the implicit midpoint rule can be achieved by first applying a half time step based on218

the implicit Euler scheme followed by another half time step based on the explicit Euler method219

(Hairer et al. 2006).220

To maintain second-order accuracy of the overall scheme, a first-order accurate time integra-221

tion from the last completed time step at tn is sufficient for generating the half time level fluxes222

(Pv)n+1/2. This becomes transparent through a truncation error analysis for any equation of the223

form ẏ = R(y, t). First we observe that224

y(tn+1)− y(tn)

∆t
= ẏ
(

tn+1/2
)
+O

(
∆t2) (14)

by straightforward Taylor expansion. Then, for any first-order approximation, say Rn+1/2, to the225

right hand side at the half time level we have226

ẏ
(

tn+1/2
)
= R

[
y
(

tn+1/2
)]

= R
[

y(tn)+
∆t
2

ẏ(tn)+O
(
∆t2)]= Rn+1/2 +O

(
∆t2) , (15)
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where Rn+1/2 = R
[
y(tn)+(∆t/2)ẏ(tn)

]
is the right hand side evaluated at a state that is lifted from227

tn to tn+1/2 just by a first-order method. Re-inserting into (14) we find indeed228

y(tn+1)− y(tn)

∆t
= Rn+1/2 +O

(
∆t2) . (16)

In order to achieve stability for large time steps, only limited by the advection Courant number,

we invoke standard splitting into advective and non-advective terms in (6), (10) for the predic-

tion of (Pv)n+1/2, with explicit advection and linearly implicit treatment of the right hand sides.

Thus we first advance the scalars from (11) by half an advection time step using advective fluxes

computed at the old time level,

(PΨ)# = A
∆t
2

1st (Ψ
n;(Pv)n) (17a)

P# = Pn− ∆t
2

∇̃ · (Pv)n . (17b)

Here A ∆t
1st denotes an at least first-order accurate version of our advection scheme for the Ψ-229

variables given the advecting fluxes (Pv)n, see section 4b for details. In the pseudo-incompressible230

case the discretization guarantees that (Pv)n is discretely divergence free as shown below, so that231

P# = Pn and the αP parameter need not be explicitly noted in (17b).232

Next, the half time level fluxes (Pv)n+1/2 are obtained via the implicit Euler discretization of a

second split system that only involves the right hand sides of (6) (see section 4c below for details),

(PΨ)n+1/2 = (PΨ)# +
∆t
2

Q
(

Ψ
n+1/2;Pn+1/2

)
, (18a)

αP Pn+1/2 = αP Pn− ∆t
2

∇ · (Pv)n+1/2 . (18b)

We note that for αP = 1 (18b) corresponds to the implicit Euler update of P to the half time

level, i.e., to the first step of our implementation of the implicit midpoint rule for this variable.

Furthermore, as in Benacchio et al. (2014), in this step the relation between P, which is being

updated by the flux divergence, and π , whose gradient is part of the momentum forcing terms, is
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approximated through a linearization of the equations of state (2),

Pn+1/2 = Pn +

(
∂P
∂π

)#(
π

n+1/2−π
n
)
. (19)

With this linearization, this implicit Euler step involves a single linear elliptic solve for πn+1/2.233

Optionally, an outer iteration of the linearly implicit step can be invoked to guarantee consistency234

with the equation of state for P(π) up to a given tolerance.235

These preliminary calculations serve to provide the fluxes (Pv)n+1/2 later needed both for the236

final explicit Euler update of P to the full time level tn+1 and for the advection of the vector of237

specific variables Ψ from (11) as part of the overall time stepping algorithm, see (20b) below.238

For αP = 0 the P equation reduces to the pseudo-incompressible divergence constraint, and239

P and the Exner pressure π decouple. While P ≡ P(z) remains constant in time in this case,240

increments of π correspond to the elliptic pressure field that guarantees compliance of the velocity241

with the divergence constraint.242

2) IMPLICIT TRAPEZOIDAL RULE ALONG EXPLICIT LAGRANGIAN PATHS FOR ADVECTED243

QUANTITIES244

Given the advective fluxes, (Pv)n+1/2, the full second-order semi-implicit time step for the evo-

lution equation of the advected scalars, Ψ, reads

(PΨ)∗ = (PΨ)n +
∆t
2

Q(Ψn;Pn) (20a)

(PΨ)∗∗ = A ∆t
2nd

(
Ψ
∗;(Pv)n+1/2

)
(20b)

(PΨ)n+1 = (PΨ)∗∗+
∆t
2

Q
(
Ψ

n+1;Pn+1) (20c)

αPPn+1 = αPPn−∆t ∇ · (Pv)n+1/2 . (20d)
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Here we notice that the homogeneous equations (1a) and (1d) for ρ and P are not involved in (20a)245

and (20c). The updates to ρn+1 and Pn+1 are entirely determined by the advection step in (20b)246

and by the completion of the implicit midpoint discretization of the P-equation in (20d).247

Therefore, the updated unknowns in the explicit and implicit Euler steps (20a) and (20c) are248

(u,w,χ ′) only. Nevertheless, in order to obtain an appropriate approximation of the Exner pressure249

gradient needed in the momentum equation, an auxiliary implicit Euler discretization of the energy250

equation in perturbation form for π ′ from (9) is used in formulating (20c). See section 4c for251

details.252

After completion of the steps in (20) we have two redundancies in the thermodynamic variables.253

In addition to the primary variables (ρ,P), we also have the perturbation inverse potential tem-254

perature, χ ′, and the Exner pressure increment π ′. Removal of these redundancies is discussed in255

section 4d below.256

Note that the implicit trapezoidal step (20) and, to a lesser extent the treatment of the P in (17),257

(18b), and (20d), closely resemble the EULAG/FVM forward-in-time discretization from Smo-258

larkiewicz and Margolin (1997); Prusa et al. (2008); Smolarkiewicz et al. (2014, 2016); Kühnlein259

et al. (2019).260

To avoid misinterpretations, we emphasize that (20a)-(20c) are not a variant of Strang’s operator261

splitting strategy (Strang 1968). To achieve second-order accuracy, Strang splitting requires all262

substeps of the split algorithm to be second-order accurate individually, aside from being applied in263

the typical alternating sequence. This condition is not satisfied here as the initial explicit and final264

implicit Euler steps are both only first-order accurate. As shown by Smolarkiewicz and Margolin265

(1993), second-order accuracy results here from a structurally different cancellation of truncation266

errors: By interleaving the Euler steps (20a) and (20c) with one full time step of a second-order267

advection scheme in (20b), one effectively applies the implicit trapezoidal (or Crank-Nicolson)268
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discretization along the Lagrangian trajectories described by the advection scheme, and this turns269

out to be second-order accurate, if the trajectories – the advection step – are so.270

4. Discretization details271

a. Cartesian grid arrangement272

The space discretization of the present scheme for the primary and auxiliary solution variables273

U =
(
ρ,ρu,ρw,P,Pχ

′)T (21)

is centered on control volumes Ci, j,k formed by a Cartesian mesh with constant, but not necessarily274

equal, grid spacings ∆x,∆y,∆z, and grid indices i= 0, ..., I−1, j = 0, ...,J−1, k= 0, ...,K−1 in the275

three coordinate directions (Figure 1 shows a two dimensional x-y slice). The discrete numerical276

solution consists of approximate grid cell averages277

U n
i, j,k ≈

1
∆x∆y∆z

∫
Ci, j,k

U (x, tn)d3x . (22)

The scheme is second-order accurate, so that we can interchangeably interpret U n
i, j,k as the cell278

average or as a point value of U at the center of mass of a cell within the approximation order.279

Advection of the specific variables Ψ defined in (11) is mediated by staggered-grid components280

of the advective flux field (Pv)n+1/2 referred to in section 3b above. Specifically, the fluxes281

(PuΨ)
n+1/2
i+1/2, j,k , (PvΨ)

n+1/2
i, j+1/2,k , (PwΨ)

n+1/2
i, j,k+1/2 , (23)

are defined on cell faces Ii+1/2, j,k, Ii, j+1/2,k, and Ii, j,k+1/2 (Figure 1). Given the advecting fluxes,282

e.g., in the x-direction (PuΨ)
n+1/2
i+1/2, j,k, the associated cell face values Ψ

n+1/2
i+1/2, j,k are determined283

by a monotone upwind scheme for conservation laws (MUSCL) following Van Leer (2006) as284

described below.285
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b. Advection286

Any robust numerical scheme capable of performing advection of a scalar in compressible flows287

is a good candidate for the generic discrete advection operators A ∆t
1st and A ∆t

2nd introduced in (17a)288

and (20b). The present implementation is based on a directionally split monotone upwind scheme289

for conservation laws (MUSCL, see, e.g., Van Leer (2006)):290

Suppose the half-time predictor step from (18), the details of which are given in section c3291

below, has been completed. Then, the components of the advecting fluxes (Pv)n+1/2 at grid cell292

faces have become available as part of this calculation. Given these fluxes, the advection step in293

(20b) is discretized via Strang splitting, so that294

U ∗∗
i, j = A ∆t

2ndU
∗

i, j,k ≡A
∆t
2

x A
∆t
2

y A
∆t
2

z A
∆t
2

z A
∆t
2

y A
∆t
2

x U ∗
i, j , (24)

where, dropping the indices of the transverse directions for simplicity, we have, e.g.,295

A
∆t
2

x Ui = Ui−
∆t

2∆x

(
(Pu)n+1/2

i+1/2 Ψi+1/2− (Pu)n+1/2
i−1/2 Ψi−1/2

)
(25)

with

Ψi+1/2 = σΨ
−
i+1/2 +(1−σ)Ψ+

i+1/2 , (26a)

σ = sign
(
(Pu)n+1/2

i+1/2

)
, (26b)

Ψ
−
i+1/2 = Ψi +

∆x
2

(
1−Cn+1/2

i+1/2

)
si , (26c)

Ψ
+
i+1/2 = Ψi+1−

∆x
2

(
1+Cn+1/2

i+1/2

)
si+1 , (26d)

Cn+1/2
i+1/2 =

∆t
∆x

(Pu)n+1/2
i+1/2

(Pi +Pi+1)/2
, (26e)

si = Lim
(

Ψi−Ψi−1

∆x
,
Ψi+1−Ψi

∆x

)
, (26f)
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where Pi in (26e) denotes the fourth component of Ui, and Lim(a,b) is a slope limiting function296

(see, e.g., Sweby 1984).297

Importantly, the advecting fluxes (Pv)n+1/2 are maintained unchanged throughout the Strang298

splitting cycle (24).299

The first-order accurate advection operator A ∆t
1st used in (17) is a simplified version of the above300

in that the advective fluxes are approximated at the old time level, i.e., the cell-to-face interpolation301

formulae for the advective fluxes described in section 3 below are evaluated with the components302

of (Pv)n. Optionally, one may also use simple, i.e., not Strang, splitting for the advection step of303

this predictor. In the test shown below, we have used the double Strang sweep throughout.304

c. Semi-implicit integration of the forcing terms305

The generalized forcing terms on the right-hand side of (6) are discretized in time by the implicit306

trapezoidal rule. This requires an explicit Euler step at the beginning and an implicit Euler step307

at the end of a time step. The implicit Euler scheme is also used to compute the fluxes (Pv)n+1/2
308

at the half time level as needed for the advection substep. Below we summarize this implicit309

step in a temporal semi-discretization, explain how this step is used to access the hydrostatic and310

pseudo-incompressible balanced models seamlessly, provide the node-based spatial discretization,311

and explain how the divergence-controlled momenta are used to generate divergence controlled312

advective fluxes across the faces of the primary control volumes.313

1) IMPLICIT EULER STEP AND ACCESS TO HYDROSTATIC AND SOUNDPROOF DYNAMICS314

Both ρ and P are frozen in time in this split step because their evolution equations (6a) and

(6d) do not carry a right hand side. Hence, the linearized equations including the auxiliary poten-

tial temperature perturbation equation (10) as well as the hydrostatic and pseudo-incompressible
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switches, αw and αP may be written as

Ut =−cp(PΘ)◦π ′x + fV (27a)

Vt =−cp(PΘ)◦π ′y− fU (27b)

αwWt =−cp(PΘ)◦π ′z +g
Θ̃

Θ
(27c)

Θ̃t =−W
dΘ

dz
(27d)

αP

(
∂P
∂π

)◦
π
′
t =−Ux−Vy−Wz , (27e)

where we have abbreviated315

(U,V,W,Θ̃) = (Pu,Pv,Pw,P(1/χ)′) , (28)

and where the coefficients (PΘ)◦ and (∂P/∂π)◦ are either those values available when the routine316

solving the implicit Euler step is called or they can be adjusted nonlinearly in an outer iteration317

loop as described in a similar context by Smolarkiewicz et al. (2014). For all the results shown in318

this paper we have used the simpler variant without an outer iteration.319

The implicit Euler semi-discretization of (27) in time then reads

Un+1 =Un−∆t
(

cp(PΘ)◦π ′
n+1
x − fV n+1

)
(29a)

V n+1 =V n−∆t
(

cp(PΘ)◦π ′
n+1
y + fUn+1

)
(29b)

αwW n+1 = αwW n−∆t

(
cp(PΘ)◦π ′

n+1
z −g

Θ̃n+1

Θ

)
(29c)

Θ̃
n+1 = Θ̃

n−∆t
dΘ

dz
W n+1 (29d)

αP

(
∂P
∂π

)◦
π
′n+1

= αP

(
∂P
∂π

)◦
π
′n−∆t

(
Un+1

x +V n+1
y +W n+1

z
)
. (29e)
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Straightforward manipulations yield the new time level velocity components, U

V


n+1

=
1

1+(∆t f )2


 U +∆t f V

V −∆t f U


n

−∆t cp(PΘ)◦

 π ′x +∆t f π ′y

π ′y−∆t f π ′x


n+1 (30a)

W n+1 =

(
αwW +∆t gΘ̃/Θ

αw +(∆t N)2

)n

−∆t
cp(PΘ)◦

αw +(∆t N)2 π
′n+1
z , (30b)

with the buoyancy frequency, N, given by320

N2 = g
1
Θ

dΘ

dz
. (31)

Insertion of the expressions in (30) into the pressure equation (29e) leads to a closed Helmholtz-321

type equation for π ′n+1,322

αP

(
∂P
∂π

)◦
π
′n+1−

∆t2

{[
cp (PΘ)◦

1+(∆t f )2

(
π
′n+1
x +∆t f π

′n+1
y

)]
x
+

[
cp (PΘ)◦

1+(∆t f )2

(
π
′n+1
y −∆t f π

′n+1
x

)]
y

}

+

[
cp (PΘ)◦

αw +(∆tN)2 π
′n+1
z

]
z

}
= Rn (32)

with the right-hand side:323

Rn = αP

(
∂P
∂π

)◦
π
′n−∆t


[

Un +∆t fV n

1+(∆t f )2

]
x
+

[
V n−∆t fUn

1+(∆t f )2

]
y
+

αwW n +∆t g
(

Θ̃/Θ

)n

αw +(∆tN)2


z

 .

(33)

After its solution, backward re-insertion yields (U,V,W,Θ̃)n+1.324

In all simulations shown in this paper, the Coriolis parameter is set to a constant, which elimi-325

nates the cross-derivative terms π ′xy from the elliptic operator in (32).326

Note that (29)-(33) reveal how the access to hydrostatic and pseudo-incompressible dynamics327

is entirely encoded in the implicit Euler substeps of the scheme, marked by the appearance of328

the αw and αP parameters. In this paper we only demonstrate the behavior of the scheme for329

values of these parameters in {0,1}, leaving explorations of a continuous blending of models330
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with intermediate values of the parameters as well as the development of an analogous switch to331

geostrophic limiting dynamics to future work.332

2) PRESSURE GRADIENT AND DIVERGENCE COMPUTATION IN THE GENERALIZED SOURCES333

The linearized equations for inclusion of the source terms in (27a)-(27d) need to be evaluated

at the cell centers when we apply the two steps of the trapezoidal rule in (20a) and (20c). To this

end, the coefficients (PΘ)◦ are evaluated at the cell centers as well, the linearization term from the

equation of state (∂P/∂π)◦ is interpolated from the cell centers to the nodes according to

ai+1/2, j+1/2,k+1/2 =
1
8

1

∑
λ ,µ,ν=0

ai+λ , j+µ,k+ν , (34)

and in a similar way from nodes to cell centers (Figure 2a), and the components of the pressure

gradient are approximated as

(
π
′
x
)

i, j,k =
1

∆x

(
π̂
′
i+ 1

2 , j,k
− π̂

′
i− 1

2 , j,k

)
(35a)

with

π̂
′
i+ 1

2 , j,k
=

1
4

(
π
′
i+ 1

2 , j+
1
2 ,k+

1
2
+π

′
i+ 1

2 , j−
1
2 ,k+

1
2
+π

′
i+ 1

2 , j+
1
2 ,k−

1
2
+π

′
i+ 1

2 , j−
1
2 ,k−

1
2

)
. (35b)

Analogous formulae hold for the other Cartesian directions. The node-centered flux divergence in

(29e) is formed on the basis of the cell-centered components of V = (U,V,W ), using

(Ux)i+ 1
2 , j+

1
2 ,k+

1
2
=

1
∆x

(
Ûi+1, j+ 1

2 ,k+
1
2
−Ûi, j+ 1

2 ,k+
1
2

)
(36a)

Ûi, j+ 1
2 ,k+

1
2
=

1
4
(
Ui, j+1,k+1 +Ui, j,k+1 +Ui, j+1,k +Ui, j,k

)
, (36b)

and analogous formulae for the other Cartesian directions [Figure 2b)].334

These spatial discretizations inserted into the temporal semi-discretization of the implicit Eu-335

ler step in (29) lead to a node-centered discretization of the pressure Helmholtz equation based336

on nine-point and 27-point stencils of the Laplacian in two and three dimensions, respectively.337
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The solution provides the required update of the node-centered perturbation pressure field and al-338

lows us to calculate divergence-controlled cell-centered momenta. We note that in the case of the339

pseudo-incompressible model, (αP = 0), this amounts to a node-centered exact projection with a340

difference approximation that does allow for a checkerboard mode in case that the grid has equal341

spacing in all directions.Vater and Klein (2009) proposed a node-based exact projection that is free342

of such modes, but all tests in the present work have used the simpler scheme described above.343

3) DIVERGENCE CONTROLLED ADVECTIVE FLUXES VIA (18)344

Advection is discretized using standard cell-centered flux divergences. Thus, the divergence of,345

e.g., the vector field V = (U,V,W ) uses the discrete approximation346

(̃Ux)i, j,k =
1

∆x

(
Ui+ 1

2 , j,k
−Ui− 1

2 , j,k

)
, (37)

and analogous expressions for Vy and Wz. For stability reasons, we need advective fluxes that

are divergence-controlled in the sense that they are compatible with the Exner pressure evolu-

tion (29e). Yet, the Exner pressure is stored on grid nodes, so that the flux divergence on the right

hand side of (29e) is node-centered but not cell-centered. However, a simple node-to-cell average

(Figure 2a)

ai, j,k =
1
8

1

∑
λ ,µ,ν=0

ai− 1
2+λ , j− 1

2+µ,k− 1
2+ν

, (38)

yields a second-order accurate approximation to the cell average. This amounts to approximating

the cell-centered divergence by the average of the adjacent node-centered divergences. It turns

out that this is also equivalent to determining the cell-face advective fluxes from the interpolation

formula

Ui+ 1
2 , j,k

=
1
2

(̂̂U i+1, j,k +
̂̂U i, j,k

)
(39a)

̂̂U i, j,k =
1
4

1

∑
µ,ν=0

Ûi, j− 1
2+µ,k− 1

2+ν
(39b)
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with the Û taken from (36b), and with analogous expressions for the other Cartesian directions.347

The resulting effective averaging formula takes cell centered components of Pv and generates cell348

face normal transport fluxes (see Figure 2c for a two-dimensional depiction).349

By this approach, we remove the necessity of separately controlling the advective fluxes across350

the cell faces by a cell-centered elliptic solve (MAC-projection) on the one hand and controlling351

the divergence of the cell-centered velocities by another elliptic equation for nodal pressures on the352

other hand, as in, e.g., Bell et al. (1989); Almgren et al. (2006); Schneider et al. (1999); Benacchio353

et al. (2014). Thus, the present scheme works with the node-based discretization of the Helmholtz354

equation only. We note in passing that this approach requires an exact projection for the nodal355

divergence.356

d. Synchronization of auxiliary variables357

The proposed scheme achieves large time step capabilities, i.a., by introducing two additional358

auxiliary variables that are to be synchronized with the current state represented by the primary359

cell averages of (ρ,ρv,P) after each time step.360

1) ADJUSTMENT OF THE POTENTIAL TEMPERATURE PERTURBATION361

This synchronization is straightforward for the inverse of the potential temperature χ = χ ′+ χ .362

After completion of the nth time step we let363

χ
′n
i, j,k = χ

n
i, j,k−χ

n
k , (40)

where we have assumed gravity to be aligned with the z-coordinate direction so that the discrete364

version of χ(z) depends on the associated index k only. Also, in all simulations in this paper we365

have set χ
n
k ≡ χ

0
k , i.e., we have not re-computed the horizontal average χ(z) during the simulations.366

An alternative option better suited for large-scale long-time simulations is to invoke a horizontal,367
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possibly local, averaging procedure to extract χ from χ at least every few time steps. We leave368

testing this option to future work.369

2) SYNCHRONIZATION OF NODAL AND CELL PRESSURES370

In section 4c3 we constructed the cell-centered advective flux divergence from the arithmetic av-371

erage of the divergences obtained on the adjacent nodes. By the same reasoning the cell-centered372

update of P that results from these cell-centered divergences corresponds to the node-to-cell aver-373

age (38) for (∂P/∂π)◦(πn+1−πn). If, in addition, the pressure Helmholtz equation from (32) is374

solved with an outer iteration such that after convergence this coefficient is approximated by375 (
∂P
∂π

)◦
i+ 1

2 , j+
1
2 ,k+

1
2

=

(
Pn+1−Pn

πn+1−πn

)
i+ 1

2 , j+
1
2 ,k+

1
2

, (41)

then the cell-centered time updates of P are guaranteed to always equal the node-to-cell average of376

their nodal counterparts. As a consequence, a potential cumulative desynchronization over many377

time steps of the nodal Exner pressure values and the cell-centered values of P is avoided.378

For the tests shown in this paper, we have not used such an outer iteration, yet we did not observe379

a desynchronization even over tens of thousands of time steps.380

5. Numerical Results381

The algorithm described in the previous sections was tested on a suite of benchmarks of dry382

compressible dynamics on a vertical x− z slice at various scales. The suite draws on the set of383

Benacchio (2014); Benacchio et al. (2014) including a cold air bubble and nonhydrostatic inertia-384

gravity waves, and adds to it three larger scale configurations for the inertia-gravity waves, with385

the aim to validate both the robustness and accuracy of the new buoyancy-implicit strategy, and the386

scheme’s capability of accessing compressible, pseudo-incompressible, and hydrostatic dynamics.387

We remark that the present paper does not focus on efficiency. While the coding framework is 3D-388
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ready, we leave parallelization and performance on three-dimensional tests for future work. The389

scheme is implemented in plain C language and uses the Bi-CGSTAB linear solver (Van der Vorst390

1992) for the solution of the elliptic problems. The solver tolerance was set at 10−8 throughout.391

We also define the advective Courant number as:392

CFLadv = max
i∈{1,2,3}

(
∆tvi

∆xi

)
(42)

where vi are the components of the velocity, ∆xi the grid spacing in the i direction, and the acoustic393

Courant number as:394

CFLac = max
i∈{1,2,3}

[
∆t(vi + c)

∆xi

]
(43)

where c =
√

γRT denotes the speed of sound.395

a. Density current396

The first test case, proposed by Straka et al. (1993), concerns the simulation of a falling bubble397

of cold air in a neutrally stratified atmosphere (x,z) ∈ [−25.6,25.6]× [0,6.4]km2. The reference398

potential temperature and pressure are θre f = 300K and pre f = 105 Pa, the thermal perturbation is:399

T ′ =


0 K if r > 1

−15 [1+ cos(πr)]/2 K if r < 1

, (44)

where r =
{
[(x− xc)/xr]

2 +[(z− zc)/zr]
2}0.5, xc = 0 km, xr = 4 km, zc = 3 km and zr = 2 km.400

Boundary conditions are solid walls on top and bottom boundaries and periodic elsewhere. In401

order to obtain a converged solution, artificial diffusion terms ρµ∇2u and ρµ∇2Θ are added to the402

momentum and P-equations, respectively, with µ = 75m2s−1. The terms are non-stiff, discretized403

by the explicit Euler method individually, and tied into the scheme via Operator splitting just404

before the second backward Euler step (20c).405
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In the reference setup for this case, the buoyancy-implicit model is run at a resolution ∆x = ∆z =406

50m with time step chosen according to CFLadv = 0.96. Driven by its negative buoyancy, the ini-407

tial perturbation moves downwards, impacts the bottom boundary and travels sideways developing408

vortices (Figure 3). The numerical solution converges with increasing spatial resolution (Figure409

4), and the final perturbation amplitude and front position agree with published results [Table 1,410

for comparison see, e.g., Giraldo and Restelli (2008) and the similar table in Melvin et al. (2018)].411

The final minimum potential temperature perturbation at 25m resolution agrees with the result in412

Melvin et al. (2018) up to the third decimal digit.413

b. Inertia-gravity waves414

The next set of tests consists of gravity waves in a stably stratified channel with constant buoy-415

ancy frequency N = 0.01s−1, θ(z = 0) = 300K, horizontal extension x ∈ [0,xN ], and vertical416

extension z = 10km, proposed by Skamarock and Klemp (1994). The thermal perturbation is:417

θ
′(x,z,0) = 0.01 K∗ sin(πz/H)

1+[(x− xc)/a]2
(45)

with H = 10 km, xc = 100 km, a= xN/60, and there is a background horizontal flow u= 20 m s−1.418

We consider three configurations for the horizontal extension xN = 300km, 6000km, 48000km,419

with respective final times T = 3000s, 60000s, 480000s. The first two configurations corre-420

spond to the nonhydrostatic case and the hydrostatic case of Skamarock and Klemp (1994), the421

third planetary-scale configuration is introduced in this paper. In all configurations, the buoyancy-422

implicit model is run with 300×10 cells, as in Skamarock and Klemp (1994), and CFLadv = 0.9.423

In the first configuration, the initial perturbation spreads out onto gravity waves driven by the424

underlying buoyancy stratification (Figure 5). In the second configuration, which is run with425

rotation (Coriolis parameter value f = 10−4 s−1) , a geostrophic mode is also present in the center426
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of the domain (Figure 6). In both cases, the values obtained by running the compressible model427

(COMP) closely resemble published results in the literature including, for the nonhydrostatic case,428

the buoyancy-explicit compressible result in Benacchio et al. (2014). At CFLadv = 0.9, the time429

step used in the first configuration is ∆t ≈ 44.83s, a 12 times larger value than Benacchio et al.430

(2014)’s 3.75s. The time step value used here is also in line with Melvin et al. (2018), who ran431

the configuration with ∆t = 12s at buoyancy-implicit CFL= 0.3. For the second configuration at432

CFLadv = 0.9, the time step used is ∆t ≈ 896.48s, equivalent to an acoustic CFLac ≈ 309.5 and433

N∆t = 8.96.434

The third new planetary-scale configuration is run without rotation to suppress the otherwise435

dominant geostrophic mode and highlight the wave dynamics. At final time T = 480000s (≈ 5.5436

days), the solution quality with the compressible model is good in terms of symmetry, absence437

of oscillations, and final position of the outermost crests (Figure 7). The time step in this run at438

CFLadv = 0.9, is ∆t ≈ 7100s, equivalent to N∆t ≈ 71 and to an acoustic CFLac ≈ 2.4 ·103.439

For the two largest configurations, we also report the pseudo-incompressible (PI) result obtained440

using αP = 0, i.e. by switching off compressibility zeroing the diagonal term in the Helmholtz441

equation, and the hydrostatic (HY) result obtained using αw = 0, i.e. by zeroing the dynamic442

tendency of the velocity in the vertical momentum equation (middle panels of Figures 6-7), to-443

gether with the differences with the compressible result, COMP−PI and COMP−HY (bottom444

panels of Figures 6-7). The discrepancies with the compressible result are larger with the pseudo-445

incompressible model than with the hydrostatic model. Moreover, COMP−PI grows with larger446

horizontal scales and COMP−HY shrinks as expected with smaller vertical-to horizontal domain447

size aspect ratios.448
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c. Superposition of acoustic-gravity waves and inertia-gravity waves449

As final corroboration of the properties of the model, the hydrostatic configuration is rerun with450

a different value of the Coriolis parameter f = 1.03126∗10−4 s−1, initial temperature T (z = 0) =451

250K, isothermal background distribution, and no background flow. A time step of ∆t = 0.125s452

is used as in Baldauf and Brdar (2013) for a run with 1200×80 cells.453

The initial data trigger a rapidly oscillating vertical acoustic gravity wave pulse that is followed454

over more than 230 thousand time steps without decay and with small horizontal spread. Superim-455

posed is a longer wavelength internal wave mode that sends two pulses sideways from the center456

of the initial perturbation, leaving the oscillating acoustic gravity mode behind. Results with the457

buoyancy-implicit model display good symmetry (Figure 8) and compare well with the reference458

[Figure 4 in Baldauf and Brdar (2013)]. The multiscale nature of the case is evident in particular459

in the plot of the vertical velocity.460

6. Discussion and conclusion461

This paper extended a semi-implicit numerical model for the simulation of atmospheric flows462

to a scheme with time step unconstrained by the internal wave speed and without subtraction of a463

background state from the primary prognostic variables. The conservative, second-order accurate464

finite volume discretisation of the rotating compressible equations evolves cell-centered variables465

through a three-stage procedure, made of an implicit midpoint rule step, an advection step, and466

an implicit trapezoidal step. By design the model agrees with the pseudo-incompressible system467

in the small-scale vanishing Mach number limit and with the hydrostatic system at the large-scale468

limit. Moreover, the discretization is designed so it can be switched straightforwardly to strictly469

solving either of these two limiting systems.470
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The compressible scheme was applied to a suite of benchmarks of atmospheric dynamics at dif-471

ferent scales. Compared with the previous variant of the model in Benacchio (2014); Benacchio472

et al. (2014), which used a buoyancy-explicit discretization, the present scheme achieves compara-473

ble accuracy, competitive solution quality, and absence of oscillations with much larger time steps474

for the cases under gravity. New compressible simulations of the hydrostatic-scale inertia-gravity475

wave tests of Skamarock and Klemp (1994) demonstrated the large time step capability of the476

buoyancy-implicit numerical scheme. A more challenging planetary-scale version of this class of477

tests was introduced in this paper and revealed the robustness of the discretization for two-hour478

long time steps. The authors are unaware of published attempts to run the test at this scale.479

An additional test by Baldauf and Brdar (2013), geared towards revealing the long-time simula-480

tion stability and energy perservation of the scheme, yielded results comparable to those obtained481

with the reference’s higher-order discontinuous Galerkin scheme, albeit with somewhat less of482

a spreading of the oscillatory mode. The results with the present scheme are superior to those483

generated by the dynamical core of a weather forecast production code also tested in their paper.484

Furthermore, the hydrostatic- and planetary-scale configurations were run both in pseudo-485

incompressible mode and in hydrostatic mode, thereby extending the switching capability pre-486

viously shown in Benacchio et al. (2014) for the pseudo-incompressible–to–compressible config-487

urations. With increasingly large scales, differences with the compressible runs increased for the488

pseudo-incompressible runs and decreased for the hydrostatic runs as expected.489

The results presented here suggest several avenues of development in a number of areas. First,490

the scheme serves as the starting point for implementing the multimodel theoretical framework of491

Klein and Benacchio (2016), which aims to achieve balanced initialization and data assimilation492

at all scales by smoothly blending between different operation modes. As proposed by Benacchio493

et al. (2014), such a multimodel discretization could be run with reduced soundproof or hydrostatic494
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dynamics during the first time steps after setup or assimilation, then resorting to the fully com-495

pressible model for the transient sections. The development in the present work yields hydrostasy496

at large scale as well as pseudo-incompressibility at small scales as the accessible asymptotic dy-497

namics in the blended scheme. The discretization could then be applied to run tests in spherical498

geometry, with the ultimate aim of comparing with existing schemes used in numerical weather499

prediction research and operations.500
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N. P. Wedi, 2016: A finite-volume module for simulating global all-scale atmospheric flows. J.596

Comput. Phys., 314, 287–304.597

Smolarkiewicz, P. K., and A. Dörnbrack, 2007: Conservative integrals of adiabatic Durran’s equa-598

tions. Int. J. Numer. Meth. Fluids, 56, 1513–1519.599
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Grid size
[m] θ ′min [K] θ ′max [K]

Front
location [m]
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50 −9.5061 0.0903 15326

25 −9.6555 0.0138 15381

TABLE 1. Minimum and maximum potential temperature perturbation and front location (rightmost intersec-

tion of −1K contour with z = 0) for the density current test at several resolution values.
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FIG. 3. Potential temperature perturbation at times (top to bottom) t = 0, 300, 600, 900s for the density

current test case at spatial resolution ∆x = ∆z = 50m, CFLadv = 0.96. Contours in the range [−16.5,−0.5]K

with a 1K contour interval.
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FIG. 4. One-dimensional cut at height z = 1200m for the potential temperature perturbation

at final time t = 900s in the density current test case run with CFLadv = 0.96. Spatial res-

olutions ∆x = ∆z = 400m (thin solid black line), 200m (dashed red line), 100m (dashed-dotted blue line),

50m (thin solid black line), 25m (thin solid black line).
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FIG. 5. Initial (top) and final (at T = 3000s, bottom) potential temperature perturbation for the nonhydrostatic

inertia-gravity wave test from Skamarock and Klemp (1994), ∆x = ∆z = 1km, CFLadv = 0.9. Contours in the

range [0,0.01]K with a 0.001K interval (top), [−0.0025,0.0025]K with a 0.0005K interval (bottom). Negative

contours are dashed.
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FIG. 6. Potential temperature perturbation for the hydrostatic inertia-gravity wave test from Skamarock and

Klemp (1994), ∆x = 20km, ∆z = 1km, CFLadv = 0.9. Initial data (top left) and computed value at final time

T = 60000s in compressible mode (top right), pseudo-incompressible mode (middle left), hydrostatic mode

(middle right). Contours as in Figure 5. The bottom plots show the difference between the compressible run and

the pseudo-incompressible run (left) and between the compressible run and the hydrostatic run (right). Contours

in the range [−2.5,2.5]∗10−4 K with a 5∗10−5 K interval (left), [−5,5]∗10−5 K with a 10−5 K interval (right).

Negative contours are dashed.
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FIG. 7. Potential temperature perturbation for the planetary-scale inertia-gravity wave test, ∆x = 160km, ∆z=

1km, CFLadv = 0.9. Initial data (top left, contours as in Figures 5-6) and computed value at final time T =

480000s in compressible mode (top right), pseudo-incompressible mode (middle left), hydrostatic mode (middle

right). Contours in the range [−0.005,0.005]K with a 0.001K interval. The bottom plots show the difference

between the compressible run and the pseudo-incompressible run (left) and between the compressible run and the

hydrostatic run (right). Contours in the range [−4,6]∗10−4 K with a 10−4 K interval (left), [−1.5,1.5]∗10−5 K

with a 3∗10−6 K interval (right). Negative contours are dashed.
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FIG. 8. Temperature perturbation (top), vertical velocity (middle) and horizontal velocity (bottom) at final

time T = 28800s for the inertia-gravity wave test with rotation of Baldauf and Brdar (2013), ∆x = 5km, ∆z =

125m, CFLadv = 0.9. Initial perturbation as in Figure 6,top. Contours in the range [−6,6] ∗ 10−3 K with a

1.2∗10−3 K interval (top), [−1.2,1.2]∗10−3 ms−1 with a 2∗10−4 ms−1 interval (middle), [−0.012,0.012]ms−1

with a 2∗10−3 ms−1 interval (bottom). Negative contours are dashed, zero contours not shown.
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