
A LiveCoMS Tutorial

Introduction to Markov state
modeling with the PyEMMA software
— v1.0
Christoph Wehmeyer1†*, Martin K. Scherer1†, Tim Hempel1†, Brooke E. Husic1,2,
Simon Olsson1, Frank Noé1,3*
1Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee
6, 14195 Berlin, Germany; 2Department of Chemistry, Stanford University, 333 Campus
Drive, Stanford, California 94305, USA; 3Department of Chemistry, Rice University, 6100
Main Street, Houston, Texas 77005, USA

This LiveCoMS document is
maintained online on
GitHub at
github.com/markovmodel/
pyemma_tutorials; to
provide feedback,
suggestions, or help
improve it, please visit the
GitHub repository and
participate via the issue
tracker.
This version dated
November 20, 2018
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1 Introduction
PyEMMA [1] (http://emma-project.org) is a software for the
analysis of molecular dynamics (MD) simulations using Mar-
kov state models [2–6] (MSMs). The package is written in
Python (http://python.org), relies heavily on NumPy/SciPy [7,
8], and is compatible with the scikit-learn [9] framework for
machine learning.
1.1 Scope
In this tutorial, we assume that the reader is familiar with MD
simulation and standard analysis of MD simulations of pep-
tides and proteins, such as computation of torsion angles and
distances (see Ref. [10] for a review on the MD simulation of
biomolecules, and Ref. [11] for a tutorial on MD simulations).
We further assume that the reader is familiar with the

basic ideas and theory underlying Markov modeling and will
only give a brief reminder of the basic concepts in Section 2.
For those seeking further resources, the recent perspec-

tive “Markov State Models: From an Art to a Science” [12] pro-
vides a timeline of methods advances with relevant citations,
while “Markov models of molecular kinetics: Generation and vali-
dation” [13] describes the basic MSM theory andmethodology
and provides the underlying mathematics in detail. Addition-
ally, two textbooks have been published that focus on com-
putational methods and applications [14] and mathematical
theory [15].

In addition to publications on the theory and applica-
tion of Markov state modeling [2, 6, 16–26], we also recom-
mend the literature on TICA [27–30], transition path theory
(TPT) [31, 32], hidden Markov state models (HMMs) [33–35],
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and variational techniques [36–38], as these topics play im-
portant roles within the standard MSM workflow.
The tutorial is divided into lessons on specific topics, each

accompanied by a Jupyter [39] notebook containing code,
instructions, and exercises. The lessons start with a showcase
of the PyEMMA workflow and follow up with in-depth lessons
on specific topics.
2 Prerequisites
In the following, we summarize the recommended theory
and background knowledge of Markov state modeling for this
tutorial. Then, we address the software required to work
through the lessons.
2.1 Markov state models
Markov state modeling is a mathematical framework for the
analysis of time-series data, often but not limited to high-
dimensional MD simulation datasets. In its standard formu-
lation, the creation of an MSM involves decomposing the
phase or configuration space occupied by a dynamical sys-
tem into a set of disjoint, discrete states, and a transition
matrix P(τ ) = [pij(τ )] denoting the conditional probability offinding the system in state j at time t + τ given that it was in
state i at time t. Let us make two remarks to avoid common
misconceptions:
1. Equilibrium: While most analysis techniques require
simulation trajectories to be long enough to sample
from the equilibrium distribution, this is not required
for MSMs. Because MSMs are using the conditional
probability pij(τ ), they are useful for the analysis of shortsimulation trajectories with arbitrary starting points—
see [25] for restrictions.

2. Markovianity: An MSM is a memoryless model. Early
MSM papers have argued that accurate MSMs can be
found if a few states with high barriers are captured by
the MSM states so as to achieve a Mori-Zwanzig projec-
tion with fast-decaying memory [4, 5, 40]. The modern
view, however, is that MSMs can be highly accurate if the
MSM states discretize the collective coordinates of the
slowest processes well [13]. This mainly requires that
the system is characterized by only a few slow processes
at lag time τ , which is true for cooperative systems such
as most proteins, but not for highly frustrated systems
such as glasses.

In order to create a Markov state model for a dynamical
system, each data point in the time series is assigned to a
state. Given an appropriate lag time, every pairwise transi-
tion at that lag time is counted and stored in a count matrix.
Then, the count matrix is converted to a row-stochastic tran-
sition probability matrix P, which is defined for the specified

lag time. For MD simulations in equilibrium, P should obey
detailed balance which is enforced by constraining the esti-
mation of P to the following equations:

πipij = πjpji, (1)
where πi is the stationary probability of state i and pij is theprobability of transitioning to state j conditional on being in
state i. The constraints (1) are omitted if MD simulations are
not conducted in equilibrium, e.g., for systems experiencing
a pulling force or an external potential—see [41] for a recent
review on nonequilibrium MSMs. For the remainder of this
section we will simplify the matter by assuming the more
common scenario of MD simulations without external forces
and (1) to hold.
When estimating an MSM it is critical to choose a lag time,

τ , which is long enough to ensure Markovian dynamics in
our state space, but short enough to resolve the dynamics
in which we are interested. Plotting the implied timescales
(ITS) as a function of τ can be a helpful diagnostic when se-
lecting the MSM lag time [40]. The ITS ti approximates thedecorrelation time of the ith process and is computed from
the eigenvalues λi of the MSM transition matrix via,

ti = –τln |λi(τ )| . (2)
When the ITS become approximately constant with the lag
time, we say that our timescales have converged and choose
the smallest lag time with the converged timescales in order
to maximize the model’s temporal resolution.
Once we have used the ITS to choose the lag time, we can

check whether a given transition probability matrix P(τ ) is
approximately Markovian using the Chapman-Kolmogorov
(CK) test [13, 18]. The CK property for a Markovian matrix is,

P(kτ ) = Pk(τ ), (3)
where the left-hand side of the equation corresponds to an
MSM estimated at lag time kτ , where k is an integer larger
than 1, whereas the right-hand side of the equation is our
estimated MSM transition probability matrix to the kth power.
By assessing how well the approximated transition probabil-
ity matrix adheres to the CK property, we can validate the
appropriateness of the Markovian assumption for the model
(see Sec. IV.F in [13]).
Once validated, the transition matrix can be decomposed

into eigenvectors and eigenvalues. The highest eigenvalue,
λ1(τ ), is unique and equal to 1. Its corresponding left eigen-vector is the stationary distribution, π:

π>P(τ ) = π>. (4)
The subsequent eigenvalues λi>1(τ ) are real with absolutevalues less than 1 and are related to the characteristic or
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implied timescales of dynamical processes within the system
(eq. 2). The dynamical process themself (for i > 1) are encoded
by the right eigenvectors ψi,

P(τ )ψi = λi(τ )ψi, (5)
where the eigenvalue-eigenvector pairs are indexed in de-
creasing order. The coefficients of the eigenvectors represent
the flux into and out of the Markov states that characterize
the corresponding process. The right eigenvector ψ1 is avector consisting of 1’s.
2.2 Variational approach and TICA
The theory described in the previous section required the
decomposition of the phase or configuration space occupied
by a dynamical system into discrete, disjoint states. Starting
from the output of an MD simulation of a protein, there are
several steps that can be taken to obtain an MSM from the
original configuration space:
• Featurization – The Cartesian coordinates characterizing
each frame of the MD trajectory are transformed into
an intuitive basis such as the protein’s dihedral angles
or contact distance pairs.
• Dimensionality reduction – Optionally, a basis set trans-
formation can be performed that produces a linear (or
nonlinear) combination of the features in the previous
step. Frequently, time-lagged independent component
analysis (TICA) [27–29] is used to transform the features
into a set of slow coordinates.
• Clustering – This is the step at which the state decompo-
sition occurs. The features or TICs are grouped into a set
of states using a clustering algorithm such as k-means.
• Transition matrix approximation – At this stage, transi-
tions are counted at a pre-specified lag time, and the
estimation and validation described in the previous sec-
tion are performed.

It is apparent that there are many choices involved in MSM
construction such as what features should be used and how
many states should be chosen. In 2013, the variational ap-
proach to conformational dynamics (VAC) was derived, which
enabled an objective comparison among different state de-
composition choices for models built with the same Marko-
vian lag time [36]. More recently, the more general variational
approach to Markov processes (VAMP) has been developed
in order to facilitate the approximation and comparison of
reversible models for basis sets that are continuous, as op-
posed to discrete states [37]. The VAMP can thus be used
to perform model selection. Specifically, we use the VAMP-2
score, which captures the kinetic variance explained by the

model. However, the MSM lag time cannot be optimized us-
ing VAMP, and must be chosen using a separate validation as
described above [42].
A commonly used method for dimensionality reduction,

TICA, is a particular implementation of the VAC. To apply TICA,
we need to compute instantaneous (C(0)) and time-lagged
(C(τ )) covariance matrices with elements

cij(0) = 〈x̃i(t) x̃j(t)〉t (6)
cij(τ ) = 〈x̃i(t) x̃j(t + τ )〉t , (7)

where x̃i(t) denotes the ith feature at time t after the meanhas been removed. By default, PyEMMA estimates (6,7) us-
ing symmetrization [27]. This symmetrization induces a sig-
nificant bias when using non-equilibrium data from short
trajectories [43]. As an alternative, the so-called Koopman
reweighting estimator is available which avoids this bias, but
comes at the cost of a large variance [43].
After estimating the covariance matrices, TICA solves the

generalized eigenvalue problem
C(τ )ui = C(0)λi(τ )ui , i = 1, . . . ,n, (8)

to obtain independent component directions ui which ap-proximate the reaction coordinates of the system, where the
pairs of eigenvalues and independent components are sorted
in descending order. A way to measure the contribution of
each independent component to the kinetics is obtained by
the kinetic distance [29] which assigns a cumulative variance
fraction to the first d independent components:

cd =
∑d
i=2 λ2i (τ )
TKV

, (9)
where

TKV = n∑
i=2

λ2i (τ ) (10)
is the total kinetic variance explained by all n features.

If we further scale the independent components ui by thecorresponding eigenvectors λi(τ ), we obtain a kinetic map [29]which is the default behavior in PyEMMA.
Note, though, that TICA requires the dynamics to be simu-

lated at equilibrium conditions. To use TICA with nonequilib-
rium MD, e.g., subject to external forces, or simply to perform
dimension reduction on short trajectory data without worry-
ing about reweighting, we recommend to use VAMP [37].
For all these approaches, dimensionality reduction is per-

formed by projecting the (mean free) features x̃(t) onto the
leading d independent componentsUd = [u1 . . .ud],

y(t) = U>d x̃(t), (11)
where, in practice, d is chosen such that a specific fraction of
kinetic variance cd is retained (e.g., 95%).
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Figure 1. The HMM transition matrix P̃(τ ) propagates the hiddenstate trajectory s̃(t) (orange circles) and, at each time step t, theemission into the observable state s(t) (cyan circles) is governed bythe emission probabilities χ (s(t)|s̃(t)).

2.3 Hidden Markov state models
The estimation of an MSM requires the dynamics between
microstates to be Markovian. However, in case of a poor di-
mension reduction and/or discretization or short trajectories,
we cannot anticipate this to be the case. We illustrate this
point in notebook 07.
An alternative, which is much less sensitive to poor dis-

cretization, is to estimate a hidden Markov model (HMM) [33–
35, 44]. HMMs are less sensitive to the discretization error as
they sidestep the assumption of Markovian dynamics in the
discretized space (illustrated in Fig. 1). Instead, HMMs assume
that there is an underlying (hidden) dynamic process which
is Markovian and gives rise to our observed data, e.g., the
(n states) discretized trajectories s(t). This is a powerful prin-
ciple as we know that there is indeed an underlying process
which is Markovian: our molecular dynamics trajectories.
To estimate an HMM, we need a spectral gap after the

mth timescale; in practice, a timescale separation of tm ≥2tm+1 is sufficient [1]. The HMM then consists of a transitionmatrix P̃(τ ) betweenm < n hidden states and a row-stochastic
matrix (χ) of probabilities χ (s|s̃) to emit the discrete state s
conditional on being in the hidden state s̃.
An HMM estimation always yields a model with a small

number of (hidden) states where each state is considered
to be metastable and, thus, the number of hidden states is
a new hyper-parameter which needs to be chosen carefully
(see notebook 07). As the HMMs—like MSMs—approximate
the full phase-space dynamics, we can similarly compute the
metastable kinetics, apply TPT, visualize the network, and
obtain physical observables.
For an extensive discussion of details about HMM prop-

erties and the estimation algorithm in general, we suggest
Ref. [45]. For its specific application to the discretization of
MSMs using HMMs, we suggest Ref. [33]. A generalized exten-
sion for estimating this type of low-dimensional projection
from the data is given in Ref. [46].

2.4 Software and installation
We utilize Jupyter [39] notebooks to show code exam-
ples along with figures and interactive widgets to display
molecules. The user can install all necessary packages
in one step using the conda command provided by the
Anaconda Python stack (https://conda.io/miniconda.html).
We recommend Anaconda because it resolves and installs
dependencies as well as provides pre-compiled versions
of common packages. The tutorial installation contains a
launcher command to start the Jupyter notebook server as
well as the notebook files.
You can install the tutorial’s dependencies in a new conda

environment and start the notebook server via
conda create -n pyemma_tutorials
conda activate pyemma_tutorials
conda install -c conda-forge pyemma_tutorials
pyemma_tutorials

or refer to github.com/markovmodel/pyemma_tutorials for
more detailed installation and usage instructions.
The data for the demonstrated test systems is down-

loaded upon the first use and is cached for future invocations
of the tutorial.
The underlying software stack for running the tutorial

consists of:
• PyEMMA – MSM/HMM estimation, validation, analysis,
and visualization, and its dependencies [1]

• mdshare – A downloader for MD data from a public
server

• notebook – The Jupyter [39] notebook tool used for
running the tutorials, along with extension packages
jupyter_contrib_nbextensions and nbexamples

• matplotlib – A plotting library [47]
• nglview – Widget for active viewing of molecular struc-
tures in Jupyter environments [48]

The tutorial software is currently supported for Python
versions 3.5 and 3.6 on the operating systems Linux, OSX,
and Windows.
Should the user prefer not to use Anaconda, a manual

installation via the pip installer is possible. Alternatively, one
can use the Binder service (https://mybinder.org) to view and
run the tutorials online in any browser.

3 PyEMMA tutorials
This tutorial consists of nine Jupyter notebooks which intro-
duce the basic features of PyEMMA. The first notebook 00,
which we will summarize in the following, showcases the en-
tire estimation, validation, and analysis workflow for a small
example system. The goal of this introductory notebook 00 is
to provide the user with the typical steps required to obtain
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a validated MSM analysis of protein or peptide simulation
data. The seven subsequent notebooks 01–07 provide in-
depth lessons on specific topics, and the last notebook 08
contains guidelines on how to deal with common problems
during MSM estimation.
3.1 The PyEMMA workflow

MD data

Featurization
feature selection

➜     [01]

Dim. reduction
TICA
VAMP
➜     [02]

Discretization
k-means
regspace
...
➜    [02]

MSM analysis
spectral analysis
stationary properties
kinetic properties
uncertainty estimation
➜     [04]

MSM estimation & validation
Maximum likelihood (ML) MSM
Bayesian MSM
➜     [03]
ML hidden MSM
Bayesian hidden MSM
➜     [07]

implied timescales convergence
Chapman-Kolmogorov test
➜     [03], [04], [07]

identifying common problems
➜     [08]

metastable states with PCCA++
TPT
➜     [05]
Experimental observables
➜     [06]

discrete
trajs

Markov 
model

discrete
trajs

Markov 
model Knowledge

Figure 2. The PyEMMA workflow: MD trajectories are processedand discretized (first row). A Markov state model is estimated fromthe resulting discrete trajectories and validated (middle row). Byiterating between data processing and MSM estimation/validation, adynamical model is obtained that can be analyzed (last row).
In short, the workflow (Fig. 2) for a full analysis of an MD

dataset might consist of,
• extracting molecular features from the raw data (01),
• transforming those features into a suitable, low dimen-
sional subspace (02),
• discretizing the low dimensional subsets into a state
decomposition (02),
• estimating a maximum likelihood or Bayesian MSM
from the discrete trajectories and performing valida-
tion tests (03),
• analyzing the stationary and kinetic properties of the
MSM (04),
• finding metastable macrostates and applying transition
path theory (TPT) to identify the pathways of conforma-
tional change (05),
• computing expectation values for experimental observ-
ables (06), and
• coarse-graining the MSM using a hidden Markov model
approach (07).

For the remainder of this manuscript we will walk through
the first notebook 00. In notebook 00 we analyze a dataset
of the Trp-Leu-Ala-Leu-Leu pentapeptide (Fig. 3a), consisting
of 25 independent MD trajectories conducted in implicit sol-
vent with frames saved at an interval of 0.1 ns. We present the
results obtained in this notebook, thereby providing an exam-
ple of how results generated using PyEMMA can be integrated
into research publications. The figures that will be displayed

in the following are created in the showcase notebook 00 and
can be easily reproduced.
Note that the modeler has to select hyper-parameters at

most stages throughout the workflow. This selection must be
done carefully as poor choices make it hard, or even impossi-
ble, to build a good MSM.
While there exist automated schemes [49] for cross-val-

idated optimization in the full hyper-parameter space, we
chose to adopt a sequential approach where only the hyper-
parameters of the current stage are optimized. This approach
is not only computationally cheaper but allows us to discuss
the significance of the necessary modeling choices.
3.2 Feature selection
(a)

(b) (c)

(d)
backbone
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Figure 3. Example analysis of the conformational dynamics of apentapeptide backbone: (a) The Trp-Leu-Ala-Leu-Leu pentapeptidein licorice representation [55]. (b) The VAMP-2 score indicates whichof the tested featurizations contains the highest kinetic variance.(c) The sample free energy projected onto the first two time-laggedindependent components (ICs) at lag time τ = 0.5 ns shows multipleminima and (d) the time series of the first two ICs of the first trajectoryshow rare jumps.
In Markov state modeling, our objective is to model the

slow dynamics of a molecular process. In order to approxi-
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mate the slow dynamics in a statistically efficient manner, a
lower dimensional representation of our simulation data is
necessary. However, the features (e.g. torsion angles, dis-
tances or contacts) which best represent the slow dynamical
modes of a given molecular system are unknown a priori [50].
Fortunately, the variational principle of conformational dy-
namics [36, 51] and themore general variational approach for
Markov processes (VAMP) [37] provide a systematic means to
quantitatively compare multiple representations of the simu-
lation data. In particular, we can use a scalar score obtained
using VAMP to directly compare the ability of certain features
to capture slow dynamical modes in a particular molecular
system. In notebook 01, we present in detail how to extract
features from MD datasets and how to systematically com-
pare them.
Throughout this tutorial, we utilize the VAMP-2 score,

which maximizes the kinetic variance contained in the fea-
tures [29]. We should always evaluate the score in a cross-
validated manner to ensure that we neither include too few
features (under-fitting) or too many features (over-fitting) [37,
38]. To choose among three different molecular features re-
flecting protein structure, we compute the (cross-validated)
VAMP-2 score (notebook 00). Although we cannot MSM opti-
mize lag times with a variational score[42], such as VAMP-2, it
is important to ensure that properties that we optimize are
robust as a function of lag time. Consequently, we compute
the VAMP-2 score at several lag times (notebook 00). We find
that the relative rankings of the different molecular features
are highly robust as a function of lag time. We show one ex-
ample of this ranking and the absolute VAMP-2 scores for lag
time 0.5 ns in Fig. 3b. We find that backbone torsions contain
more kinetic variance than the backbone heavy atom posi-
tions or the distances between them (Fig. 3b). This suggests
that backbone torsions are the best of the options evaluated
for MSM construction.
We note that deep learning approaches for feature se-

lection have recently been developed that may eventually
replace the feature selection step [52–54].
3.3 Dimensionality reduction
Subsequently, we perform TICA [27–29] in order to reduce the
dimension from the feature space, which typically contains
many degrees of freedom, to a lower dimensional space that
can be discretized with higher resolution and better statistical
efficiency. TICA is a special case of the variational princi-
ple [36, 51] and is designed to find a projection preserving
the long-timescale dynamics in the dataset. Here, performing
TICA on the backbone torsions at lag time 0.5 ns yields a four
dimensional subspace using a 95% kinetic variance cutoff
(note that we perform a cos / sin-transformation of the tor-
sions before TICA in order to preserve their periodicity). The

sample free energy projected onto the first two independent
components (ICs) exhibits several minima (Fig. 3c). Discrete
jumps between theminima can be observed by visualizing the
transformation of the first trajectory into these ICs (Fig. 3d).
We thus assume that our TICA-transformed backbone torsion
features describe one or more metastable processes.
We demonstrate how to apply TICA, suggest how to inter-

pret the projected coordinates, and compare the results to
other dimension reduction techniques in notebook 02.
3.4 Discretization
TICA yields a representation of our molecular simulation data
with a reduced dimensionality, which can greatly facilitate
the decomposition of our system into the discrete Marko-
vian states necessary for MSM estimation. Here, we use the
k-means algorithm to segment the four dimensional TICA
space into k = 75 cluster centers. The number of cluster
centers has been chosen to optimize the VAMP-2 score in a
manner identical to how the feature selection was carried
out above, which is shown in the showcase notebook 00. A
detailed comparison between different clustering techniques
is provided in notebook 02.
3.5 MSM estimation and validation
A necessary condition for Markovian dynamics in our reduced
space is that the ITS are approximately constant as a func-
tion of τ ; accordingly, we chose the smallest possible τ which
fulfills this condition within the model uncertainty. The uncer-
tainty bounds are computed using a Bayesian scheme [16, 23]
with 100 samples. In our example, we find that the four slow-
est ITS converge quickly and are constant within a 95% con-
fidence interval for lag times above 0.5 ns (Fig. 4a). Using
this lag time we can now estimate a (Bayesian) MSM with
τ = 0.5 ns.
To test the validity of our MSM, we perform a Chapman-

Kolmogorov (CK) test. Visualizing the full transition probability
matrix T is difficult; we therefore coarse-grain T into a smaller
number of metastable states before performing the test. An
appropriate number of metastable states can be chosen by
identifying a relatively large gap in the ITS plot. For this anal-
ysis, we chose five metastable states. The CK test (Fig. 4b)
shows that predictions from our MSM (blue-dashed lines)
agrees well with MSMs estimated with longer lag times (black-
solid lines) Thus, the CK test confirms that five metastable
states is an appropriate choice and shows that the MSM we
have estimated at lag time τ = 0.5 ns indeed predicts the long-
timescale behavior of our system within error (blue/shaded
area).

In notebook 03, we demonstrate in detail how to estimate
and validate MSMs with PyEMMA.
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Figure 4. Example analysis of the conformational dynamics of a pen-tapeptide backbone: (a) The convergence behavior of the impliedtimescales associated with the four slowest processes. The solidlines refer to the maximum likelihood result while the dashed linesshow the ensemble mean computed with a Bayesian sampling proce-dure [23]. The black line (marking equality of timescale and lag time)with grey area indicates the timescale horizon below which the MSMcannot resolve processes. As implied timescales are well-convergedat τ = 0.5 ns, this lag time is chosen for subsequent MSM estimation.(b) Chapman-Kolmogorov test computed using an MSM estimatedwith lag time τ = 0.5 ns assuming 5 metastable states. Predictionsfrom this model agree with higher lag time estimates within confi-dence intervals. Implied timescales convergence as well as a passingChapman-Kolmogorov test are a necessary condition in MSM vali-dation. In both panels, the (non-grey) shaded areas indicate 95%confidence intervals computed with the aforementioned Bayesiansampling procedure.

3.6 Analyzing the MSM
We can now directly extract several thermodynamic and ki-
netic properties from the estimated and validated model. An
example of the former is the free energy surface in the projec-
tion onto the first two TICA components (Fig. 5a) reweighted
by the MSM stationary distribution.
A spectral clustering using the PCCA++ algorithm [56–58]

allows us to coarse-grain the 75 k-means microstates into
five metastable macrostates (Fig. 5b) Si, i = 1, . . . , 5, for whichwe then approximate the stationary probabilities and relative
free energies (defined up to an additive constant)

macrostate Si πSi GSi /kBT
S1 0.004 5.567
S2 0.014 4.293
S3 0.021 3.841
S4 0.021 3.875
S5 0.940 0.062

using the relation
GSi = –kBT ln∑

j∈Si

πj, (12)
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Figure 5. Example analysis of the conformational dynamics of a pen-tapeptide backbone: (a) The reweighted free energy surface projectedonto the first two independent components exhibits five minimawhich (b) PCCA++ identifies as five metastable states. (c) The secondright eigenvector shows that the slowest process shifts probabilitybetween the least probable state (S1) and the other states, in particu-lar states (S4, S5), whereas (d) the committor S2 → S4 indicates thatstates S(1,3,5) act as a transition region between states S2 and S4.

where πj denotes the MSM stationary weight of the jth mi-crostate.
In order to interpret the slowest relaxation timescales, we

refer to the (right) eigenvectors, as they are independent of
the stationary distribution (see Section 2.1). This enables us
to specifically study what conformational changes are hap-
pening on a particular timescale independently of the equi-
lbrium distribution. The first right eigenvector corresponds
to the stationary process and its eigenvalue is the Perron
eigenvalue 1. The second right eigenvector, on the other
hand, corresponds to the slowest process in the system. Note
that the eigenvectors are real as detailed balance has been
enforced during MSM estimation. The minimal and maxi-
mal components of the second right eigenvector indicate
the microstates between which the process shifts probability
density. The relaxation timescale of this exchange process is
exactly the corresponding implied timescale, which can be
computed from its corresponding eigenvalue using (2). In
the projection onto the first two TICA components, we iden-
tify the slowest MSM process as a probability shift between
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Figure 6. Example analysis of the conformational dynamics of a pen-tapeptide backbone: visualization of the transition paths from S2to S4. Metastable states S(1–5) are represented by an ensemble ofrepresentative structures and are arranged along the horizonal axisaccording to their committor probabilities. The three main transitionpathways starting from S2 and ending in S4 are depicted by gray ar-rows with thickness proportional to the transition flux. The dominantpathway proceeds through S5.

macrostate S1 and the rest of the system, with macrostates
S4 and S5 in particular (Fig. 5c).The mean first passage times (MFPTs) out of and into the
macrostate S1 compute to

direction mean / ns std / ns
S1 → S(2,3,4,5) 9.0 ± 1.9
S(2,3,4,5) → S1 2496.4 ± 470.0

using the Bayesian MSM.
TPT [31, 32] is a method used to analyze the statistics of

transition pathways. The TPT version of [18] can be conve-
niently applied to the estimated MSM. Here, we compute the
TPT flux between macrostates S2 and S4 (Fig. 5d). The com-mittor projection onto the first two TICA components shows
that it is constant within the metastable states defined above.
Transition regions (macrostates S(1,3,5)) can be identified bycommittor values ≈ 12 .The transition network can be additionally visualized by
plotting representative structures of the five metastable
states S(1–5) according to their committor probability (Fig. 6).It is easy to see from this depiction that the dominant
pathway from S2 to S4 proceeds through S5.More details about (spectral) properties of MSMs and how
to analyze them with PyEMMA are discussed in notebook 04
and notebook 05.
3.7 Connecting the MSM with experimental

data
MSMs can also be analyzed in the context of experimental ob-
servables. Connecting MSM analysis to experimental data can
both serve as an accuracy test of our MSM as well as provide a
mechanistic interpretation of observed experimental signals.
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Figure 7. Example analysis of the conformational dynamics of apentapeptide backbone: (a) the Trp-1 SASA autocorrelation functionyields a weak signal which, however, (b) can be enhanced if the sys-tem is prepared in the nonequilibrium condition S1. The solid/orangelines denote the maximum likelihood MSM result; the dashed/bluelines and the the shaded areas indicate sample means and 95% con-fidence intervals computed with a Bayesian sampling procedure [23].

Since we have both the stationary and dynamic properties of
the molecular system encoded in the MSM transition proba-
bility matrix, we can compute observables that involve both
stationary ensemble averages as well as correlation functions.
As an example, here we look at the fluorescence corre-

lation of Trp-1, since this terminal tryptophan is a realistic
experimental observable for our pentapeptide system. In
order to compute the fluorescence correlation functions we
require a microscopic, instantaneous value of the tryptophan
fluorescence for each of the original 75 MSM microstates.
To approximate the fluorescence signal in our pentapeptide
system, we use the mdtraj library [59] to compute the sol-
vent accessible surface area (SASA) [60] of Trp-1. Now that
we have an approximation of the fluorescence in each of
our MSM states, we can use PyEMMA to compute the fluo-
rescence autocorrelation function (ACF) from our MSM (7a).
Note how the computed ACF has a very small response (i.e.,
signal amplitude).
Using PyEMMA, we can simulate the relaxation of an

observable if we had prepared our molecular system
in a nonequilibrium initial condition. The experimental
counterpart of such a prediction could be a temperature
or pressure jump experiment or a stopped flow assay. To
illustrate such an experiment, we initialize our molecular
ensemble as the metastable distribution of S1 and followthe predicted fluorescence signal as it relaxes to equilibrium
(7b). We see that the predicted relaxation signal has a much
larger amplitude for the nonequilibrium initialization, making
it more likely to be experimentally measurable.
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In addition to a detailed demonstration of the above, note-
book 06 demonstrates how to compute J-couplings and dy-
namic fingerprints from MSMs.
3.8 Summary
In this section, we have summarized how to conduct an MSM-
based analysis of biomolecular dynamics data using PyEMMA.
For the full analysis, please refer to the first notebook 00.
All notebooks as well as detailed installation instructions are
available on github.com/markovmodel/pyemma_tutorials.
3.9 Modeling large systems
When estimating MSMs for large systems, challenges may
arise that are mostly system dependent.
A case in point is the curse of dimensionality: it is difficult

to discretize a high dimensional feature space. While it is
somewhat computationally demanding, more importantly,
Euclidean distances become less meaningful with increas-
ing dimensionality [61] and thus cluster assignments based
on that norm may yield a poor discretization. Especially for
large systems, it is thus particularly important to first find a
suitable set of features, and to further apply dimensionality
reduction techniques (e.g., TICA, VAMP, if applicable) to ob-
tain a low dimensional representation of the slow dynamics.
Hidden Markov models (HMMs) might further mitigate poor
discretization to a certain extent [33].
Furthermore, the slowest process in a system as identi-

fied by an MSM or HMM might not be the one a modeler is
interested in [62]. For instance, the slowest process might
correspond to a biologically irrelevant side chain flip that only
occurred once in the data set. This problemmay be mitigated
by choosing a more specific set of features.
Additional technical challenges for large systems include

high demands on memory and computation time; we explain
how to deal with those in the tutorials (notebook 01). More
details on how tomodel complex systems with the techniques
presented here are described, e.g., by [63, 64]. We further
examine some symptoms that may indicate problematic or
difficult datasets, and demonstrate how to deal with them in
notebook 08.
3.10 Advanced Methods
The present tutorial presents the basics of modern Markov
state modeling with PyEMMA. However, recent years have
seen many extensions of the methodology—many of which
are available within PyEMMA. We encourage interested read-
ers to look into thesemethods in the software documentation
and to make use of the specific Jupyter notebooks distributed
with PyEMMA (http://emma-project.org).
Conventional Markov state modeling often relies on large

simulation datasets to ensure proper convergence of ther-

modynamic and kinetic properties. In one extension, Multi-
ensemble Markov models (MEMMs) [65, 66], we can integrate
unbiased and biased simulations in a systematic manner to
speed up the convergence. MEMMs consequently enable
users to combine enhanced sampling methods such as um-
brella sampling or replica exchange with conventional molec-
ular dynamics simulations to more efficiently study rare event
kinetics [67]. MEMMs are implemented in PyEMMA. Since the
many publications associated with the development of these
methods are beyond the scope of this tutorial, we refer the
reader to Sec. 8.3 of Ref. [12] and the references therein.
Another issue often faced during Markov state modeling

is a lack of quantitative agreement with complementary ex-
perimental data. This issue is not intrinsic to the Markov state
modeling approach as such, but rather is associated with sys-
tematic errors in the force field model used to conduct the
simulation. Nevertheless, using Augmented Markov models
(AMM) it is possible to build an integrative MSM which bal-
ances experimental and simulation data, taking into account
their respective uncertainties [26]. AMMs are implemented
in PyEMMA.
Recently, there have been steps towards replacing the tra-

ditional user-directed pipeline (involving featurizing, reducing
dimension, discretizing, MSM estimation and coarse-graining)
by a single end-to-end deep learning method such as VAMP-
nets [52]. Other deep learning methods for performing the
dimension reduction [53], finding reaction coordinates for
enhanced sampling [54, 68, 69], and generative MSMs [70]
have been put forward and are likely to spawn an active field
of research in its own right. Implementations of some of
these methods are available or are under development in the
deeptime package github.com/markovmodel/deeptime.

4 Author Contributions
CW, MKS, TH, SO, and FN designed research. CW, MKS, TH,
BEH, and SO developed and tested notebooks. MKS devel-
oped the software infrastructure, test, and install environ-
ment. CW, MKS, TH, BEH, SO, and FN wrote the manuscript.
For a more detailed description of author contributions,

see the GitHub issue tracking and changelog at github.com/
markovmodel/pyemma_tutorials.

5 Other Contributions
We are grateful to Nuria Plattner for providing the pentapep-
tide simulation data and Camilla Ventura Santos as well as the
entire computational molecular biology group for valuable
discussion and feedback.
For a more detailed description of contributions from the

community and others, see the GitHub issue tracking and
changelog at github.com/markovmodel/pyemma_tutorials.
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