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Abstract

Regimes of interactions between motions on different time-scales are investigated in the FLOSSII
dataset for nocturnal near-surface stable boundary layer (SBL) turbulence. The non-stationary response
of turbulent vertical velocity variance to non-turbulent, sub-mesoscale wind velocity variability is anal-
ysed using the bounded variation, finite element, vector autoregressive factor models (FEM-BV-VARX)
clustering method. Several locally stationary flow regimes are identified with different influences of sub-
meso wind velocity on the turbulent vertical velocity variance. In each flow regime, we analyse multiple
scale interactions and quantify the amount of turbulent variability which can be statistically explained
by external forcing by the sub-meso wind velocity. The state of anisotropy of the Reynolds stress tensor
in the different flow regimes is shown to relate to these different signatures of scale interactions. In flow
regimes under considerable influence of the sub-mesoscale wind variability, the Reynolds stresses show a
clear preference for strongly anisotropic, one-component states. These periods additionally show stronger
persistence in their dynamics, compared to periods of more isotropic stresses. The analyses give insights
on how the different topologies relate to non-stationary turbulence triggering by sub-mesoscale motions.

1 Introduction

Nocturnal and stable boundary layers (SBL) represent a challenge to numerical weather prediction [Sandu
et al., 2013, Holtslag et al., 2013]. Difficulties arise due to the unsteady nature of the flow caused by the
interactions of processes on multiple scales. In strong wind conditions, mechanical forcing of turbulence
is enough to overcome buoyant damping and turbulence is generally continuous and rather well described
by classical similarity theory. In weak-wind conditions however, sporadic turbulence can be triggered by
localised shear accelerations due to sub-mesoscale motions such as internal gravity waves, density currents,
wind gusts or other motions [Sun et al., 2004, Mahrt, 2014, Sun et al., 2015, Mortarini et al., 2017]. The
non-turbulent, small-scale motions take a variety of forms and are poorly understood and not represented
in models [Belušić and Güttler, 2010, Kang et al., 2015, Lang et al., 2017]. Such non-local scale interactions
modify the characteristics of boundary layer turbulence, giving it an intermittent nature, with a tendency
to be decoupled from the surface [Acevedo et al., 2015]. In this very stable regime, classical surface-based
parameterisations of turbulence fail at representing turbulence resulting from interactions with non-turbulent
unsteady flow accelerations.

Non-stationary turbulence under the influence of submeso motions has been analysed with different data
analysis methods [Mahrt et al., 2012b, Mahrt and Thomas, 2016, Cava et al., 2016, Mortarini et al., 2017].
A method to classify flow regimes based on the influence of submeso motions has been proposed recently
using non-stationary vector autoregessive factor models with external influences (VARX) and data clustering
based on a finite element, bounded variation method (FEM-BV-VARX) [Horenko, 2010a]. The methodology
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provides the means of objectively classifying non-stationary dynamics influenced by external variables. This
statistical clustering technique has proven powerful for classifying large scale atmospheric flow data, e.g. for
identifying global atmospheric circulation regimes and blockings [O’Kane et al., 2016, Risbey et al., 2015]. In
the case of SBL turbulence, a combination of multiscale data filtering and FEM-BV-VARX clustering, was
used by Vercauteren and Klein [2015] and Vercauteren et al. [2016] to characterise the interactions between
sub-mesoscale non-turbulent motions and turbulence. This strategy was found to successfully identify periods
in which non-turbulent motions are active and statistically modulate the turbulence dynamics, corresponding
to very stable periods.

As an additional effect on the structure of turbulence, stable temperature stratification results in a strong
attenuation of the vertical turbulent motions by buoyancy forces, while shear forcing exerts a straining
action. The combination of these effects can lead to strongly anisotropic turbulence [Smyth and Moum,
2000]. Turbulence anisotropy leads to additional difficulties in parameterising turbulence, and Stiperski
and Calaf [2018] have recently given a new perspective on the failure of traditional similarity scaling by
relating it to the topology of the Reynolds stress tensor, based on observational evidence. Anisotropy
of the energy-containing scales is quantified using the anisotropy stress tensor and the structure of the
tensor can be conveniently represented using two invariants [Lumley, 1978]. Based on the eigenvalues of
the anisotropy tensor, one can classify turbulence according to three limiting states [Pope, 2000]. The one-
component limiting state describes a flow where one eigenvalue is much larger than the other two (sometimes
referred to as rod-like turbulence), while the two-component limit has two directions with equal magnitude
(and is sometimes referred to as pancake-like turbulence) and all three directions have equal magnitude
in the three component, isotropic limit. Stiperski and Calaf [2018] showed that while close to isotropic
and close to two-component axisymmetric stresses agreed well with existing SBL scaling relationships, one-
component axisymmetric stresses deviated strongly from similarity scaling. Delineating isotropic from one
or two-component cases appeared possible by using a combination of the wind speed and the turbulent
kinetic energy (TKE), but differentiating between the one- and two-component cases themselves appeared
more difficult. The delineation based on the wind speed and TKE is the approach taken by the Hockey Stick
Transition (HOST) framework [Sun et al., 2015], based on the observation that turbulence shows two distinct
behaviours depending on the wind speed. The low wind speed part of the HOST framework corresponds
to intermittent turbulence where the TKE is quasi-invariant with the mean wind speed, and where the
Reynolds stress tensor is highly anisotropic [Stiperski and Calaf, 2018]. This regime is also characterised
by the presence of myriads of anisotropic sub-mesoscale motions which act as trigger for turbulence. The
combination of multiple scale analysis of turbulence and statistical clustering proposed by Vercauteren and
Klein [2015] and Vercauteren et al. [2016] allows to identify flow regimes in which scales interact differently,
and the regimes may correspond to different states of anisotropy.

The forcing of turbulence by wave-like non-turbulent motions typically occurs on scales just above the
turbulent scales. In the Kolmogorov view of turbulence, the cascade of energy from large to small scales
is accompanied by a loss of information about the geometry of the large scales. The unsteady forcing
may result in non-equilibrated, highly anisotropic turbulence as indicated by multiscale decompositions in
Vercauteren et al. [2016]. According to the theory, highly anisotropic turbulence should tend to equilibrate
to quasi-isotropic states at the small scales [Pope, 2000]. The dynamical evolution of large scale anisotropic
structures towards isotropy is however a subject of research, which can be studied based on the anisotropy
tensor structure. Choi and Lumley [2001] showed experimental evidence that the rate of return to isotropy
depends on the initial topological state and is very slow for cigar-shaped, axisymmetric turbulence at a
high Reynolds number. Their analyses also showed that the rate of return to isotropy was not linearly
proportional to the degree of anisotropy as assumed by Rotta’s classical return-to-isotropy model (see eg.
Pope [2000]), but followed more complex, nonlinear dependences on the anisotropy tensor. Brugger et al.
[2018] analysed the route to isotropy based on atmospheric measurements in the surface layer for canopy
flows and highlighted a large influence of thermal stratification. Their analyses showed that trajectories in
the phase space (for decreasing scales) defined by the anisotropy invariants deviate from those of return-
to-isotropy known for homogeneous turbulence. In stably stratified conditions, the influence of anisotropic
sub-mesoscale motions probably affects the turbulence anisotropy dynamics and this topic is investigated
here.

A way to analyse the dynamical evolution of turbulence depending on its initial topology is to consider
the dynamics in the anisotropy phase space defined by the invariants of the anisotropy tensor. Lucarini et al.
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[2016] recently developed indicators that proved able to quantify the persistence of dynamics in phase space
as well as the local dimension of the dynamics and applied them in the context of climate dynamics [Faranda
et al., 2017a, Messori et al., 2017]. Quantifying the persistence of the turbulent states depending on their
topology informs us on how constrained or not the dynamical evolution of turbulence is in a given starting
state of anisotropy. Quantifying the dimension of the dynamics at each point of the anisotropy phase space
additionally enables us to investigate the existence of preferred directions of the evolution of turbulent states
of anisotropy.

In this work we will focus on following questions: Do flow regimes separated according to their scale-
interactions properties correspond to unique states of anisotropy? How persistent are different states of
anisotropy and is there a preferred trajectory in the anisotropy phase space in stably stratified conditions?
We will address these questions based on turbulence measurements from the Fluxes Over Snow Surfaces II
campaign (FLOSSII).

2 Methods

2.1 Dataset

The analysis is based on turbulence data collected during the Fluxes Over Snow Surfacess II (FLOSSII)
experiment that was conducted from 20 November 2002 to 4 April 2003 over a locally flat grass surface
south of Walden, Colorado, USA, in the Arapaho National Wildlife Refuge [Mahrt and Vickers, 2005]. The
surface was often covered by a thin snow layer during the field program. The turbulence is measured by a
tower collecting data at 1, 2, 5, 10, 15, 20 and 30 m with Campbell CSAT3 sonic anemometers. The data
set was quality controlled and segments of instrument problems and meteorologically impossible values were
eliminated (Larry Mahrt, personal communication).

The following analysis is based on night-time data, taken between 18:00 and 7:00, Local Standard Time.
The period is selected because the surface sensible heat flux averaged over all nights is negative during this
time. Flow regime identification based on the FEM-BV-VARX clustering methodology (see Section 2.3)
ideally requires continuous data, however the dataset will consist of continuous night-time data separated
by gaps during the day. In order to maximise continuity of the dataset, nights with data gaps longer than
80 minutes (12 nights) as well as nights with wind flowing persistently through the measurement tower for
periods longer than 5 minutes (51 nights) were removed from the analysis. The resulting 68 nights left for
analysis have data gaps shorter than 1 minute and are deemed mostly uncontaminated. The short gaps are
linearly interpolated. The 60Hz raw data are rotated into the mean wind direction based on 30 minutes
averages using Double Rotation.

The flow characteristics of the FLOSSII dataset were analysed by Mahrt [2011], showing complex non-
stationary relationships between turbulence and sub-mesoscale wind velocity that will be analysed with the
objective FEM-BV-VARX classification strategy here. Analyses of non-turbulent structures identified as
sub-mesoscale motions by the Turbulent Event Detection (TED) method [Kang et al., 2015] revealed the
presence of complex structures affecting the turbulent dynamics.

2.2 Extracting scales of motion

The multiresolution flux decomposition (MRD) [Vickers and Mahrt, 2003] and other wavelet analysis tools
have been successfully used to analyse SBL scale-wise properties of flux. The MRD can be used to assess
the amount of flux that is due to eddies of a certain size, thereby providing a way to identify a cospectral
gap scale. The gap scale is usually identified as the scale at which the flux crosses the zero-line and indicates
the appropriate averaging period needed to separate contributions of non-turbulent sub-mesoscale of motion
from turbulent fluxes. The MRD analyses of the nocturnal FLOSSII data show that the cospectral gap
scale depends on the flow regime (not shown), but that scales smaller than approximately 1 minute mainly
correspond to turbulent fluxes. We therefore define the turbulent vertical velocity fluctuations as σw =√
w′w′, where w is the vertical wind velocity component, the overbar denotes an averaging period of 1

minute and the prime denotes deviations from the average. A sub-mesoscale horizontal mean wind speed is
defined as:

Vsmeso =
√
u2s + v2s , (1)
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where us and vs are the streamwise and lateral velocity components on sub-mesoscales. In the definition
of the sub-mesoscale fluctuations φs = φ − [φ], the overbar denotes a 1-min averaging time and the square
brackets denote a 30-min averaging time, such that these fluctuations represent the deviations of the 1-min
sub-record averages from the 30-min average. These definitions of turbulent vertical velocity fluctuations
and sub-mesoscale wind velocity fluctuations are used to analyse the non-stationary interactions between
the submeso velocity scale and turbulence. This choice of timescales is identical to the choice made by
Vercauteren and Klein [2015] and Vercauteren et al. [2016] to analyse scale interactions in the SnoHATS
dataset of SBL turbulence.

2.3 Clustering flow regimes

The Finite Element, Bounded Variation, Vector Auto-Regressive with eXternal factors (FEM-BV-VARX)
method [Horenko, 2010b,a] relates an observed variable of interest at a discrete-time t ( in our context σw(t))
to the past history of observations (σw(t − pτ), where p ∈ Z>0 and τ is the discrete-time unit step equal
to the inverse sampling frequency). Influences from external forcing variables can also be considered. In
order to cluster different stable flow regimes, we start with the hypothesis that in some flow regimes the
turbulence may be modulated to a large extent by sub-mesoscale motions. These are expected to correspond
to weak-wind, very stable periods. We therefore consider extracted sub-mesoscale horizontal velocity as the
external forcing variable influencing turbulence in the statistical model. Our classification goal is to separate
cases during which the time evolution of turbulence is modulated by the time evolution of the sub-mesoscale
wind velocity from cases during which the response of turbulence to forcing by sub-mesoscales is different or
less apparent. In order to achieve this goal using the FEM-BV-VARX method, we assume that the evolution
in time of the turbulent mixing can be approximated by a locally stationary statistical process (VARX) that
is influenced by the horizontal wind speed at specified sub-mesoscale motions. The method is thus applied
to identify different SBL flow regimes, based on the interactions of different scales of motion. The VARX
model relates the dynamics of σw(t) to the external factors Vsmeso(t−pτ), and the relationship is modulated
by a set of time-dependent, piecewise constant parameters Θ(t). The VARX model in our application takes
the following form:

σw(t) = µ(t) +B0(t)Vsmeso(t) +B1(t)Vsmeso(t− τ) + · · ·+Bp(t)Vsmeso(t− pτ) + C(t)ε(t) , (2)

where the process σw(t) is the time evolution of the vertical velocity variance measured at one location;
the external factor is the time evolution of the streamwise velocity on our previously defined sub-mesoscales
Vsmeso (Eq. 1). εt is a noise process with zero expectation, the parameters Θ(t) = (µ(t), B(t), C(t)) are
time- dependent model coefficients for the VARX process and p is the memory depth of the external factor.
The model assumes a linear relationship between σw and Vsmeso, which was shown to be appropriate by
Mahrt [2011], based on the FLOSSII dataset and by Vercauteren and Klein [2015] for the SnoHATS dataset.
Both analyses however highlighted that the linear dependence of σw on the sub-mesoscale wind speed is not
always constant. The turbulence relates to different scales of motions in a complex, non-stationary way and
we use the FEM-BV-VARX clustering method to disentangle the different relationships. Since our interest
lies mainly in characterising scale interactions, we do not consider an autoregressive part in the model (2).
The model assumes a number K of statistical processes that corresponds to the number of clusters. The
clustering method assumes that the dynamics is persistent in the following way: over time scales that are long
compared with the characteristic fluctuation time scales in the data, the timeseries of σw is best represented
by a VARX process with a fixed set of parameters. Once in a while, however, the flow regime changes, and
a different VARX provides a better reproduction of the time series’ main characteristics. The FEM-BV-
VARX method simultaneously detects such regime changes and estimates the optimal model coefficients for
the VARX processes. The assumption of local stationarity of the statistical process is enforced by setting a
persistence parameter Cp, which defines the maximum allowed number of transitions between a total of K
different statistical processes. Each individual statistical process corresponds to a different set of constant
values of the VARX model coefficients Θ, meaning that the coefficients Θ(t) are locally constant in time, and
change value at every transition between regimes. The cluster states are indicated by a cluster affiliation
function, which is calculated by the procedure. The reader is referred to Horenko [2010a] for information
regarding the minimisation procedure used to solve the clustering problem. More detailed explanations on
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the application of the classification scheme to SBL turbulence is given in Vercauteren and Klein [2015]. User
defined parameters and their choice are discussed in the results section 3.1.

2.4 Anisotropy of the Reynolds stress tensor

The forces imposed on the mean flow by the turbulent fluctuations are quantified using the Reynolds stress
tensor

u′iu
′
j =

u′1u′1 u′1u
′
2 u′1u

′
3

u′2u
′
1 u′2u

′
2 u′2u

′
3

u′3u
′
1 u′3u

′
2 u′3u

′
3

 , (3)

where u′i denotes velocity fluctuations and the overbar represents time average, i.e. u′i = ui − ui. The
anisotropic components of the tensor effectively transport momentum, while the isotropic or diagonal com-
ponents can be absorbed in a modified mean pressure [Pope, 2000]. A way to characterise anisotropy of
turbulence is to use symmetric, traceless tensors whose elements vanish in isotropic flows. The anisotropy
tensor

aij =
uiuj
2k
− δij

3
, k =

uiui
2
, (4)

in which δ is the Kronecker delta and summation over repeated indices is implied, satisfies this condition. It
was introduced by Lumley [1978] to describe the evolution of turbulence towards isotropy in homogeneous,
anisotropic flows. The anisotropy tensor has two independent principal scalar invariants (II = aijaji, III =
aijainajn) which can be obtained from the eigenvalues of the tensor and are independent of the coordinate
system. The invariants, or equivalently the eigenvalues of the tensor, are used to describe the relative
strength of the fluctuating velocity components [Pope, 2000]. Mapping the values of the two invariants on
the plane defined by II and III gives a simple graphical representation of the different states of anisotropy
of the Reynolds stresses. This representation was initially proposed by Lumley and Newman [1977] and
called an anisotropy invariant map. A functional relationship between II and III further defines a bounded
region - the Lumley triangle - on the plane of the invariants in which all physically realisable turbulence
is found. Based on the position on that triangle, one can estimate the type of anisotropy of the Reynolds
stress tensor. Indeed, the invariant II quantifies the degree of anisotropy of the Reynolds stress, while the
invariant III encodes the topological characteristic of the anisotropy, with positive values indicating mostly
one-component turbulence and negative values, mainly two-component axisymmetric turbulence. As such
there are three special limiting states that correspond to edges in the Lumley triangle: the isotropic limit
where all the eigenvalues are equal, the two-component limit where two eigenvalues are of equal magnitude
and much large than the third eigenvalue and the one-component limit where one eigenvalue is much larger
than the two others.

As an equivalent alternative to the Lumley triangle, a barycentric Lumley map based on a linear do-
main that equally weighs the different limiting states of anisotropy simplifies the graphical interpretation of
anisotropy of turbulence, avoiding nonlinear distortions [Banerjee et al., 2009]. The limiting states are placed
at x1C = (1, 0), x2C = (0, 0), and x3C = (1/2,

√
3/2) and correspond respectively to purely one-component

anisotropy (with one dominant eigenvalue), two-component axisymmetric anisotropy (with two dominant
eigenvalues of equal magnitude) and to the three component, isotropic limit. Any anisotropy state is located
as a point (xB , yB) in this phase space such that the linear combination holds (see Fig. 1)

xB = C1Cx1C + C2Cx2C + C3Cx3C = C1C +
1

2
C3C , (5)

yB = C1Cy1C + C2Cy2C + C3Cy3C =

√
3

2
C3C . (6)

The corresponding weights (C1C , C2C , C3C) are entirely determined by the eigenvalues λi (i = 1, 2, 3) of the
normalised Reynolds stress anisotropy tensor, such that C1C = λ1−λ2, C2C = 2(λ2−λ3), and C3C = 3λ3+1.

Following Stiperski and Calaf [2018], we define three regions in the barycentric Lumley map that cor-
respond to anisotropy states close to each of the three pure limiting states. These regions are determined
as kite-shaped regions of the barycentric map illustrated in Figure 1. The limiting lines for each kite were
chosen to cover 70 % of the sides of the equilateral triangle. Anisotropy states falling within each of the
limiting regions will be denoted as pure anisotropy states.
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Figure 1: Definition of the anisotropy states in the barycentric map.

2.5 Persistence and dimension of dynamical states of anisotropy

The Lumley triangle or its barycentric map counterpart define a geometric set that encapsulates all physically
realisable turbulence states. In the mathematical field of dynamical systems, the geometrical set hosting
all the trajectories of a system is defined as the attractor [Eckmann and Ruelle, 1985]. Knowledge of the
attractor informs on how often and for how long the trajectories of the system visit each region of the phase
space and for how long the trajectory stays in the neighbourhood of each point. The behaviour of the system
is entirely known if one can define those properties for each point of the attractor. In our set up, we do
know the entire attractor of the turbulent atmosphere, but we can reconstruct important information on the
dynamics via a projection on the two invariants xB and yB . This projection is a subset of the attractor of the
full turbulent system. It is a special Poincaré section because of the physical importance of the observables
used to define it. In a similar fashion as in Faranda et al. [2017b], we will study the dynamical properties of
this Poincaré section and try to infer physical information on turbulence.

Our dynamical observables therefore consist of piece wise continuous trajectories of the turbulence
anisotropy states defined by (xB(t), yB(t)), and the Poincaré recurrence theorem enables the analysis of
properties of the attracting dynamics based on time series. The Poincaré recurrence theorem essentially
states that certain dynamical systems, such as those bound to a finite volume, will after some time return
to a state very close to the initial state. The time to return to an initial state depends on its location in
phase space, and naturally on the required degree of closeness. A point (xB(t), yB(t)) in a timeseries of the
invariants of the anisotropy tensor corresponds to a point in the attractor (the barycentric map or some
part of it), and states whose distance to (xB(t), yB(t)) is small are the neighbours of that point or state.
The density of points around each state ζ, locally in space and time, defines a local dimension d(ζ) of the
dynamics. In the barycentric map, the phase-space is the plane defined by the Poincaré section (xB , yB)
and is thus two-dimensional. However if some states of anisotropy are visited less than others, locally the
dimension d of the Poincaré section may be smaller than two. For each anisotropy state ζ, a local dimen-
sion d(ζ) can be quantified based on the timeseries (xB(t), yB(t)). Furthermore, if a trajectory leaves the
neighbourhood of an initial state of anisotropy very fast, the persistence of the state will be small. If on the
contrary the trajectory remains in the neighbourhood of the initial state for some time, the anisotropy state
is more persistent. The persistence of an anisotropy state ζ is measured by an indicator θ(ζ) defined as the
inverse of the average persistence time in the neighbourhood of the anisotropy state ζ. The indicator takes
values 0 < θ < 1, where low values correspond to high persistence of the trajectory in the neighbourhood of
ζ, while values close to 1 imply that the trajectory immediately leaves the neighbourhood of the anisotropy
state ζ. The methodology used to compute the values of the local dimension d(ζ) and the persistence θ(ζ)
is presented in the appendix and follows from Lucarini et al. [2016].
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3 Results and discussion

3.1 Scale interaction properties in classified flow regimes

We use the FEM-BV-VARX framework to classify flow regimes in the FLOSSII turbulence data. The
turbulence data under consideration in Eq. (2) is the vertical velocity variance σw (defined in Section
2.2) and the external factor is the sub-mesoscale wind velocity Vsmeso (Eq. 1). The clustering analysis is
performed based on the data collected from the height of two meters. This choice ensures that the data are
within the boundary layer, which can be very shallow in strongly stable conditions. Investigations of the
height dependence of flow regimes is left for future work. Here instead, the scale interaction properties will
be analysed at different heights assuming that the regime affiliation is the same for all heights.

User defined parameters of the framework include the maximum memory depth p for the forcing variable
Vsmeso, the number of possible distinct VARX models or cluster states K and the persistence parameter
Cp, which limits the number of transitions between the states. The memory depth defines how many past
states of the external factor Vsmeso are used in the model in Eq. (2). The maximum memory depth that
we use in this model is determined by a priori calculation of the partial autocorrelation function (pacf ) for
the variable Vsmeso [Brockwell and Davis, 2002]. The correlation between the time series drops on average
after a few minutes, and the memory depth is therefore set to p = 6 (based on the average pacf over 68
nights). To determine the optimum number of K and Cp, multiple models are fitted for varied values of the
parameters K and Cp.

In the clustering analysis of Vercauteren and Klein [2015], the optimal model parameters were chosen as
the minimisers of the Akaike Information Criterion (AIC). However for the FLOSSII dataset, the AIC exhibits
asymptotic behaviour towards zero for all models in the investigated parameter space (K = 2, 3, 4, 5, 7 and
Cp = [2, 302]) and cannot be used as a selection criteria. Instead, the optimal model parameters are selected
as those that minimise the correlation between the signal σw and the model residuals εt, while maximising
the amount of variance of the signal explained by the model. By observing the change of these two quantities
over the parameter space, we found that increasing the parameters beyond K = 3 and Cp = 150 did not
reduce the correlation in the residuals and did not increase the modelled variance. Thus the choice of K = 3
and Cp = 150 is considered as an optimal model. The amount of variance of σw(t) explained by the VARX
model in the three clusters is 0.8%, 3% and 9.5%.

However, analysis of the model residuals showed that the error distribution in the cluster corresponding
to the largest explained variance was not Gaussian. This cluster has the most interaction between sub-
mesoscales and vertical velocity fluctuations as shown by the larger explained variance and we want to classify
the dynamical interactions more accurately. Therefore, we select the time series in this specific cluster and
classify it with the FEM-BV-VARX methodology further into two distinct clusters. This strategy leads to
error distributions that are closer to normally distributed in the two subsequent clusters. The reason why
this two-step procedure is helpful to the regime classification can be understood in the following way. The
clustering procedure is based on minimising the euclidean distance between the data and the statistical
model, under the constraint that the number of transitions between cluster states are bounded [Horenko,
2010b]. Since a large part of the FLOSSII data show little dynamical interactions between σw and Vsmeso

(with 0.8% resp. 3% explained variance), the mean part of the statistical model (µ(t) in (2)) has the strongest
effect in the overall distance minimisation. Indeed, inspection of the data classified in three clusters show that
those correspond in large part to different mean values of σw. The periods of largest interactions between
σw and Vsmeso also correspond to very stable flow regimes [Vercauteren and Klein, 2015] with the smallest
mean values of σw and therefore these have the least weight in the distance minimisation. Selecting only
those periods of larger dynamical interactions between σw and Vsmeso enables a second level clustering which
differentiates the dynamical interactions and not just the mean turbulent state. The fitted statistical models
resulting from the two-step clustering strategy have a high degree of reproducibility. Over five repeated
minimisation procedures for the FLOSSII data, the cluster affiliation function is consistent (or equal) to a
degree of 90%.

As an indicator of the stability of the flow, we analyse the distributions of the bulk Richardson number

Rib = (g/Θ0)
(T (z2)− T (z1)) ∆z

(V (z2)− V (z1))
2 , (7)
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in each cluster. Θ0 is the potential temperature averaged over all sensors and over the time of record (1
minute), V is the record-averaged wind speed, T is the record-averaged potential temperature derived from
the sonic anemometer measurements, ∆z is the difference in height between the two levels z1 = 1 m and
z2 = 10 m and g is the gravitational acceleration. The Rib distributions conditional on the four identified
flow regimes are shown in Fig. 2. The bins of the distributions are normalised with the number of samples
in each regime to obtain the relative probability. The clustering strategy is found to separate the Rib
distributions into values indicative of weakly stable flows and strongly stable flows, albeit with large overlaps
in the distributions. The distributions of C1, C2 and C3 are located well below the Rib(crit)=0.25 and the
boundary layer state at that times can be distinctly interpreted as weakly stable. The strongly stable cluster
C4 shows a pronounced heavy tail decaying towards Rib=6 (not shown) and is showing a significant spread
around the Rib(crit). When going from weakly stable cluster towards strongly stable clusters, the distribution
of the Rib tends to diffuse, partly due to low values of the shear velocity that lead to uncertainties. The
overlap of distributions and the diffused distribution of Rib highlights the difficulty of defining a threshold
based on Rib for distinguishing flow regimes. As a note of caution, the distributions in Fig. 2 should
be considered only as a qualitative indication of stability properties, since the temperature from the sonic
anemometers are known to experience drift and biases between sensors exist, leading to uncertainties in the
values. Hence we discard presenting a detailed analysis of the Ri distributions at each measurement height.
Still, Fig. 2 shows that the clustering strategy, similarly to what was found in Vercauteren and Klein [2015],
separates periods of qualitatively different stability according to Rib.
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Figure 2: Histogram of the bulk Richardson numbers in the clustered flow regimes. Vertical lines representing
the median of the underlying distribution, with the dotted line representing Rib(crit)=0.25 for reference. Going
from left to right the values are: Rib(C1)=0.03, Rib(C2)=0.07, Rib(C3)=0.14, Rib(crit)=0.25, Rib(C4)=0.59. For
better illustration of the distribution overlap the x-axis is showing a maximum Rib = 2. The heavy tail of
the C4 distribution is reaching up to Rib(C1) = 6 and explaining the shifted value of the median.

The clustering of the time series of σw using Vsmeso as external factor is shown for an example period in
Fig. 3, where the background colours denote regime affiliation. The middle horizontal panel show the first
clustering procedure with three clusters. The Cluster (C3+C4) with the lowest mean is then considered as
one continuous time series and clustered again to result in C3 and C4. The solution of this second clustering
procedure is then illustrated in the inserts panels. The cluster (C3+C4) is not considered for the following
analysis and is shown here for explanatory reasons. By comparing the modelled time series between the
middle panel and the inserts panels, one notices that for the strongly stable condition (namely comparing
C3+C4 vs C3 and C4) the sub-clustered solution is describing the mean better compared to the C3+C4
solution. To achieve the same performance with one level clustering we needed at least seven clusters. The
solution with that number of clusters started to be unreproducible, meaning that the affiliation functions
diverged for different solutions.

In Fig. 3 the dynamics of σw is poorly captured by the model in the periods with more mixing (regimes
C1 and C2). As a more quantitative indication of the differences in scale interactions, we compare the
VARX model coefficients estimated for regimes C1 to C4. The VARX model in Eq. (2) contains a total of
9 parameters: µ corresponds to the mean value of σw, B0 to B6 are the weights associated with the past
history of the external factor Vsmeso and C is the weight associated to the noise part of the model. In order
to compare the relative weight of the mean versus the external factor in each statistical model, we normalise
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each parameter by the largest one. In all models, the largest parameter is µ. We then compute the norm BCi

of the vector (B0/µ, · · · , B6/µ), where BCi is associated to the model coefficients in cluster Ci, to estimate
the relative weight of the external forcing in each statistical model. Note that with this normalisation, the
weight of the mean is always 1. The values obtained for C1 to C4 are, in order, BC1 = 0.04, BC2 = 0.04,
BC3 = 0.11 and BC4 = 0.29. The increasing values denote that the more stable cases show more statistical
causality between non-turbulent scales of motion and turbulence. Although the statistical model for σw is
arguably insufficient, the method captures subtle differences in scale interactions between different regimes.
Indeed, our goal here is not to represent σw accurately, but rather to capture transitions between different
states of the SBL and the method appears appropriate for that goal.
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Figure 3: Example of measured and modelled timeseries and flow regimes. The middle horizontal panel
represents a period of 68 nights. The inserts illustrate the solution produced by the second application of
the clustering methodology.

To illustrate how the total energy is distributed among the scales of motion under different near-surface
SBL conditions, multi-resolution decomposition (MRD) energy spectra are shown for the heights of 2 m, 15 m
and 30 m in Fig. 4 (for the streamwise velocity component) and Fig. 5 (for the vertical velocity component)
for the four classified flow regimes C1-C4 (from left to right). The wavenumbers are calculated assuming
Taylor’s frozen turbulence hypothesis, and the energy spectra are scaled by the TKE averaged based on
bins of one minute. In this way, the normalisation considers only the energy content of the turbulent scales,
discarding the sub-mesoscales. From Fig 4, it is visible that the energy content of the streamwise velocity
component on sub-mesoscales is highly variable in all flow regimes. The spread among cases increases with
height in weakly stable flow regimes (C1 and C2), but is large for all heights in very stable regimes (this is
mostly the case in C4). The median exhibits a pronounced plateau for scales larger than kz = 1 in regimes
C1 and C2. In C3 such a plateau around kz = 1 is still present, albeit significantly smaller. In C4, on the
other hand, the increase of energy with increasing scales is continuous, denoting the absence of a spectral
energy gap between the turbulence and the sub-mesoscales. This small or absent scale gap between submeso
motions and turbulence in the very stable regimes C3 and C4 is a sign of unsteady forcing of turbulence by
sub-mesoscales with very variable energy content. We can speculate that this is a cause for the observed
larger scatter in the scales smaller than kz = 1 in C3 and C4. In the energy spectra of the vertical velocity
component (Fig 5), more scatter is apparent at all scales in C3 and C4. Likewise, this may be explained by
the unsteady forcing that hinders the formation of a universal inertial subrange. The variability of the energy
content of the sub-mesoscales also increases with height, but is much smaller than that of the horizontal
component.
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Figure 4: MRD energy spectra of the streamwise velocity component. The top, middle and bottom rows
correspond respectively to the measurement heights of 30 meters, 15 meters and two meter. Observing from
left to right, every column of panel corresponds to regimes C1-C4 respectively. C1 is a weakly stable regime
and C4 is a strongly stable regime. Wavenumbers k are calculated assuming Taylor’s frozen turbulence
hypothesis and z is the measurement height. The energy is normalised by the average TKE calculated based
on one-minute bins in order to consider turbulent scales only. The median spectra are represented by the
black line, the red lines represent the 25th and 75th percentiles, and the blue lines show the 5th and 95th
percentiles. Grey dots represent individual values.

3.2 Anisotropy characteristics in different flow regimes

Having characterised the scale-wise energy content of the velocity components in classified flow regimes, we
can now turn to the analysis of anisotropy characteristics of the Reynolds stresses. In order to calculate
the anisotropy tensor (Eq. 4) and its invariants, an averaging scale has to be defined. From observations
of MRD heat flux cospectra (not shown) it appears that the heat flux cospectra level-off at averaging times
ranging between approximately 5 minutes (C1) and 1 minute (C4), depending on how strongly stable the
flow regime is. In order to minimise contributions from sub-mesoscale motions in the anisotropy analysis, we
select the shortest averaging timescale of 1 minute as was done in Stiperski and Calaf [2018]. Note that this
choice implies that the anisotropy analysis will discard some of the turbulent contributions to the anisotropy
tensor in the less stable flow regimes.

The distribution of anisotropy states is shown for each cluster C1-C4 and each measurement height in Fig.
6, where the grey scale shows the density of points. While mixed states of anisotropy, i.e. towards the middle
of the barycentric map, are the most common in all cases, marked differences appear in the limiting states.
Here we follow Stiperski and Calaf [2018] to define limiting ”pure” states of anisotropy as states falling in
edges of the barycentric map, where the limiting lines for each edge were chosen to cover 70 % of the sides
of the equilateral triangle as illustrated in Fig. 1. The results, however, do not show large sensitivity to this
choice. The isotropic states correspond to the upper corner of the barycentric map. A height dependance is
clearly apparent here. Isotropic stresses are only found away from the ground, so that the higher levels have
the highest densities of isotropic stresses, regardless of flow regime affiliations. This result is not surprising
since the presence of the ground surface enhances the shear distortion effects on turbulence and limits its
isotropy, as was discussed elsewhere (e.g. Antonia and Krogstad [2001]). The shear distortion effects in
the absence of thermal stratification typically lead to two-component stresses due to the straining effect.
Accordingly, two-component stresses were observed to be prevalent near the wall during daytime, unstable
conditions with active turbulence by Stiperski and Calaf [2018]. In low wind speed, very stable conditions
however, the shear generation of turbulence may be too weak to sustain active turbulence coupled to the
ground surface and such shear distortion effects may thus not be prevalent. Therefore, although all stresses
appear closer to axisymmetric states when one approaches the ground surface in our dataset, clearly the
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Figure 5: MRD energy spectra of the vertical velocity component. The top, middle and bottom rows
correspond respectively to the measurement heights of 30 meters, 15 meters and two meter. Observing from
left to right, every column of panel corresponds to regimes C1-C4 respectively. C1 is a weakly stable regime
and C4 is a strongly stable regime. Wavenumbers k are calculated assuming Taylor’s frozen turbulence
hypothesis and z is the measurement height. The energy is normalised by the average TKE calculated based
on one-minute bins in order to consider turbulent scales only. The median spectra are represented by the
black line, the red lines represent the 25th and 75th percentiles, and the blue lines show the 5th and 95th
percentiles. Grey dots represent individual values.

preference is towards one-component stresses. This preference depends on regime affiliation. When analysing
TKE budget terms during periods of one-component stresses, Stiperski and Calaf [2018] found that the source
of turbulence was mainly non-local, likely due to advected turbulence. Our results are in agreement with
this finding since one-component stresses are the most abundant when sub-mesoscales are most active, and
submeso motions represent a means of turbulent transport and non-local generation.

The density of stresses in the one-component limiting states becomes higher for increasing regime affil-
iation number (Fig. 6) corresponding to increasingly stable conditions (Fig. 2), and increasing influence
of sub-mesoscale motions as discussed above. We specifically quantify the percentage of stresses falling in
each limiting state of anisotropy in the top panels of Fig. 7, conditional on regime affiliation and height of
measurement. The isotropic edge (black bar in the figure) is almost absent until the measurement height
of 5 m, and then the proportion of isotropic stresses increases with height for all flow regimes, having al-
most the same proportion in all regimes (with the maximum at 30 m of slightly less than 10 %). The
proportions of two-component stresses show an opposite trend, decreasing with height but being also very
similar for all flow regimes. This is due to the small scales of turbulence considered here. By calculating the
Reynolds stresses based on one-minute averages, shear distortion effects leading to two-component stresses
are limited to correspondingly close distances to the wall. The proportions of one-component stresses also
decreases for increasing heights, but here the regime dependence is strong. In C1 and C2, the proportions
of one-component stresses is very small at all heights, while it is large in C3 and even large in C4, reaching
almost 30 % of the states near the surface. Modifying the choice of threshold used to delineate the ”pure”
anisotropy states (excluding 20% and 40% of the barycentric map) leads to qualitatively similar results, with
the proportions being all larger or smaller, respectively.

In regimes C3 and C4, the energy content of the sub-mesoscales is often larger than the energy content
of the turbulent scales (Fig. 4) and is largest in the horizontal velocity component. Since the activity of
these sub-mesoscales occurs on scales just above or similar to the largest turbulent scales, the turbulence is
forced by unsteady submeso motions and therefore continuously deformed. The isotropisation is presumably
hindered by the constantly changing anisotropic forcing. In order to estimate the anisotropy of the submeso
motions, we compare the proportions of limiting anisotropy states obtained from 30 min averaged Reynolds
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Figure 6: Anisotropy as states in the barycentric map for each height and flow regime. The colourbar shows
the density of points in each state of the barycentric map.

stresses (Fig. 7, bottom panels). At that scale, as expected eddies are never isotropic, however, the two-
component limit is much more frequent, especially close to the surface. This is to be expected due to the
presence of the wall that impacts the larger eddies considered at this scale. It can also be expected that the
higher proportion of two-component turbulence is due to mixed states that are more axisymmetric at larger
scales. The proportion of one-component limiting states is also larger than the corresponding proportions for
the 1-minute averaged stresses, and increases for increasingly stable regime similarly to the 1-minute averaged
stresses. Thus we might conclude that submeso motions can be both two-component axisymmetric and one-
component, but the turbulence they produce can still be at times isotropic, as well as highly anisotropic.
This leads us to hypothesise that the anisotropy of the forcing submeso motions transfers to anisotropic
turbulence even at the scale of one minute considered here. This is likely due to the lack of scale separation
between the turbulence and its unsteady anisotropic forcing, such that the turbulence cannot equilibrate to
an isotropic state.

In order to facilitate interpretation of the one-component stresses in the physical space, we calculate the
non-dimensional velocity aspect ratio (VAR) for the limiting one-component stresses and for all other cases
separately. This ratio takes the value of one if all three standard deviations approach the same value and is
defined by Mahrt et al. [2012a] as:

V AR ≡
√

2σw√
σ2
u + σ2

v

. (8)

In Tab. 1 we evaluate the mean value of the VAR in each regime for cases corresponding to the one-component
anisotropy state and compare it to mean value of VAR for the periods that are not in the one-component
anisotropy state. As we change the regime from C1 to C4 we observe a decrease of the VAR from 0.10 to
0.07, along with an increase of the standard deviation of VAR. In comparison, the ratio for cases outside
the one-component limit is not dropping below 0.20. Thus the vertical component of the Reynolds stress is
smallest for the one-component cases, and reduces for increasing regime affiliation number.

Table 1: Mean and standard deviation of VAR for one-component (top row) and non one-component (bottom
row) anisotropy states for regimes C1-C4 at the height of two meters.

component C1 C2 C3 C4
one 0.10 ± 0.03 0.10 ± 0.03 0.09 ± 0.04 0.07 ± 0.05

non one 0.20 ± 0.05 0.23 ± 0.05 0.23 ± 0.07 0.20 ± 0.10
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Figure 7: Occurrences of each anisotropy state for different heights and clusters. Top panels: one-minute
averaged Reynolds stresses. Bottom panels: 30-minute averaged Reynolds stresses. Left to right: 1, 2, 5, 10,
15, 20 and 30 m above ground. The numbers 1,2,3,4 denote the flow regime affiliations C1-C4. The length
of the bar represents the percentage of stresses within each edge. The pure states are defined as in Fig. 1

Table 2: Percentage of cases of negative (+g for with gradient) and positive (-g for counter gradient) sensible
heat flux (one minute scale) observed in the one component limiting anisotropy state (right corner of the
barycentric map). For the column ’total’ no affiliation function is involved. The affiliation function to
determine regimes C1-C4 is calculated based on height of two meters and is used to evaluate the table
entries for all heights.

C1 C2 C3 C4 total
height [m] +g [%] / -g [%] +g [%] / -g [%] +g [%] / -g [%] +g [%] / -g [%] +g [%] / -g [%]

30 84.56/15.44 86.17/13.83 83.87/16.13 86.67/13.13 85.88/14.12
15 90.34/9.66 90.79/9.21 89.15/10.85 91.53/8.47 90.95/9.05
2 97.24/2.76 93.96/6.04 97.69/2.31 96.20/3.80 96.17/3.82

3.3 Anisotropy characteristics of counter gradient cases

Interactions between waves or sub-mesoscale motions and turbulence have been shown to lead to counter-
gradient fluxes [Einaudi and Finnigan, 1993]. In Fig. 8, we separate the stresses falling in the flow regime
C4 into two categories, namely periods of negative sensible heat flux (on one minute averaging scale) and
periods of positive (counter-gradient) sensible heat flux as shown in Fig. 8(b). The temperature gradient
is always negative, i.e. stratification is stable for all considered cases. To separate the anisotropic state in
Fig. 8(c) and Fig. 8(a) we use the heat flux w′T ′ averaging scale of one minute. The peak of the density
of anisotropy states for the cases of negative sensible heat flux (with-gradient) occurs in the middle of the
barycentric map. In the counter-gradient cases however, the peak of the distribution lies within the edge
corresponding to the one-component limiting states. Hence, most of the counter-gradient cases correspond
to one-component limiting states. In order to analyse if the reverse is true, i.e. if one-component limiting
states are mainly counter-gradient cases, the percentage of cases with positive and negative sensible heat flux
is listed in Tab. 2 for all one-component limiting states in each flow regime C1-C4. The values show that
only a small proportion of cases in one-component limiting states correspond to positive sensible heat flux,
and that the percentage is similar for all flow regimes, so that it is not possible to associate one-component
turbulence with a specific set of submeso motions which would cause counter gradient fluxes.
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Figure 8: Anisotropy dependence on the sign of sensible heat flux (b) in C4 regime on height of two meters.
In (a) and in (c) the color map is showing the density of points.
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Figure 9: Persistence of the dynamics of the anisotropy state. The colourbar is indicating the value of θ ,
where low values correspond to high persistence of the trajectory in the neighbourhood and values close to
1 imply that the trajectory immediately leaves the neighbourhood.

3.4 Dynamical indicators in the anisotropy dynamics

We now turn to the analysis of the dynamics of the states of anisotropy. We want to investigate if the rate of
isotropisation depends on the initial anisotropy state, and on the background flow regime. Moreover we are
interested in assessing the trajectories of the stresses in the anisotropy invariant coordinates. Based on the
timeseries of the anisotropy invariant coordinates xB and yB , we estimate the persistence and dimension of
the dynamics as presented in section 2.5. Figure 9 shows a scatterplot of the persistence indicator θ estimated
from the parameter of the distribution in Eq. 12, the colour showing the value of the indicator. It is obvious
that θ values are smaller in the edge corresponding to one-component stresses, denoting longer-lived states.
We recall that values close to θ = 1 imply that the trajectory immediately leaves the initial anisotropy state,
while smaller values denote that the dynamics resides in a neighbourhood of the initial state. In the mixed
states in the centre of the barycentric maps, the indicator values are very close to 1 denoting that those states
are modified almost instantaneously. The fact that one-component stresses are long-lived is in accordance
with the Choi and Lumley [2001] finding for homogeneous turbulence, if one takes one-component turbulence
to be an asymptotic limit of cigar shaped turbulence.

We calculate the estimates of the local dimension of the dynamics based on Eq. 11, for each stress and
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Figure 10: Local dimension of the anisotropy states.

show the scatterplot of the estimated dimensions in Fig. 10. The maximum local dimension is two, since
the phase-space is the plane formed by the eigenvectors, i.e. xB and yB . A local dimension of two indicates
that there is no preferred direction in which the anisotropy state is altered; it can change in any direction
on the plane, starting in an initial state. On the contrary, a smaller local dimension indicates that the
way that the anisotropy state is modified occurs in a restricted part of the plane, that is, with a preferred
direction. This is evidently the case close to the one-component edge of the barycentric map, and along a
line connecting the one-component edge to the centre of the map. This denotes a preferential path away
or towards one-component anisotropy. It is interesting to note that this preferential path does not include
or evolve towards two-component axisymmetric states, but shows that intermittent bursts of turbulence are
mostly of axisymmetric oblates, with a more pronounced third direction.

The combination of persistence and dimension analysis possibly shows that one-component stresses are
more stable topologically, and that the formation or destruction of such topological structures takes a pref-
erential route.

4 Conclusions

We classified SBL flow regimes based on the intensity of turbulent velocity fluctuations and their modula-
tion by a sub-mesoscale wind velocity. The anisotropy properties of the Reynolds stress tensor were then
investigated in each thus classified flow regime. This combination of methods highlighted different properties
of the turbulent stresses under the influence of submeso motions. We showed that the influence of submeso
motions on turbulence gains significance as the stability increases, and that the more submeso-influenced flow
regimes have a marked preference for one-component axisymmetric stresses. This topological signature is in
part resulting from the buoyancy damping effects as the Richardson number increases beyond the critical
value (cf. Fig 2), but also from the influence of sub-mesoscale forcing of turbulence. Close to the surface
(below 2 m), the effect of shear competes with buoyancy damping effect, resulting in a larger proportion of
two-component axisymmetric stresses, a typical signature of shear induced smaller-scale turbulence, but also
the effect of the wall on the larger 30 min sub-mesoscale eddies. Small-scale isotropic stresses were found at
higher levels in all flow regimes, where shear effects and the wall are no longer felt by turbulent eddies.

The present results are unable to completely elucidate the differences between the one-component and
two-component turbulence found by Stiperski and Calaf [2018], but show that the proportion of one-
component cases increases for increasing energy content of the sub-mesoscale dynamics. Furthermore, the
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regimes with most energy content in the sub-mesoscales are characterised by a lack of scale separation be-
tween the turbulence and the sub-mesoscales. We hypothesised that this lack of scale separation is the cause
for the prevalence of small-scale one-component turbulent stresses that are driven by anisotropic submeso
motions. Confirming this hypothesis, we found that a large proportion of the periods where the sensible
heat flux was against the mean downward gradient, typically corresponding to submeso motions, was char-
acterised by one-component limiting states of anisotropy. Yet only a small fraction of all one-component
limiting cases happen during counter-gradient periods. Submeso motions can take a variety of form that
may not lead to counter gradient fluxes but still impact the topology of the turbulence. The existence of
almost isotropic turbulence even in the most sub-mesoscale influenced regime shows the unsteady nature of
this regime, and that even one-component or two-component axisymmetric eddies at 30 minute scale can
initiate bursts of small-scale isotropic turbulence, as previously observed by Stiperski and Calaf [2018].

Additionally we showed that one-component stresses were more persistent in their dynamics, and high-
lighted signs of a preferred route towards or away from one-component stresses in the topological state space.
This route interestingly does not involve purely two-component axisymmetric turbulence, but is more of a
axisymmetric oblate type. However, Stiperski et al. [2019] show that the lack of small scale two-component
axisymmetric turbulence is often observed in other datasets. An interesting future analysis would be to
investigate the scale-wise return to isotropy in parallel with our results on the persistence and dimension of
the dynamics.

The results can be used to improve the representation of non-stationary turbulence under the influence of
sub-mesoscale motions. This is pertinent for subgrid-scale turbulent parameterisation, which are currently
mainly based on isotropic eddy diffusivity models. Our results show that anisotropic modelling is required
in cases where the variability of sub-mesoscales is important in relation to the turbulent scales. The signs
for a preferred route towards or away from the one-component stresses despite strong influence of random
sub-mesoscale motions provide encouraging perspectives for representing the return-to-isotropy in future
models.
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Appendix

Lucarini et al. [2016] recently proposed a methodology to estimate the persistence and local dimension of
dynamical states based on timeseries of dynamical observables, combining the Poincaré recurrence theorem
with theory of extreme value statistics. In their framework, points on the attractor are characterized by
parameters of extreme value probability distributions. For a given initial point ζ on a chaotic attractor, the
probability of a dynamical trajectory x(t) to return within a spherical neighbourhood of the initial point
has been shown to follow a generalized Pareto distribution [Moreira Freitas et al., 2010], which is a standard
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distribution in extreme value statistics and is a modified exponential law. The time series in this context is
the distance between ζ and the other observations along the trajectory

g (x(t)) = − log (δ(x(t), ζ)) , (9)

where δ(x, y) is a distance function between two points (e.g. the Euclidean distance). Taking the logarithm
increases the discrimination of small values of δ(x, y) and large values of g(x(t)) correspond to small distances
from the point ζ. The probability of logarithmic returns in the neighbourhood around ζ can then be expressed
as

P (g (x(t)) > q, ζ) ' exp

[
−x− µ(ζ)

σ(ζ)

]
, (10)

and the parameters of the exponential law µ and σ depend on the point ζ. The local dimension of the dy-
namics around the point ζ is finally given by (see Lucarini et al. [2016] for proofs and numerical verifications,
and Faranda et al. [2017a] for an application to climate dynamics)

d(ζ) =
1

σ(ζ)
(11)

In equation (10), q is an exceedance threshold, and is linked to the radius ε of the spherical neighbourhood
of ζ via q = g−1(ε) = exp(−ε). In other words, requiring the trajectory to fall within a sphere around the
point ζ is equivalent to requiring the series of g(x(t)) to be over the threshold q, which can be simply set as
a percentile of the series itself.

The quantification of the persistence of the state ζ follows rather intuitively: the longer the dynamical
trajectory stays in the spherical neighbourhood of the point ζ, the more persitent is the dynamics in this state.
This residence time can be computed by introducing a further parameter θ in the probability distribution
(10), known as extremal index:

P (g (x(t)) > q, ζ) ' exp

[
−θ
(
x− µ(ζ)

σ(ζ)

)]
, (12)

This parameter θ can be interpreted as the inverse of the mean residence time within the spherical neigh-
bourhood of ζ. From (12) it follows that 0 < θ < 1, where low values correspond to high persistence of the
trajectory in the neighbourhood of ζ, while values close to 1 imply that the trajectory immediately leaves
the sphere [Lucarini et al., 2016].
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Francisco Lang, D Belušić, and Steven Siems. Observations of Wind-Direction Variability in the Nocturnal
Boundary Layer. Boundary-Layer Meteorology, pages 1–18, September 2017.

18



Valerio Lucarini, Ana Cristina Gomes Monteiro Moreira de Freitas, Davide Faranda, Jorge Milhazes Freitas,
Mark Holland, Tobias Kuna, Matthew Nicol, Mike Todd, and Sandro Vaienti. Extremes and Recurrence
in Dynamical Systems. John Wiley & Sons, April 2016.

John L. Lumley. Computational modeling of turbulent flows. Advances in Applied Mechanics, 18:
123 – 176, 1978. ISSN 0065-2156. doi: https://doi.org/10.1016/S0065-2156(08)70266-7. URL
http://www.sciencedirect.com/science/article/pii/S0065215608702667.

John L Lumley and Gary R Newman. The return to isotropy of homogeneous turbulence. Journal of Fluid
Mechanics, 82(1):161–178, 1977.

Larry Mahrt. The Near-Calm Stable Boundary Layer. Boundary-Layer Meteorology, 140(3):343–360, 2011.

Larry Mahrt. Stably Stratified Atmospheric Boundary Layers. Annual Review of Fluid Mechanics, 46:23–45,
2014.

Larry Mahrt and Christoph K Thomas. Surface Stress with Non-stationary Weak Winds and Stable Strati-
fication. Boundary-Layer Meteorology, 159(1):3–21, April 2016.

Larry Mahrt and Dean Vickers. Boundary-layer adjustment over small-scale changes of surface heat flux.
Boundary-Layer Meteorology, 116(2):313–330, August 2005.

Larry Mahrt, Scott J Richardson, Nelson Seaman, and David R Stauffer. Turbulence in the nocturnal
boundary layer with light and variable winds. Quarterly Journal of the Royal Meteorological Society, 138
(667):1430–1439, January 2012a.

Larry Mahrt, Christoph K Thomas, Scott J Richardson, Nelson Seaman, David R Stauffer, and Matthias J
Zeeman. Non-stationary Generation of Weak Turbulence for Very Stable and Weak-Wind Conditions.
Boundary-Layer Meteorology, 147(2):179–199, November 2012b.

Gabriele Messori, Rodrigo Caballero, and Davide Faranda. A dynamical systems approach to studying
midlatitude weather extremes. Geophysical Research Letters, 44(7):3346–3354, 2017.

Ana Cristina Moreira Freitas, Jorge Milhazes Freitas, and Mike Todd. Hitting time statistics and extreme
value theory. Probability Theory and Related Fields, 147(3-4):675–710, July 2010.

L Mortarini, Daniela Cava, U Giostra, Otávio C Acevedo, L G Nogueira Martins, P E Soares de Oliveira,
and D Anfossi. Observations of submeso motions and intermittent turbulent mixing across a low level jet
with a 132-m tower. Quarterly Journal of the Royal Meteorological Society, 144(710):172–183, December
2017.

Terence John O’Kane, James S Risbey, Didier P Monselesan, Illia Horenko, and Christian L E Franzke. On
the dynamics of persistent states and their secular trends in the waveguides of the Southern Hemisphere
troposphere. Climate Dynamics, 46(11-12):3567–3597, 2016.

Stephen B Pope. Turbulent Flows. Cambridge University Press, 2000.

James S Risbey, Didier P Monselesan, Christian L E Franzke, Illia Horenko, and Terence John O’Kane.
Metastability of Northern Hemisphere Teleconnection Modes. dx.doi.org, January 2015.

Irina Sandu, A C M Beljaars, Peter Bechtold, Thorsten Mauritsen, and Gianpaolo Balsamo. Why is it so
difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? Journal
of Advances in Modeling Earth Systems, 5(2):117–133, June 2013.

William D Smyth and James N Moum. Anisotropy of turbulence in stably stratified mixing layers. Physics
of Fluids (1994-present), 12(6):1343–1362, June 2000.

Ivana Stiperski and M Calaf. Dependence of near-surface similarity scaling on the anisotropy of atmospheric
turbulence. Quarterly Journal of the Royal Meteorological Society, 144:641–657, December 2018.

19



Ivana Stiperski, Marc Calaf, and Mathias W. Rotach. Scaling, anisotropy, and complexity in near-
surface atmospheric turbulence. Journal of Geophysical Research: Atmospheres, 0(0), 2019. doi:
10.1029/2018JD029383.

Jielun Sun, D H Lenschow, S.P. Burns, Robert M Banta, Rob Newsom, Richard Coulter, Carmen J Nappo,
Stephen Frasier, T. Ince, and Ben B Balsley. Atmospheric disturbances that generate intermittent turbu-
lence in nocturnal boundary layers. Boundary-Layer Meteorology, 110(2):255–279, 2004.

Jielun Sun, Larry Mahrt, Carmen J Nappo, and D H Lenschow. Wind and Temperature Oscillations Gener-
ated by Wave–Turbulence Interactions in the Stably Stratified Boundary Layer. Journal of Atmospheric
Sciences, 72(4):1484–1503, April 2015.

Nikki Vercauteren and Rupert Klein. A Clustering Method to Characterize Intermittent Bursts of Turbulence
and Interaction with Submesomotions in the Stable Boundary Layer. Journal of the atmospheric sciences,
72(4):1504–1517, 2015.

Nikki Vercauteren, Larry Mahrt, and Rupert Klein. Investigation of interactions between scales of motion
in the stable boundary layer. Quarterly Journal of the Royal Meteorological Society, 142(699):2424–2433,
June 2016.

Dean Vickers and Larry Mahrt. The cospectral gap and turbulent flux calculations. Journal of atmospheric
and oceanic technology, 20(5):660–672, 2003.

20


