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Abstract. We describe an adaptive importance sampling algorithm for
rare events that is based on a dual stochastic control formulation of a
path sampling problem. Specifically, we focus on path functionals that
have the form of cumulate generating functions, which appear relevant in
the context of, e.g. molecular dynamics, and we discuss the construction
of an optimal (i.e. minimum variance) change of measure by solving
a stochastic control problem. We show that the associated semi-linear
dynamic programming equations admit an equivalent formulation as a
system of uncoupled forward-backward stochastic differential equations
that can be solved efficiently by a least squares Monte Carlo algorithm.
We illustrate the approach with a suitable numerical example and discuss
the extension of the algorithm to high-dimensional systems.

Keywords: Importance sampling, rare events, path sampling, forward-
backward SDE, least squares Monte Carlo, model reduction

1 Introduction

Importance sampling of rare events is one of the challenges in computational
statistical mechanics, including molecular dynamics [16], material science [11]
or climate modelling [28]. Concrete examples include the study of critical phase
transitions in many-particle systems or the estimation of small transition prob-
abilities in protein folding. Estimating small probabilities by Monte Carlo is
tricky, because the standard deviation of the corresponding statistical estimator
is typically larger than the quantity to be estimated. One technique to improve
the efficiency of estimators for small probabilities is importance sampling. Here
the idea is to sample from another distribution under which the rare event is
no longer rare and then correct (i.e. reweight) the estimator with the appropri-
ate likelihood ratio. Designing such a change of measure so that the variance of
the reweighted estimator stays bounded is not at all a trivial task, and several
methods have been developed to cope with this issue; for an overview, we refer
to the standard textbooks [1, 24] and the references therein.

Here we consider adaptive importance sampling strategies where the change
of measure is mediated by an exponential tilting of the reference probability
measure. For stochastic differential equations, this exponential tilting can be
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interpreted as a control that changes the drift of the stochastic dynamics. Adap-
tive importance sampling has been predominantly studied in the context of small
noise diffusions, for which the optimal control can be computed from the zero
viscosity limit of the corresponding dynamic programming equation [8, 9, 27]. In
this case the value function of the zero viscosity (deterministic) control prob-
lem is equal to the large deviations rate function that describes the exponential
tails of the rare events under consideration, and as a consequence, the change of
measure captures the rare events statistics and results in estimators that, under
certain assumptions, have uniformly bounded relative error.

Here we follow a different route, in that we do not resort to large deviations
asymptotics, but rather try to compute the exact change of measure from a suit-
able approximation of the dynamic programming equation that is underlying
the stochastic control problem; cf. [16, 29]. In contrast to our previous works
[16, 29], in which the change of measure has been obtained by solving the cor-
responding variational problem directly, we here focus on the reformulation of
the underlying dynamic programming equation as a system of forward-backward
stochastic differential equations (see, e.g. [21, 25]) that is solved by a least squares
Monte Carlo algorithm [4, 13]. Our approach is partly inspired by related dual-
ity techniques in financial mathematics [17, 23], but exploits the specific duality
structure of the change of measure problem; see also [22] for a survey of related
approaches in financial mathematics.

The paper is organised as follows: In Section 2 we introduce our stochas-
tic dynamics, the corresponding path space free energy and its dual variational
characterisation. Section 3 deals with the formulation of the free energy sam-
pling problem and the (dual) optimal control problem as a forward-backward
stochastic differential equation (FBSDE, in short). The numerical solution of
the FBSDE that can be used to either directly compute the free energy or to
approximate the optimal control that generates the minimimum variance im-
portance sampling scheme is the topic of Section 4, with a simple numerical
illustration presented in Section 5. The article concludes in Section 6 with a
short summary and a discussion of open problems and future work.

2 Importance sampling in path space

Let X = (Xs)s>0 be the solution of

dXs = b(Xs, s) ds+ σ(Xs)dBs , X0 = x , (1)

where Xs ∈ Rd, b and σ are smooth drift and noise coefficients, and B is an m-
dimensional standard Brownian motion where in general m 6 d. Our standard
example will be a non-degenerate diffusion in an energy landscape,

dXs = −∇U(Xs)ds+ σdBs , X0 = x , (2)

with smooth potential energy function U and σ > 0 constant. We assume
throughout this paper that the functions b, σ, U are such that Equations (1)
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or (2) have unique strong solutions for all s > 0. Now let W be a continuous
functional

Wτ (X) =

∫ τ

0

f(Xs, s) ds+ g(Xτ ) , (3)

of X up to some bounded stopping time τ where f, g are bounded and sufficiently
smooth, real valued functions.

Definition 1 (Path space free energy). Let X be the solution of Equation
(1) and let Wτ = Wτ (X) be defined by Equation (3). The quantity

γ = − log E [exp(−Wτ )] (4)

is called the free energy of Wτ where the expectation is understood with respect
to the realizations of (1) for given initial condition X0 = x.

2.1 Donsker-Varadhan variational formula for the free energy

The adaptive importance sampling strategy described below is based on a varia-
tional characterization of (4) in terms of a change of measure. To make it precise,
we define P to be the probability measure on the space Ω = C([0,∞),Rn) of
continuous trajectories that is induced by the Brownian motion B in (1). We
denote the expectation with respect to P by E[·]. In abstract form, the Donsker–
Varadhan variational principle [10] states

γ = inf
Q�P

{EQ[Wτ ] +D(Q|P )} , (5)

where Q� P stands for absolute continuity of Q with respect to P , and

D(Q|P ) =


∫
Ω

log
dQ

dP
(ω) dQ(ω) if Q� P

+∞ else .
(6)

denotes the relative entropy or Kullback-Leibler divergence between Q and P .
Note that D(Q|P ) =∞ when Q is not absolutely continuous with respect to P ,
therefore it is sufficient to take the infimum in (5) over all path space measures
Q� P . If Wτ > 0, it is a simple convexity argument (see, e.g., [7]), which shows
that the minimum in Equation (5) is attained at Q∗ given by

dQ∗

dP

∣∣∣∣
Fτ

= exp(γ −Wτ ) , (7)

where ϕ|Fτ denotes the restriction of the path space density ϕ = dQ∗/dP to the
σ-algebra Fτ ⊂ E that is generated by the Brownian motion B up to time τ .1

1 More precisely, ϕ|Fτ is understood as the restriction of the measure Q∗ defined by
dQ∗ = ϕdP to the σ-algebra Fτ that contains all measurable sets E ∈ E , with the
property that for every t > 0 the set E ∩ {τ 6 t} is an element of the σ-algebra
Ft = σ(Xs : 0 6 s 6 t) that is generated by all trajectories (Xs)06s6t of length t.
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By the strict convexity of the exponential function, it holds that Q∗-a.s. [15]

E [exp(−Wτ )] = exp(−Wτ )

(
dQ∗

dP

∣∣∣∣
Fτ

)−1
(8)

or, equivalently,

γ = Wτ + log

(
dQ∗

dP

∣∣∣∣
Fτ

)
. (9)

That is, Q∗ defines a zero-variance change of measure. (Note that the inverse of
the Radon-Nikodym derivative in (8) exists since Wτ is bounded.)

2.2 Related stochastic control problem

The only admissible change of measure from P to Q such that D(Q|P ) < ∞
results in a change of the drift in Equation (1). Specifically, let u be a process
with values in Rm that is adapted to B and that satisfies

E

[
exp

(
1

2

∫ τ

0

|us|2 ds
)]

<∞ . (10)

Further define the auxiliary process

But = Bt −
∫ t

0

us ds ,

so that (1) can be expressed as

dXs = (b(Xs, s) + σ(Xs)us) ds+ σ(Xs)dB
u
s , X0 = x . (11)

By construction, Bu is not a Brownian motion under P , but by Girsanov’s
theorem (see, e.g., [19], Theorem 8.6.4) there exists a measure Q defined by

dQ

dP

∣∣∣∣
Fτ

= exp

(∫ t

0

us · dBus +
1

2

∫ t

0

|us|2 ds
)

(12)

so that Bu is a standard Brownian motion under Q. (The Novikov condition
(10) guarantees that Q is a probability measure.) Inserting (12) into (5), using
that Bu is a Brownian motion with respect to Q, it follows that (cf. [6, 7]):

γ = inf
u

EQ

[∫ τ

0

f(Xs, s) +
1

2
|us|2 ds+ g(Xτ )

]
, (13)

with X being the solution of Equation (11). Since the distribution of Bu under
Q is the same as the distribution of B under P , an equivalent representation of
the last equation is

γ = inf
u

E

[∫ τ

0

f(Xu
s , s) +

1

2
|us|2 ds+ g(Xu

τ )

]
. (14)
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where Xu is the solution of the controlled SDE

dXu
s = (b(Xu

s , s) + σ(Xu
s )us) ds+ σ(Xu

s )dBs , Xu
0 = x , (15)

withB being the standardm-dimensional Brownian motion under P . The Donsker-
Varadhan variational principle (5) and zero-variance property (8) of the prob-
ability measure Q∗, for which equality in (5) is attained, have the following
stochastic control analogue (see [15, Thm. 3.1]):

Theorem 1. Let T > 0 and τO = inf{s > 0: Xu
s /∈ O} for an open and bounded

set O ⊂ Rn with smooth boundary ∂O. Further define τ = τO ∧ T and

Ψ(x, t) = E

[
exp

(
−
∫ τ

t

f(Xs, s) ds− g(Xτ )

) ∣∣∣∣∣Xt = x

]
(16)

as the exponential of the negative free energy, considered as a function of the
initial condition Xt = x with 0 6 t 6 τ 6 T . Then, the path space measure Q∗

induced by the feedback control

u∗s = σ(Xu∗

s )T∇x logΨ(Xu∗

s , s) (17)

and (15) yields a zero variance estimator, i.e.,

Ψ(x, 0) = exp

(
−
∫ τ

0

f(Xu∗

s , s) ds− g(Xu∗

τ )

)(
dQ∗

dP

∣∣∣∣
Fτ

)−1
Q∗-a.s. (18)

3 From dynamic programming to forward-backward SDE

Following the route taken by [6], it can be shown that the control u∗ in (17) is
the unique minimiser of the following stochastic control problem: minimize

J(u) = E

[∫ τ

0

f(Xu
s , s) +

1

2
|us|2 ds+ g(Xu

τ )

]
(19)

over all measurable and square integrable Markovian controls u, such that the
controlled SDE (15) has a unique strong solution. Now let

V (x, t) = min
u

E

[∫ τ

t

f(Xu
s , s) +

1

2
|us|2 ds+ g(Xu

τ )

∣∣∣∣Xu
t = x

]
(20)

be the associated value function (or: optimal cost-to-go). Further define E =
O × [0, T ) and let ∂E+ = (∂O × [0, T )) ∪ (O × {T}) be the terminal set of the
augmented process (Xu

s , s)s>0, such that τ = τO ∧ T can be recast as

τ = inf{s > 0: (Xu
s , s) /∈ E} (21)

Assuming sufficient regularity of the coefficients b, σ, f, g and ∂O, a necessary
and sufficient condition for u = u∗ being optimal is that (see [12, Sec. VI.5])

u∗s = −σ(Xu∗

s )T∇xV (Xu∗

s , s) (22)
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where V ∈ C2,1(E) ∩ C(∂E+) solves the dynamic programming equation

∂tV + LV + h(s, x, V, σT∇xV ) = 0 in E

V = g on ∂E+ ,
(23)

with nonlinearity

h(s, x, y, z) = −1

2
|z|2 + f(x, s) (24)

and the infinitesimal generator of the control-free process Xt,

L =
1

2
σσT : ∇2

x + b · ∇x . (25)

For the derivation of (22)–(23) from the Feynman-Kac representation formula
for the free energy (4), we refer to [14, Sec. 6].

3.1 FBSDE representation of the dynamic programming equation

We will now recast the semi-linear, parabolic boundary value problem for V ∈
C2,1(E) ∩ C(∂E+). To this end, define the processes

Ys = V (Xs, s) , Zs = −σ(Xs)
T∇xV (Xs, s) (26)

with X denoting the solution of the uncontrolled SDE (1) with infinitesimal
generator (25). Applying Ito’s formula to Y , using that V is a classical solution
to (23), we obtain the following backward SDE (BSDE)

dYs = −h(s,Xs, Ys, Zs)ds+ Zs · dBs , Yτ = g(Xτ ) (27)

for the pair (Y, Z). Note that, by definition, Y is continuous and adapted to X,
and Z is predictable and a.s. square integrable, i.e.,∫ τ

0

|Zs|2 ds <∞ , (28)

in accordance with the interpretation of Zs as a control variable. Further note
that (27) must be understood as a backward SDE rather than a time-reversed
SDE, since Ys at time s < τ is measurable with respect to the filtration generated
by the Brownian motion (Br)06r6s. However Ys depends on Bτ via the terminal
condition Yτ = g(Xτ ), which requires a larger filtration.

Since g is bounded, [5, Prop. 3.1] and the results in [18] entail existence
and uniqueness of (27); see also [2, 3]. and by exploiting the specific form of the
nonlinearity (24) that appears as the driver h in the backward SDE (27) and the
fact that the forward process X is independent of (Y,Z), we obtain the following
representation of the solution to the dynamic programming equation (23):

dXs = b(Xs, s)ds+ σ(Xs) dBs , Xt = x

dYs = −f(Xs, s)ds+
1

2
|Zs|2 + Zs · dBs , Yτ = g(Xτ ) .

(29)
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The solution to (29) now is a triplet (X,Y, Z), and since Y is adapted, it follows
that Yt is a deterministic function of the initial data (x, t) only. As a consequence
(see e.g. [20]),

Yt = V (x, t) (a.s.) (30)

equals the value function of our control problem. Recalling Theorem 1, a straight
consequence of Equations (14) and (20) therefore is:

Proposition 1. The free energy (4) is equal to

γ = E[Y0] , (31)

where the expectation is over the initial conditions X0 in Y0 = V (X0, 0).

Remark 1. A remark on the role of the control variable Zs in the BSDE is in or-
der. In (27), let h = 0 and consider a random variable ξ that is square-integrable
and Fτ -measurable where Fs is the σ-Algebra generated by (Br)06r6s. Ignoring
the measurability for a second, a pair of processes (Y, Z) satisfying

dYs = Zs · dBs , Yτ = ξ . (32)

is (Y, Z) ≡ (ξ, 0), but then Y is not adapted unless the terminal condition ξ
is a.s. constant, because Yt for any t < τ is not measurable with respect to
Fs ⊂ Fτ . An adapted version of Y can be obtained by replacing Yt = ξ by its
best approximation in L2, i.e. by the projection Yt = E[ξ|Ft]. Since the thus
defined process Y is a martingale with respect to our filtration, the martingale
representation theorem asserts that Yt must be of the form

Yt = E[ξ] +

∫ t

0

Z̃s · dBs , (33)

for some predictable process Z̃. Subtracting the last equation from Yτ = ξ yields

Yt = ξ −
∫ τ

t

Z̃s · dBs , (34)

or, equivalently,
dYt = Z̃s · dBs , Yτ = ξ . (35)

Hence Zs = Z̃s in (32) is indeed a control variable that makes Y adapted.

Remark 2. The forward-backward SDE (or: FBSDE) (29) is called uncoupled
since the forward SDE does not depend on the solution to the associated BSDE—
a property that will be exploited in various ways later on.

3.2 Importance sampling in path space, cont’d.

The role of the process Z in the FBSDE representation of the dynamic pro-
gramming equation is not only to guarantee that Y in (29) is adapted, so that
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Yt = V (x, t) is the value function, but it can be literally interpreted as a control
since Zt = −σ(Xt)

T∇xV (Xt, t). We could compute the optimal control for the
zero-variance importance sampling estimator (18) by solving (29) with initial
condition Xt = Xu

t on-the-fly, in which case one has to compute the solution of
(29) in parallel to the solution of (15). Depending on the nature of the system (in
particular the state space dimension) this on-the fly-computation, though com-
putationally demanding, may be nonetheless a sensible alternative to numerical
schemes that seek to approximate the value function by globally supported basis
functions, which may be an ill-conditioned problem, e.g. if the majority of the
trajectories are known to reside inside a small set.

As an alternative that we discuss in detail later on, we suggest to define a
feedback control for the controlled SDE (15) by

ut = −σ(Xu
t )T∇xVK(Xu

t , t) , (36)

where

VK(x, t) =

K∑
k=1

αk(t)φk(x) (37)

with αk ∈ R and continuously differentiable (e.g. radial) basis functions φk is an
approximation ansatz for the value function. Then, by Girsanov’s Theorem,

E [exp (−Wτ )] = EQ[exp(−Luτ −Wu
τ )] (38)

where Luτ = log(dQ/dP ) is the log likelihood of the change of measure from P to
Q on Fτ , as given by (12). By continuity of the functional (38), we expect that
any unbiased estimator of the right hand side of (38) will have a considerably
smaller variance than the plain vanilla estimator (based on independent draws
from P ), provided that VK ≈ V approximates the value function.

4 Least-squares Monte Carlo

In this section we discuss the numerical discretization of the uncoupled FBSDE
(29), following an approach that was first suggested by Gobet et al. [13] and
later on refined by several authors; here we suggest a semi-parametric approach
with radial basis functions based on the work by Bender and Steiner [4].

4.1 Time stepping scheme

The fact that the FBSDE (29) is decoupled implies that it can be discretised
by an explicit time-stepping algorithm. Here we utilise a variant of the least-
squares Monte Carlo algorithm proposed in [13]. The convergence of the numer-
ical schemes for an FBSDE with quadratic nonlinearities in the driver has been
analysed in [26]. The least-squares Monte Carlo scheme is based on the Euler
discretization of (29), specifically,

X̂n+1 = X̂n +∆t b(X̂n, tn) +
√
∆tσ(X̂n)ξn+1

Ŷn+1 = Ŷn −∆th(X̂n, Ŷn, Ẑn) +
√
∆t Ẑn · ξn+1

(39)
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where (X̂n, Ŷn, Ẑn) denotes the numerical discretization of the joint process
(Xs, Ys, Zs), where we set Xs ≡ XτO for s ∈ (τO, T ] when τO < T , and (ξi)i>1

is an i.i.d. sequence of normalized Gaussian random variables. Now let

Fn = σ
({
B̂k : 0 6 k 6 n

})
be the σ-algebra generated by the discrete Brownian motion B̂n :=

√
∆t
∑
i6n ξi.

By definition, the continuous-time process (Xs, Ys, Zs) is adapted to the filtration
generated by (Br)06r6s. For the discretised process, this implies

Ŷn = E
[
Ŷn|Fn

]
= E

[
Ŷn+1 +∆th(X̂n, Ŷn, Ẑn)|Fn

]
, (40)

using that Ẑn is independent of ξn+1. In order to compute Ŷn from Ŷn+1, it is
convenient to replace (Ŷn, Ẑn) on the right hand side by (Ŷn+1, Ẑn+1), so that
we end up with the fully explicit time stepping scheme

Ŷn = E
[
Ŷn+1 +∆th(X̂n, Ŷn+1, Ẑn+1)|Fn

]
. (41)

Note that we can use the identification of Z with the optimal control (36) and
replace Ẑn+1 in the last equation by

Ẑn+1 = −σ(X̂n+1)T∇VK(X̂n+1, tn+1) , (42)

where VK is given by the parametric ansatz (37).

Remark 3. If an explicit representation of Ẑn such as (42) is not available, it
is possible to derive a time stepping scheme for (Ŷn, Ẑn) in the following way:
multiplying the second equation in (39) by ξn+1 ∈ Rm from the left, taking
expectations and using the fact that Ŷn is adapted, it follows that

0 = E
[
ξn+1

(
Yn+1 −

√
∆tẐn · ξn+1

)∣∣Fn] (43)

or, equivalently,

Ẑn =
1√
∆t

E
[
ξn+1Yn+1

∣∣Fn] . (44)

Together with (41) or, alternatively, with

Ŷn = E
[
Ŷn+1 +∆th(X̂n, Ŷn+1, Ẑn)|Fn

]
, (45)

we have a fully explicit scheme for (Ŷn, Ẑn).

4.2 Conditional expectation

We next address the question how to compute the conditional expectations with
respect to Fn. To this end, we recall that the conditional expectation can be
characterised as a best approximation in L2:

E
[
S|Fn

]
= argmin
Y ∈L2,Fn-measurable

E[|Y − S|2] .
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(Hence the name least-squares Monte Carlo.) Here measurability with respect
to Fn means that (Ŷn, Ẑn) can be expressed as functions of X̂n. In view of the
ansatz (37) and equation (41), this suggests the approximation scheme

Ŷn ≈ argmin
Y=Y (X̂n)

1

M

M∑
m=1

∣∣∣Y − Ŷ (m)
n+1 −∆th

(
X̂(m)
n , Ŷ

(m)
n+1 , Ẑ

(m)
n+1

)∣∣∣2 , (46)

where the data at time tn+1 is given in form of M independent realizations of

the forward process, X̂
(m)
n , m = 1, . . . ,M , the resulting values for Ŷn+1,

Ŷ
(m)
n+1 =

K∑
k=1

αk(tn+1)φk
(
X̂

(m)
n+1

)
, (47)

and

Ẑ
(m)
n+1 = −σ

(
X̂

(m)
n+1

)T K∑
k=1

αk(tn+1)∇φk
(
X̂

(m)
n+1

)
. (48)

At time T := N∆t, the data are determined by the terminal cost:

Ŷ
(m)
N = g

(
X

(m)
N

)
, Ẑ

(m)
N = −σ

(
X̂

(m)
N

)T∇g(X(m)
N

)
(49)

Note that we have defined the forward process so that all trajectories have length
T , but the realizations may be constant between τO and the terminal time T .

The unknowns that have to be computed in every iteration step are the
coefficients αk, which makes them functions of time, i.e. αk = αk(tn+1). We call
α̂ = (α1, . . . , αK) the vector of the unknowns, so that the least-squares problem
that has to be solved in the n-th step of the backward iteration is of the form

α̂(tn) = argmin
α∈RK

‖Anα− bn‖2 , (50)

with coefficients
An =

(
φk
(
X̂(m)
n

))
m=1,...,M ;k=1,...,K

(51)

and data
bn =

(
Ŷ

(m)
n+1 +∆th

(
X̂(m)
n , Ŷ

(m)
n+1 , Ẑ

(m)
n+1

))
m=1,...,M

. (52)

Assuming that the coefficient matrix An ∈ RM×K , K 6 M defined by (51) has
maximum rank K, then the solution to (50) is given by

α̂(tn) =
(
ATnAn

)−1
ATn bn . (53)

The thus defined scheme that is summarised in Algorithm 1 is strongly con-
vergent of order 1/2 as ∆t → 0 and M,K → ∞; see [13]. Controlling the
approximation quality for finite values ∆t,M,K, however, requires a careful
adjustment of the simulation parameters and appropriate basis functions, espe-
cially with regard to the condition number of the matrix An, and we will discuss
suitable strategies to determine a good basis in the next section.
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Algorithm 1 Least-squares Monte Carlo

Define K,M,N and ∆t = T/M .

Set initial condition x ∈ Rd.
Choose radial basis functions {φk ∈ C1(Rd,R) : k = 1, . . . ,K}.
Generate M independent realisations X̂(1), . . . , X̂(M) of length N from

X̂n+1 = X̂n +∆t b(X̂n, tn) +
√
∆tσ(X̂n)ξn+1 , X̂0 = x .

Initialise BSDE by

Ŷ
(m)
N = g

(
X̂

(m)
N

)
, Ẑ

(m)
N = −σ

(
X̂

(m)
N

)T∇g(X̂(m)
N

)
.

for n = N − 1: 1 do

Assemble linear system Anα̂(tn) = bn according to (50)–(52).

Evaluate Ŷ
(m)
n and Ẑ

(m)
n according to

Ŷ (m)
n =

K∑
k=1

αk(tn)φk
(
X̂(m)
n

)
, Ẑ(m)

n = −σ
(
X̂(m)
n

)T K∑
k=1

αk(tn)∇φk
(
X̂(k)
n

)
.

If necessary, adapt basis functions φk.

end for

Remark 4. In some cases, generating forward trajectories that sample the ter-
minal condition g(·) may be difficult because of metastability or the like. In this
case, it may be possible to change the drift of the forward SDE from b to, say, b0
where b0 is chosen such that generating forward trajectories is easy. Assuming
that the noise coefficient σ is square and invertible, it is easy to see that the
dynamic programming PDE (23) can be recast as

∂tV + L̃V + h̃(s, x, V, σT∇xV ) = 0 in E

V = g on ∂E+ ,

where
L̃ = L− (b− b0) · ∇

is the generator of a forward SDE with drift b0, and

h̃(x, y, z) = h(x, y, z) + σ(x)−1(b(x)− b0(x)) · z .

is the driver of the corresponding backward SDE. Changing the drift may be
moreover advantageous in connection with the martingale basis approach of
Bender and Steiner in [4] the authors have suggested to use basis functions that
are defined as conditional expectations of certain linearly independent candidate
functions over the forward process, which makes the basis functions martingales.
Computing the martingale basis, however, comes with a large computational
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overhead, which is why the authors consider only cases in which the conditional
expectations can be computed analytically. Changing the drift of the forward
SDE may thus be used to simplify the forward dynamics so that its distribution
becomes analytically tractable.

5 Numerical illustration

We shall illustrate the previous considerations with a standard example. To
this end, we consider a one dimensional diffusion in the double-well potential
U(x) = (x2 − 1)2 that is governed by the equation

dXs = −∇U(Xs)ds+ σdBs , X0 = x , (54)

and want to compute the probability of exiting from the left well O = {x < 0}
before time T < ∞. More specifically, we set f ≡ 0 and g(x) = − log (1∂O(x))
in equation (3) and define the bounded stopping time τ = τO ∧ T to be the
minimum of the first exit time τO of the set O and the terminal time T . Note
that τO is a.s. finite since the potential U is growing sufficiently fast at infinity,
so that (Xs)s>0 is positive recurrent.

For the equivalent stochastic control problem with the cost

J(u) = E

[
1

2

∫ τ

0

|us|2 ds− log (1∂O(Xu
τ ))

]
(55)

and the controlled process

dXu
s = (σus −∇U(Xu

s )) ds+ σdBs , Xu
0 = x , (56)

this means that the control u seeks to push the process towards the set boundary
∂O when s ≈ T and the process has not yet left the set O, for otherwise there
will an infinite cost to pay.

Since such an infinite terminal cost is numerically difficult to handle, we
consider a regularised control problem and replace g by gε = − log(1∂O(x) + ε);
for the numerical calculations, we choose ε = 0.01. The duality relation (5)
between the control value γε = minu J(u) for fixed initial data X0 = x and the
transition probability P (τO < T ) then reads

P (τO < T |X0 = x) = exp(−γε)− ε (57)

We will compare the results fro the FBSDE solution for γε with a reference
solution that is obtained from numerically solving the linear PDE(

∂

∂t
− L

)
u(x, 0) = 0 , (x, t) ∈ O × [0, T ) (58)

together with the boundary conditions2

u(0, t) = 1 , t ∈ [0, T )

u(x, 0) = 0 , x ∈ O .
(59)

2 For the numerical computation, we add reflecting boundary conditions at x = −L
for some L > 0, the precise value of which does not affect the results (assuming that
it is sufficiently large, say, L > 3) since the potential has a 4-th order growth.
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Then
u(x, T ) = P (τO < T |X0 = x) . (60)

Table 1 below shows the reference value V εref (0, x) := − log (u(T, x) + ε),
together with the corresponding FBSDE solution. The procedure to obtain the
FBSDE solution is described in Algorithm 1, and the table displays the results
for different values of K,M,N = bT/∆tc. As basis functions we choose

φµk,δk,n (x) = exp

(
− (µk − x)2

2δ

)
, (61)

where δ = 0.1 is fixed but µk = µk(n) varies with time such that the forward
process can be well covered by the basis functions. More precisely, the centres of
the basis functions are chosen by simulating K additional independent forward

trajectories X(k), k = 1, . . . ,K and letting µk(n) = X
(k)
n . We let the whole

algorithm run 20 times and compute empirical mean and variance of V ε, denoted
by V̄ ε and S2(V ε). The results are shown in the table.

Table 1: Numerical results for the FBSDE scheme described in Algorithm 1.

V εref (0, x) V̄ ε(0, x) S2(V ε(0, x))

K = 8, M = 300, T = 5, ∆t = 10−3,
x = −1, σ = 1

0.3949 0.3748 10−3

K = 5, M = 300, T = 1, ∆t = 10−3,
x = −1, σ = 1

1.7450 1.6446 0.0248

K = 5, M = 400, T = 1, ∆t = 10−4,
x = −1, σ = 0.6

4.3030 4.5779 10−3

K = 6, M = 450, T = 1, ∆t = 10−4,
x = −1, σ = 0.5

4.5793 4.6044 5 · 10−4

Overall we find that the FBSDE scheme results in a fairly good approxima-
tion of the value function and, as a consequence of the smoothness of the basis
functions, of the optimal control. Moreover, due to the adaptive choice of the
basis functions {φµk,δ}, the results do not seem to be very sensitive to the noise
intensity σ or the time horizon T . Speaking of which, we stress that increasing
the number of basis functions K is not always advisable, since the matrix A in
(51) can easily become rank deficient, especially if σ is small and the trajec-
tories stay close together. Therefore it is crucial to check the rank of A in the
simulation and to set K to the value of the maximally observed rank.

5.1 Computational issues

Let us also discuss the fact that we set Xs ≡ XτO for s ∈ (τO, T ] when τO < T
again in more detail. Setting the forward trajectories constant from the exit
time on, allows to include the terminal condition g(Xτ∧T ) into the least squares
problem at time T , i.e. into the initialisation step bN , for all backward trajec-
tories. It seems that this stabilizes the solution of the backward trajectory Ŷ .
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Another approach, following the equations more closely, would be to start each
backward trajectories individually from either τ or T depending on whether the
corresponding forward trajectory X̂ has made an exit or not. This approach
induces numerical problems though, because the data bn in the least squares
problem as given by (52), which in the case that all backward trajectories were
starting from T was dominated by the positive term Ŷn+1, is now perturbed at
the different exit times by the negative value − log(ε). This renders the solution
α̂n of the linear equation (53) rougher, which in turn leads to fluctuations in the
solution of Ŷn and Ẑn which can build up and eventually lead to an explosion of
the solutions.

Let us further make suggestions how to efficiently treat the case when T is
large. We will resort to the ideas of Remark 4 here, which suggests to modify
the drift b to b0 such that under the new drift the event which determines
the stopping time τ is not rare anymore. Assume now, that for all trajectories
X̂(m),m = 1, . . . ,M the family of stopping times

τmO =
{
s > 0 : X(m)

s /∈ O
}

(62)

is dominated by T in the sense that

T̃ := max{τmO : m = 1, . . . ,M} � T . (63)

Then the terminal condition g is completely determined at time T̃ and the same
is true for the backward dynamics. Hence, we suggest in case that T is large to
modify the drift such that T̃ will be small and run the algorithm only up to time
T̃ . In this case we propose to start each backward trajectory individually from
the corresponding exit time on. The matrix An is then of size K ×Mn where

Mn =
∣∣∣{m : X̂

(m)
n−1 ∈ O

}∣∣∣ (64)

is the number of trajectories which have not left the set O up to timestep n.
This ensures that A is not rank deficient at these times which would be the case
if we set all trajectory constant after the exit, due to the definition of An with

(An)k,m = φµk,δk,n (X̂(m)
n ) (65)

because the basis functions are evaluated at the same constant value for all
these trajectories. To the best of our knowledge, the approximation error of the
least squares Monte Carlo algorithms with random stopping times has not been
analysed so far, and we leave this topic for future work.

We want to add that in contrast to the complexity of numerically solving the
HJB equation, which grows exponentially in the dimension d, the complexity of
solving the FBSDE is determined by solving the SDE and linear equations, i.e.
is at most cubic in d.

6 Conclusion and outlook

We have presented a numerical method to compute the free energy of path
space functionals of a diffusion process where the functionals may depend on
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paths having a random length. Free energies of path space functionals appear in
connection with rare event simulation and, as a guiding example for this article,
we have considered exit probabilities that are relevant in the context of molecular
dynamics or risk analysis.

The approach for efficiently computing path space free energies is based on a
variational characterisation of the free energy as the value function of an optimal
control problem or, equivalently, as an adaptive importance sampling strategy
that is based on the optimal control of the aforementioned stochastic control
problem; as we have argued, the importance sampling estimator for the free
energy enjoys a minimum variance property under the optimal control. Our nu-
merical strategy form solving the underlying stochastic control problem is based
on the reformulation of the corresponding semi-linear dynamic programming
equation as a forward-backward stochastic differential equation, which can be
solved quite efficiently using a least squares Monte Carlo method. For our guid-
ing example, the reformulation of the adaptive importance sampling algorithm
as a forward-backward SDE showed promising results.

We have discussed several options that can help to improve the convergence of
the least squares algorithm. For example, we have discussed the option of chang-
ing the drift of the forward SDE by modifying the cost functional of the corre-
sponding control problem; while this does not change the dynamic programming
equation of the underlying control problem, the corresponding forward-backward
stochastic differential equations are different, and it is possible to control the
speed of convergence of the numerical method in this way, by controlling the
random length of the forward trajectories.

Another aspect that we have only briefly touched upon is the choice of the ba-
sis functions for the least squares algorithm. A convenient choice are martingale
basis functions that, by definition, are non-parametric and adaptive. Evaluating
the martingale basis requires to compute on-the-fly conditional expectations and
it is possible to change the drift of the forward SDE so as to avoid numerically
expensive computations of the conditional expectations. In this article we used
a semi-parametric approach, future research should address the non-parametric
one. Another interesting topic concerns sampling problems on an infinite time
horizon, which can be represented by a stopping time for hitting an impossible
set, a set which the dynamics can never reach.

We believe that forward-backward SDE are an interesting numerical and ana-
lytical tool for applications in computational statistical mechanics that connects
such diverse topics as control, filtering and estimation. An specific feature of the
proposed method is that the corresponding forward-backward SDE are decou-
pled, which leaves room for combining the aforementioned tasks with coarse-
graining and model reduction techniques. We leave all this for future work.
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