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Abstract

The small-deformation limit of finite elasticity is considered in presence of a
given crack. The rescaled finite energies with the constraint of global injectivity
are shown to Γ-converge to the linearized elastic energy with a local constraint of
non-interpenetration along the crack.

1 Introduction

In [DNP02] Dal Maso, Negri and Percivale showed that finite-strain elasticity Γ-converges
to small-strain linearized elasticity under the assumptions of small loadings. Later, this
result was extended to different settings, e.g. to multi-well energies by Schmidt [Sch08],
to materials with residual stresses by Paroni and Tomassetti [PaT09, PaT11] or to evo-
lutionary problems like plasticity by Mielke and Stefanelli [MiS13] or crack propagation
by Negri and Zanini [NeZ14]. In this contribution we discuss an extension of the results
in [DNP02] to a setting where the reference domain has a crack Γcr of a certain class
including cracks with kinks, see Section 2 for details.

The presence of the crack destroys the Lipschitz property of the cracked domain
Ωcr := Ω \ Γcr and therefore crucial tools, such as the well-known rigidity estimate from
[FJM02], have to be adapted to the setting of cracked domains, see Proposition 3.2. More
importantly, the setting of domains with cracks requires to introduce an additional con-
straint of global injectivity of the deformations y : Ω ⊂ Rd → Rd. A crucial step for the
small-deformation Γ-limit is to show that this particular global injectivity condition leads
to a local non-interpenetration condition along the crack Γcr ⊂ Ω.

In [CiN87] Ciarlet and Nečas proposed the condition
∫

Ω
det∇y(x) dx ≤ vol

(
y(Ω)

)
,

where vol(A) denotes the d-dimensional volume. This conditions had been used in various
applications, e.g. by Giacomini and Ponsiglione [GiP08] in the SBV-theory for brittle
materials or by Mariano and Modica [MaM09] in the theory of weak diffeomorphisms to
describe deformations in “complex bodies”. In [GMS98, Prop. 3.2.1], Giaquinta, Modica,
and Souček showed that the above condition is equivalent to the condition

∫

Ω

ϕ
(
y(x)

) ∣∣det∇y(x)
∣∣dx ≤

∫

Rd
ϕ(z)dz for all ϕ ∈ Cc(Rd,R) with ϕ ≥ 0. (1.1)

which we will simply call GMS condition.
This latter condition turns out to be an appropriate formulation for our purpose. In

particular, assuming that yε : Ω → Rd satisfy (1.1) we will deduce that a weak limit
u : Ω→ Rd for ε→ 0 of the rescaled displacements

uε : x 7→ 1

ε

(
yε(x)− x

)

satisfies the following local jump condition on the crack:

0 ≤ [[u(x)]]Γcr :=
(
u+(x)−u−(x)

)
· ν(x), (1.2)

where u+ and u− are the traces of u on Γcr from the upper and the lower side, respectively,
see Theorem 4.1.

Our analysis is based on elastic energies of integral type, i.e. E(y) =
∫
W (x,∇y(x))dx.

Apart from the classical assumptions in elasticity of W being orientation preserving and
satisfying the lower bound stated below, the most crucial assumption of the following is
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that about the quadratic behavior of W near the identity matrix F = I. With GL+(d) :=
{A ∈ Rd×d | detA > 0 } and SO(d) := {R ∈ Rd×d | R>R = I, det(R) = 1 } pose the
following conditions on the stored-energy density W : Rd×d → [0,∞]:

∀F ∈ Rd×d \GL+(d): W (F ) =∞; (1.3a)

∀F ∈ Rd×d, R ∈ SO(d) : W (RF ) = W (F ); (1.3b)

∃ p > d, cW , CW > 0 ∀F ∈ Rd×d: W (F ) ≥ cW max
{

dist(F, SO(d))2, |F |p−CW
}

; (1.3c)

∃C ≥ 0 with C> = C ∀ δ > 0 ∃ rδ > 0 ∀A ∈ Brδ(0) ⊂ Rd×d :
∣∣∣W (I+A)− 1

2
〈A,CA〉

∣∣∣ ≤ δ 〈A,CA〉.



 (1.3d)

In particular, condition (1.3d) states that A 7→ 1
2
〈A,CA〉 is the second order Taylor

expansion of W around id. It implies W (id) = 0, ∂FW (id) = 0 and ∂2
FW (id) = C,

where the second part yields that the material is stress free and, if W would be C2 in a
neighborhood of id, from the third part the assumed symmetry of C could be deduced.
Moreover the semi norm given by |A|2C := 1

2
〈A,CA〉 is equivalent to the norm A 7→ |Asym|

as on the one hand the frame indifference (1.3b) implies CA = CAsym for every A ∈ Rd×d

and on the other hand the first part of assumption (1.3c) beingW (F ) ≥ cW dist2(F, SO(d))
and assumption (1.3c) imply cW |Asym| ≤ 1

2
|A|2C (see [MiS13] for the details).

To take the small-deformation limit one considers small deformations of the form
yε = id+εuε for small parameters ε > 0, where uε remains bounded in a suitable function
space. As the above discussed quadratic behavior of W around I suggests, the scaling
of W (∇yε) = W (I+ε∇u) by 1

ε2
will be appropriate to obtain linearized elasticity in the

bulk, namely

W ε(A) :=
1

ε2
W (I+ε · ) M−→ 1

2

∣∣ · |2C. (1.4)

The correspondingly rescaled elastic energies (cf. [DNP02]) without GMS condition reads

F̃ε(u) :=

∫

Ω

1

ε
W
(
x, I+ε∇u(x)

)
dx

while we are interested in the elastic energy with the GMS condition (1.1), namely

Fε : H1
g,Dir → R ∪ {∞}, u 7→

{
F̃ε(u) if id+εu satisfies (1.1),

∞ else,
(1.5)

where ΓDir and H1
g,Dir are specified in (2.7) such that u ∈ H1

g,Dir implies (u−g)|ΓDir
= 0.

The functional F̃ε is the one considered in [DNP02], and it is shown to Γ-converge to

F̃(u) =

∫

Ωcr

1

2
〈e(u),Ce(u)〉dx, where e(u) := (∇u)sym :=

1

2

(
∇u+ (∇u)>

)
.

The main result of this work is the Mosco convergence (i.e. Γ-convergence with respect
to both weak and strong H1-topology) of Fε to the functional F, which is obtained from

F̃ by adding the local non-interpenetration condition (1.2), namely

F : H1
g,Dir → R ∪ {∞}, u 7→





F̃(u) if u satisfies (1.2),

∞ else.
(1.6)
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The equi-coercivity of the functionals Fε is directly implied by the equi-coercivity of

F̃ε, once the rigidity result of [FJM02] has been generalized to our class of crack domains
Ωcr := Ω \ Γcr as specified in Section 2. Thus, the coercivity (1.3c) and the energy bound

F̃ε(uε) ≤ C < ∞ imply ‖uε‖H1 ≤ C and ‖εuε‖Lp ≤ C, which gives ‖εuε‖L∞ ≤ Cεr

for some r > 0, see Proposition 3.6. Our main Theorem 2.1 states the following Γ-
convergence:

Fε
M−→ F in H1

g,Dir, i.e.

∀uε ⇀ u in H1
g,Dir : F(u) ≤ lim inf

ε→0
Fε(uε),

∀ ũ ∈ H1
g,Dir ∃ ũε → ũ : F(ũ) ≥ lim sup

ε→0
Fε(ũε).

(1.7)

In Section 4 we provide the liminf estimate (in the weak topology of H1(Ω;Rd)), where
because of the result in [DNP02] it remains to establish the local non-interpenetration
condition (1.2) as a limit of the global condition (1.1), which is not too difficult, see
Theorem 4.1. The construction of recovery sequences for the limsup estimate (now in
the strong topology of H1) is more delicate, as in general (even for very smooth) dis-
placements u ∈ H1(Ωcr;Rd) satisfying the local non-interpenetration condition (1.2) the
associated close-to-identity deformation yε = id + εu does not satisfy the GMS condi-
tion (1.1) for global injectivity, see Example 5.1. On the one hand, our construction of
recovery sequences invokes an approximation of functions in H1(Ωcr;Rd) satisfying (1.2)
by functions in W1,∞(Ωcr;Rd) still satisfying (1.2), which is reminiscent to the density
results in Proposition 5.4 for under convex constraints derived in [HiR15, HRR16]. On
the other hand, we have to use an artificial forcing apart of the two crack sides to be able
to guarantee (1.1), see Proposition 5.2.

In the present work, we are only able to treat the static situation as in [DNP02], which
is in contrast to [MiS13, NeZ14] where the passage from finite-strain to linearized elasticity
is handled in the rate-independent setting. However, the treatment of the contact problem
in finite-strain seems still to be too difficult. In [LaT11] the quasistatic evolution of
fracture in linearized elasticity is developed, where cracks may occur along arbitrary
paths that have C1,Lip regularity, which is the same regularity needed for our analysis.

2 Transformation and main result

Throughout this paper we consider a reference configuration with a Lipschitz domain Ω
and a given crack Γcr on which the displacements u ∈ H1(Ωcr,Rd) may have jumps. We
expect that our theory works for general domains Ω and cracks Γcr that are piecewise
C1,Lip, if all the edges and corners are non-degenerate. However, to avoid an overload of
technicalities we concentrate on the essential difficulties that arise by (i) smooth pieces of
the crack, (ii) by the edge of the crack, (iii) by kinks inside a crack, and (iv) through the
intersection of the crack with the boundary ∂Ω.

Thus, we define a model domain Ω̂ with a model crack Γ̂cr that displays all these
difficulties and then consider all domains Ω with cracks Γcr that are obtained by a bi-
Lipschitz mapping T : Ω→ Ω̂ such that Γ̂cr = T (Γcr).

Conditions on the model pair (Ω̂, Γ̂cr). Our conditions essentially say that Ω̂cr =

Ω̂ \ Γ̂cr can be written as the union of two Lipschitz domains A+ and A− that have a

nontrivial intersection A+ ∩A−, which is a Lipschitz set again, and that define Γ̂cr as the
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Ω̂
Γ̂cr

Â+ ⊂ Ω̂

Â− ⊂ Ω̂

Â− ∩ Â+

Figure 1: Left: Crack Γ̂cr (areas shaded in light blue) inside the domain Ω̂, the crack edge

Γ̂edge is red, the crack kink Γ̂kink is green lying between the two shaded areas, and ∂Ω∩ Γ̂cr

is blue. Right: Decomposition of a planar Ω̂ into Â+ and Â− according to (2.1c).

intersection of the boundaries ∂A+ and ∂A−. Using the normal vector ν̂ ∈ Sd−1 of the
crack Γ̂cr and the outward normal vector n̂ ∈ Sd−1 on ∂Ω, our precise assumptions are the
following.

Ω̂ ⊂ Rd is a bounded Lipschitz domain; (2.1a)

Γ̂cr :=
((

[0, 1]×{0}×Rd−2
)
∪
(
{0}×[0,∞]×Rd−2

))
∩ Ω̂; (2.1b)

there exist open, Lipschitz sets Â+, Â− ⊂ Ω̂ such that Ω̂cr ⊂ Â+ ∪ Â−
and both Â+ ∩ Â− and Â+ \ Â+ have Lipschitz boundary;

}
(2.1c)

Transversality of Γ̂cr: ∂Ω and Γ̂cr intersect transversally, i.e.

∃ δ > 0 : |n̂(x̂) · ν̂(x̂)| ≤ 1−δ for Hd−2-a.e. x̂ ∈ ∂Ω ∩ Γ̂cr.

}
(2.1d)

Transversality of Γ̂edge := {(0, 1)}×Rd−2 ∩ Ω̂:

∂Ω and Γ̂edge intersect transversally, i.e.

∃ δ > 0 : |n̂(x̂) · e2| ≤ 1−δ for Hd−3-a.e. x̂ ∈ ∂Ω ∩ Γ̂edge.





(2.1e)

The conditions on (Ω̂, Γ̂cr) are illustrated in Figure 1. The model crack Γ̂cr defined in

(2.1b) contains two special subsets, (i) the crack edge Γ̂edge :=
(
{(1, 0)}×Rd−2

)
∩ Ω̂ and

(ii) the crack kink Γ̂kink :=
(
{(0, 0)}×Rd−2

)
∩ Ω̂. For all other points we have the well-

defined crack normal ν(x̂) = (1, 0, .., 0)> ∈ Rd or (0, 1, 0, .., 0)>, respectively. Condition

(2.1d) asked that the crack Γ̂cr does not meet the boundary ∂Ω̂ tangentially.
The decomposition in (2.1c) will be used for two purposes, namely (i) for the derivation

of a rigidity result for the cracked domain and (ii) to construct enough good test functions
for deriving the jump condition in Theorem 4.1.

The domains Ω and the cracks Γ ⊂ Ω for which we will formulate our theory are now
obtained by a bi-Lipschitzian mapping T : Ω → Ω̂ that are additionally C1,Lip = W2,∞.
Thus, the conditions on the pair (Ω,Γ) or the cracked domain Ωcr := Ω \ Γ are the
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following:

Assumptions on (Ω,Γ):

(Ω̂, Γ̂cr) satisfy (2.1) and there exists a bi-Lipschitz map T : Ω→ Ω̂

such that Ω̂ = T (Ω), Γ̂cr = T (Γcr), and T ∈ C1,Lip(Ω;Rd).

(2.2)

Note that the true crack Γcr will be piecewise C1,Lip, since we allowed for a kink in Γ̂cr.
As a first consequence of this assumption we see that Ωcr can also be decomposed

similarly to Ω̂cr in (2.1c). Defining A± := T−1(A±) with Â± from (2.1c) we have that

A+, A− ⊂ Ω are Lipschitz domains with A+ ∪ A− = Ωcr

such that A+ ∩ A− and A− \ A+ are also Lipschitz domains.

}
(2.3)

This overlapping cover of Ωcr in assumption (2.3) is used for two different purposes. First,
it allows us to extend the rigidity result from Lipschitz domains to our crack domains Ωcr,
see Corollary 3.3. Second, it allows us to derive the jump condition (1.2) in Theorem 4.1
by applying the divergence theorem on a disjoint cover given by A+ and A− \ A+.

The assumption that T is a bi-Lipschitz mapping means that it is bijective and that
T : Ω → Ω̂ and T−1 : Ω̂ → Ω are Lipschitz. The additional condition T ∈ C1,Lip(Ω;Rd)

then implies T−1 ∈ C1,Lip(Ω̂;Rd). Note that we may assume that T and T−1 are also C1,Lip

on open neighborhoods of Ω and Ω̂, respectively. Thus, a near-identity diffeomorphism
y : Ω→ Rd (i.e. y−id is small in L∞) can be transformed to a near-identity mapping on

Ω̂ via the transform

ŷ(x̂) = T
(
y
(
T−1(x̂)

))
or y(x) = T−1

(
ŷ(T (x))

)
.

In particular, for ŷε,û := id + εû : Ω̂→ Rd we find the expansion

yε(x) = T−1
(
ŷε,û(T (x))

)
= x+ ε∇T (x)−1û(T (x)) +O(ε2),

The mapping from û to the corresponding term in yε is called the Piola transform PT for
vector fields, cf. also [KMZ08, KnS12]. Under the assumption (2.2) the mapping

PT :

{
H1(Ω̂) → H1(Ω)
û 7→ u : x 7→ ∇T (x)−1û(T (x))

(2.4)

is a bijective bounded linear mapping as well as its inverse PT−1 : H1(Ω)→ H1(Ω̂).
The Piola transform is especially useful for us, as it also transforms the local non-

interpenetration condition in the correct way, see e.g. [KMZ08, KnS12]. If ν̂(x̂) is the

normal vector at x̂ ∈ Γ̂cr, then it is related to the normal vector ν(x) at x = T−1(x̂) ∈ Γ
via

ν(x) =
1

|∇T (x)>ν̂
(
(T (x)

)
|∇T (x)>ν̂

(
T (x)

)
or ν̂(T (x)) =

1

|∇T (x)−>ν(x)|∇T (x)−>ν(x).

Thus, for the jump over the crack we obtain the relation

[[u]]Γcr(x) =
(
u+(x)−u−(x)

)
· ν(x)

=
(
∇T (x)−1û+(T (x))−∇T (x)−1û−(T (x))

)
· ν(x)

=
(
û+(T (x))−û−(T (x))

)
· ∇T (x)−>ν(x)

= |∇T (x)−>ν(x)| [[û]]Γ̂cr(T (x)).

(2.5)
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Thus, the jumps translate correctly if we take into account the prefactor that associates
with the stretching of surface elements.

For future use of the above assumptions on (Ω,Γcr) we derive the following well-known
consequences, which will be employed below in our theory of Γ-convergence:

Ω Lipschitz domain, and for all x0 ∈ ∂Ω there exists an open
neighborhood U ⊂ Rd of x0 and a bi-Lipschitz Ψx0 : U → V ⊂ Rd

such that U ∩ Ω ⊂ Ψ−1
x0

({vd > 0}) and U ∩ ∂Ω ⊂ Ψ−1
x0

({vd = 0});



 (2.6a)

transversality of Γcr and ∂Ω: for all x0 ∈ Γcr ∩ ∂Ω there exist
η̂x0 ∈ Sd−1, κ > 0, and U and Ψx0 as in (2.6a), such that

(i) ∇Ψx0(x)ed · ∇T (x)−1 η̂x0 ≥ κ for a.a. x ∈ U ∩ Ω,
(ii) η̂x0 · ∇T (x)−>ν(x) = 0 for a.a. x ∈ U ∩ Γcr,
(iii) η̂x0 ∈ {(0, 0)}×Rd−2 if x0 ∈ ∂Ω ∩ Γedge,

where Γedge := T−1
(
Γ̂edge

)
with Γ̂edge := {(1, 0)}×Rd−2.





(2.6b)

Note that condition (ii) in (2.6b) simply means η̂x0 · ν̂(T (x)) = 0, where ν̂ takes one of

the values e1, e2 ∈ Rd, or even both values if T (x0) ∈ Γ̂kink. Hence, this condition follows
directly from (2.1d), but we will use the form as given in (2.6b) for a full neighborhood.
Similarly, condition (iii) in (2.6b) is a direct consequence of (2.1e).

Note that the angle of π
2

at the kink of Γ̂cr is not essential and will be varied by the

mapping ∇T−1(y) for y ∈ Γ̂cr ∩ Ω̂cr. Furthermore the choice of Γ̂cr = T (Γcr) ⊂ Ω̂ in
(2.2) is just an example as easy as possible while still showing the crucial difficulties. We
expect that the theory works for any C1,Lip-surface which is piecewise C2. The proofs and
constructions are made with the intention to be adaptable to other special situations.

The transversality condition (2.6b) requires the crack Γcr and the boundary ∂Ω to
intersect transversally. Technically it enables us to use the following implicit function
theorem for Lipschitz maps to conclude ∂Ω̂ being a graph in the direction η, which is
parallel to Γ̂cr in a whole open neighborhood of T (x0). You can interprete this graphically
when having in mind the fact, that normal vectors transform by the cofactor of the
gradient. Then the first equation of (2.6b) can be read as the vector field ηx0 , which is

constant on the flat configuration Ω̂ \ Γ̂cr having an angle bounded away from π
2

to the
normal on the boundary, which is given by ed := (0, ..., 0, 1)> transferred by the cofactor
of Ψ−1

x0
and T . The last requirement specifies that for x0 ∈ Γcr the vector ηx0 is tangential

to Γ̂cr.
To collect all the assumptions we now specify the boundary conditions in terms of the

part ΓDir ⊂ ∂Ω, where the Dirichlet boundary conditions (u−g)|ΓDir
= 0 are imposed.

ΓDir ∩ Γcr = ∅,
∫

ΓDir

1dHd−1 > 0, g ∈W1,∞(Ω;Rd)

H1
g,Dir := closH1(Ωcr)

(
{u ∈W1,∞(Ωcr;Rd) | (u−g)|ΓDir

= 0 }
)
.

(2.7)

Theorem 2.1 (Mosco convergence Fε
M−→ F) Let the assumptions (1.3), (2.2), and

(2.7) be satisfied and Fε defined in (1.5) Mosco-converges to F defined in (1.6) in H1(Ωcr;Rd).

The proof of this result is the content of the following sections. In particular, the
liminf estimate is established in Proposition 4.3, and the limsup estimate in Theorem 5.5.

The following result is a weak version of the implicit function theorem that will be
needed to represent the boundary ∂Ω near a point x0 ∈ ∂Ω ∩ Γcr, see Corollary 2.3.
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Theorem 2.2 (Special version of Implicit Function Theorem) Let Um ⊂ Rm, Un ⊂
Rn be open sets, a ∈ Um, b ∈ Un and F : Um × Un → Rn be a Lipschitz map with
F (a, b) = 0. Suppose there exists a constant K > 0 such that for all x ∈ Um and
y1, y2 ∈ Un it holds

|F (x, y1)− F (x, y2)| ≥ K|y1 − y2|. (2.8)

Then there exists an open neighborhood Vm of a, Vm ⊂ Um and a Lipschitz map ϕ : Vm →
Rn such that ϕ(a) = b and

F−1(0) =
{

(x, ϕ(x))|x ∈ Vm
}
.

Proof. We will sketch the proof briefly.
By (2.8), which is a Lipschitz analog of the invertibility of ∇yF in the differentiable

version of the inverse function theorem, the map f : Um × Un ⊃ Rm+n → Rm+n, (x, y) 7→
(x, δF (x, y)) is bi-Lipschitz for 0 < δ < ‖∇F‖−1

L∞ . In particular f is continuous, injective
and maps an open subset of Rm+n to Rm+n, thus by Brouwer’s invariance of domain
theorem f is an open map, i.e. f(Um × Un) is open in Rm+n and f−1 is continuous.
Consider the embedding em : Rm → Rm+n, x 7→ (x, 0) and the projection pn : Rm×Rn →
Rn, (x, y) 7→ y. Both em and pn are Lipschitz continuous , thus ϕ := pm ◦ f−1 ◦ em defines
a Lipschitz map on Vm := e−1

m

(
f(Um × Un)

)
, which is open by continuity of em and f−1.

Because of the assumption F (a, b) = 0 we have a ∈ Vm and ϕ(a) = b. Regarding the
claimed equality F−1(0) =

{
(x, ϕ(x))|x ∈ Vm

}
we get on the one hand the inclusion

“⊃” from F (x, ϕ(x)), which follows by construction of ϕ. On the other hand for every
(x, y) ∈ Um×Un with F (x, y) = 0 we have f(x, y) = (x, 0) such that x lies in the domain
Vm of ϕ by construction of Vm, which gives the other inclusion “⊂”.

We are now able to write the boundary ∂Ω̂ near x̂0 ∈ ∂Ω̂ ∩ Γ̂cr as a Lipschitz graph
over the plane η̂⊥x̂0 through x̂0 = T (x0) that is normal to η̂x̂0 . This construction will be
needed in the proof of Proposition 5.4.

Corollary 2.3 Let x̂0 = T (x0) ∈ Γ̂cr∩∂Ω̂ and U and η̂x0 as in the transversality condition
(2.6b). Set η̂⊥x0 := { x̂ ∈ Rd | (x̂−T (x0)) · η̂x0 = 0 }. Then, there is an open neighborhood

V̂ of T (x0) and a Lipschitz continuous function ϕx0 : V̂ ∩ η̂⊥x0 → R such that the function

ĝ: V̂ → R; ĝ(x̂) := ϕx0
(
x̂− ((x̂−T (x0))·η̂x0) η̂x0

)
− (x̂−T (x0))·η̂x0

characterizes ∂Ω̂ locally via ĝ(x̂) > 0 for x̂ ∈ Ω̂, ĝ(x̂) = 0 for x̂ ∈ ∂Ω̂, and ĝ(x̂) < 0 for

x̂ ∈ Rd \ clos
(
Ω̂
)
.

Similarly, the boundary ∂Ω near a point x0 ∈ Γcr ∩ ∂Ω can be characterized by a
function g = ĝ ◦ T−1, where ĝ is obtained as above for x̂0 = T (x0).

Proof. Take Ψx0 as in the transversality condition (2.6b) and consider the map

F : U ∩ η̂⊥x0×R→ R; F (x̃, y) := ed ·Ψx0(T
−1(x̃+yη̂x0)),

where (x̃, y) ∈ η̂⊥x0×R provides a unique representation of x̂ ∈ Rd via x̂ = x̃ + yη̂x0 . By
construction F is Lipschitz and F−1(0) ⊂ ∂Ω. Up to an isomorphism it is F : Rd−1×R→
R, and by the transversality condition we have ∂

∂y
F (x̃, y) ≥ κ. Thus, Theorem 2.2 gives

y = ϕx0(x̃), and the remaining assertions follow by simple computations.
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3 Coercivity of Fε via rigidity

The equi-coercivity of the Fε is directly implied by the equi-coercivity of the F̃ε, since
Fε ≥ F̃ε holds. For extending the proof of the equi-coercivity of F̃ε from [DNP02] we have
to generalize the rigidity estimate from [FJM02] from Lipschitz domains to domains with
cracks. For this we will use the overlapping decomposition Ωcr = A+ ∪ A− from (2.3).

Definition 3.1 (Rigidity domains) A domain Ω̃ ⊂ Rd is called a rigidity domain, if

∃C > 0 ∀ v ∈ H1
(
Ω̃,Rd

)
: inf

R∈SO(d)
‖∇v −R‖2

L2(Ω̃)
≤ C

∥∥dist
(
∇v, SO(d)

)∥∥2

L2(Ω̃)
. (3.1)

The smallest such constant we call rigidity constant R
(
Ω̃
)
.

In [FJM02] it is proved, that every bounded Lipschitz domain is a rigidity domain.
Furthermore a doubling argument can be found therein similar to the one used in the
following proof.

Proposition 3.2 Let A,B ⊂ Rd be bounded rigidity domains such that A∩B is a rigidity
domain with positive volume. Then A∪B is a rigidity domain, and we have

R(A∪B) ≤ (2+4µA)R(A) + (2+µB)R(b) + 4(µA+µB)R(A∩B),

where µA = vol(A)/ vol(A∩B) ≥ 1 and µB = vol(B)/ vol(A∩B) ≥ 1.

Proof. We fix v ∈ H1(A∪B,Rd) and denote by RA, RB, RA∩B ∈ SO(d) the minimizers
R ∈ SO(d) in (3.1) on the corresponding domains. Hence on A∪B we obtain the estimate

∫

A∪B
|∇v(x)−RA∩B|2 dx ≤ IA + IB, where ID :=

∫

D

|∇v(x)−RA∩B|2 dx.

Writing shortly δ(F ) := dist(F, SO(d))2 we can estimate:

IA ≤ 2

∫

A

|∇v(x)−RA|2 dx+ 2

∫

A

|RA−RA∩B|2 dx

≤ 2R(A)

∫

A

δ(∇v(x))dx+ 2µA

∫

A∩B
|RA −RA∩B|2 dx,

where we used that RA is the minimizer for the set A, that |RA−RA∩B| is constant and
the definition of µA. For the second term of IA we have

∫

A∩B
|RA−RA∩B|2 dx ≤ 2

∫

A∩B
|RA−∇v(x)|2 dx+ 2

∫

A∩B
|∇v(x)−RA∩B|2 dx

≤ 2R(A)

∫

A

δ(∇v(x))dx+ 2R(A∩B)

∫

A∩B
δ(∇v(x))dx.

Together we find IA ≤
(
(2+4µA)R(A) + 4µAR(A∩B)

) ∫
A∪B δ(∇v(x))dx.

Interchanging A and B we find the analogous estimate for IB, and the result follows.

In this form, the rigidity estimate applies to our situation by our assumption (2.1c)
on the decomposition of Ω in two overlapping Lipschitz domains. We simply apply the
above proposition to Ωcr = A ∪B with A = A+ and B = A−, see (2.3).
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Corollary 3.3 (Ωcr is a rigidity domain) Let (Ω,Γcr) satisfy (2.2). Then, Ωcr = Ω\Γcr

is a rigidity domain, i.e. there is a constant C > 0 such that

∀ v ∈ H1(Ωcr;Rd) ∃R ∈ SO(d) : ‖∇v−R‖L2(Ωcr
≤ C

∥∥dist
(
∇v, SO(d)

)∥∥
L2(Ωcr)

.

Before proving coercivity, let us note the following quantitative statement on the
rotations showing up when applying the rigidity estimate to small deformations yε =
id + εu. In [DNP02] as well as for us, it is a main step in the proof of the equi-coercivity.
Moreover, we will need it for proving Theorem 4.1 on the local non–interpenetration
in the next chapter. The main point is to show that for mappings yε = id + εu the
corresponding rotation matrices Rε that are minimizers in the rigidity estimate are also
close to the identity matrix I ∈ Rd×d. For this we use the boundary conditions u|ΓDir

= g.

Lemma 3.4 Let Ω,Γcr, and W satisfy the assumption (2.2) and (1.3) and fix g ∈W1,∞(Ω).
Then, there exist constants CF, CR > 0 such that for all ε ∈ ]0, 1[ and all u ∈ H1

g,Dir the
following holds:

∫

Ωcr

|I+ε∇u(x)−Rid+εu|2 dx ≤ CF ε
2F̃ε(u), (3.2a)

|I−Rid+εu|2 ≤ CRε
2
(
F̃ε(u) +

∫

ΓDir

|g|2 dHd−1
)
, (3.2b)

where Rv denotes the minimizer R ∈ SO(d) in (3.1) for fixed v ∈ H1(Ωcr;Rd).

Proof. Combining the coercivity of W in (1.3c) with the rigidity constant from Corollary
3.3 we obtain (3.2a) with CF = R(Ωcr)/cW .

To derive the second estimate we set Rε = Rid+εu and ζε := −
∫

Ωcr

(
x+εu(x)−Rεx

)
dx.

By continuity of the traces and Poincaré’s inequality we find
∫

ΓDir

|(x+εu(x))−Rεx− ζε|2 dHd−1 ≤ C2

∥∥(x+εu(x))−Rεx− ζε
∥∥
H1(Ωcr,Rd)

≤ C3

∫

Ωcr

|(I+ε∇u(x))−Rε|2 dx ≤ C4ε
2F̃ε(u)

with C4 = CFC3. Exploiting u|ΓDir
= g and the prefactor ε we obtain

∫

ΓDir

|(I−Rε)x− ζε|2 dHd−1 ≤ C5ε
2
(
F̃ε(u) +

∫

ΓDir

|g|2 dHd−1
)
.

Note that Rε−I is an element of the closed cone K generated by SO(d) − I, on which
Lemma 3.3 from [DNP02] applies (see the derivation of (3.14) therein). Thus

|I−Rε|2 ≤ C6 min
ζ∈Rd

∫

ΓDir

|(I−Rε)x− ζ|2 dHd−1,

and the estimate (3.2b) follows with CR = C5C4.

Now we can proof the equi-coercivity of F̃ε on H1
g,Dir.

Proposition 3.5 (First a priori bound) Assume that Ω,Γcr, and W satisfy (2.2) and
(1.3). Then, there exists cF, CF > 0 such that

∀ ε ∈ ]0, 1[ ∀u ∈ H1
g,Dir : F̃ε(u) ≥ cF‖u‖2

H1 − CF.
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Proof. By the first part of assumption (1.3c) on W and Corollary 3.3 we have

‖(I+ε∇u)−Rε‖2
L2 ≤ C1

∫

Ωcr

dist2(I+ε∇u(x), SO(d))dx

≤ C2

∫

Ωcr

W (I+ε∇u(x))dx ≤ C2ε
2Fε(u).

Using both estimates from Lemma 3.4 we proceed to obtain

ε2‖∇u‖2
L2 ≤ 2

(
‖I−Rε‖2

L2 + ‖I+ε∇u−Rε‖2
L2

)
≤ ε2C3

(
Fε(u) +

∫

ΓDir

|g|2 dHd−1
)

with C3 = 2CF + 2CR. Dividing by ε2 and exploiting the boundary conditions as well as
Poincaré’s inequality we arrive at the desired result.

The above result shows that sequences (uε)ε with bounded energy F̃ε(uε) ≤ C < ∞
are bounded in H1(Ωcr;Rd). The next results provides a weaker, but still useful a priori
bound, which implies that εuε converges to 0 in L∞(Ω;Rd) for energy bounded sequences.

Proposition 3.6 (Second a priori bound) Let W satisfy (1.3). Consider a sequence

(uε)ε>0 with supε>0 F̃ε(uε) <∞. Then, there exists a constant C > 0 such that

‖εuε‖W1,p ≤ C and ‖εuε‖L∞ ≤ Cεr (3.3)

with r ∈ ]0, 1[ arbitrary for d = 2, and r = 2(p−d)
d(p−2)

∈ ]0, 1[ for d ≥ 3.

Proof. The first estimate in (3.3) follows directly from the coercivity (1.3c) for W :

ε2C ≥ ε2F̃ε(uε) ≥
∫

Ωcr

cW
(
|I+ε∇uε(x)|p−CW

)
dx ≥ cW

2
‖ε∇uε‖pLp − C.

Together with Proposition 3.5 we obtain a uniform bound in W1,p(Ω;Rd).
For the second estimate in (3.3) we use the Gagliardo-Nirenberg interpolation estimate

for f = εuε, where we crucially p > d as provided in (1.3c):

‖f‖L∞ ≤ C‖f‖θW1,p‖f‖1−θ
H1 .

For d = 1 we can take θ = 0 because H1 ⊂ L∞, and for d = 2 any θ ∈ ]0, 1] is sufficient.
For d ≥ 3 we can choose θ = d−2

d
p−2
p
∈ ]0, 1[, and the result follows by using Proposition

3.5, which gives ‖f‖1−θ
H1 ≤ ε1−θC.

4 The lim inf estimate

In contrast to the equi-coercivity the Γ- lim inf estimate for Fε does not follow directly
from the Γ- lim inf estimate for F̃ε, since we have to consider the case F(u) =∞ carefully,
i.e. we have to show that the global injectivity condition (1.1) generates the local non-
interpenetration condition (1.2) in the limit ε → 0. This is the content of the following
result.

Theorem 4.1 (Local non-interpenetration) Consider uε, u ∈ H1(Ωcr,Rd) such that

uε
H1

⇀ u and lim inf
ε→0

Fε(uε) <∞; then [[u]]Γcr ≥ 0 holds.
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To prove this theorem we will first prove the following linearization result concerning
the determinant of I+ε∇u:

Lemma 4.2 There exists Cdet > 0 depending on Ω, ΓDir, Γcr and the exponent p > d and
constants from assumption (1.3c) such that

∀ ε ∈ ]0, 1[ ∀u ∈ H1
g,Dir :∫

Ωcr

∣∣ det
(
I+ε∇u(x)

)
− 1−ε div u(x)

∣∣dx ≤ ε2Cdet

(
F̃ε(u) + Cdet

)
.

(4.1)

Proof. For matrices A ∈ Rd×d we have
∣∣ det(I+A) − (1+ trA)

∣∣ ≤ Cd
(
|A|2 + |A|d

)
,

where we will insert A = ε∇u(x). To control the term |A|d we will use W (I+A) and
|I+A|p ≥ 1

2
|A|P − C1, which yields

W (I+A) ≥ cw
(
|I+A|p − CW

)
≥ cW

2

(
|A|p − C2

)
.

Using W (F ) ≥ 0 we even have W (I+A) ≥ cW
2

[
|A|p − C2

]
+

, where [a]+ := max{a, 0}.
Because of p > d ≥ 2 there exists C∗ > 0 such that td ≤ C∗

(
t2 + (tp−C2)+

)
for all t ≥ 0.

Thus, inserting t = |A| = |ε∇u(x)|, setting C3 = Cd(C∗+1), and integrating over Ωcr

results in
∫

Ωcr

∣∣∣ det
(
I+ε∇u(x)

)
−
(
1+ε div u(x)

)∣∣∣dx ≤
∫

Ωcr

Cd
(
|ε∇u|2 + |ε∇u|d

)
dx

≤
∫

Ωcr

C3

(
|ε∇u|2 +

[
|ε∇u|p−C2

]
+

)
dx ≤ ε2C3‖∇u‖2

L2 + ε2 2C3

cW
F̃ε(u).

Together with Proposition 3.5 we see that the assertion holds with Cdet chosen as the
maximum of C3/cF + 2C3/cW and C3CF/cF.

With this lemma at hand, we are now able to complete the proof of the main theorem
of this section. The idea is to consider the GMS condition (1.1) for global injectivity for
yε = id + εuε with non-negative test functions ϕ ∈ C∞(Ω). Dividing by ε and passing to
the limit with the help of the above lemma one can derive the relation

∫
Ωcr
∇ϕ · udx ≥ 0,

which provides the local non-interpenetration condition (1.2).

Proof of Theorem 4.1: As α := lim infε→0 Fε(uε) <∞ there is a subsequence (εj, uj)
such that id + εjuj fulfills the GMS-condition (1.1) and det(I+εj∇uj) > 0 a.e. on Ω.
Hence, by rearranging (1.1), for every ϕ ∈ C∞c (Ω) with ϕ ≥ 0 we have:

0 ≥ 1

εj

∫

Ωcr

(
ϕ
(
x+εjuj(x)

)
det
(
I+εj∇uj(x)

)
− ϕ(x)

)
dx

=
1

εj

∫

Ωcr

ϕ
(
x+εjuj(x)

)(
det
(
I+εj∇uj(x)

)
−
(
1+εj div uj(x)

))
dx

+

∫

Ωcr

ϕ
(
x+εjuj(x)

)
div uj(x)dx+

∫

Ωcr

1

εj

(
ϕ
(
x+εjuj(x)

)
− ϕ(x)

)
dx.

By Lemma 4.2 the first summand on the right-hand side converges to 0 for j → ∞.

The second summand converges to
∫

Ωcr
ϕ(x) div u(x) dx, as div uj

L2

⇀ div u weakly and

ϕ◦(id+εjuj)→ φ strongly in L2(Ω), where we use Proposition 3.6, namely ‖εjuj‖L∞ → 0.
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Finally, the third term can be treated by using the relation

1

εj

(
ϕ
(
x+εjuj(x)

)
− ϕ(x)

)
=

∫ 1

s=0

∇ϕ
(
x+sεjuj(x)

)
· uj(x)ds,

such that, again using ‖εjuj‖L∞ → 0, and weak convergence uj ⇀ u shows convergence
to
∫

Ωcr
∇ϕ(x) · u(x)dx. Altogether the limit ε→ 0 provides the estimate get

0 ≥ 0 +

∫

Ωcr

ϕ(x) div u(x)dx+

∫

Ωcr

∇ϕ(x) · u(x)dx

=

∫

Ωcr

div(ϕu)(x)dx = −
∫

Γcr

ϕ(x) [[u]]Γcr(x) da(x).

For the last identity we have to recall that u lies in H1
g,Dir ⊂ H1(Ωcr;Rd) such that the

upper and lower traces at the crack Γcr may be different. Applying the divergence theorem
on the Lipschitz sets A+ and A− \ A+ (see (2.3)) separately, all terms cancel except for
the jump along Γcr. As ϕ ≥ 0 was arbitrary, we conclude [[u]]Γcr ≥ 0 a.e. on Γcr. �

We are now ready for deriving the lim inf part for our Mosco convergence Fε
M−→ F.

Proposition 4.3 (Liminf estimate) For every sequence εj → 0 and uj, u ∈ H1
g,Dir with

uj ⇀ u in H1(Ωcr;Rd) we have

F(u) ≤ lim inf
j→∞

Fεj(uj).

Proof. We can assume that α := lim infj→∞ Fεj(uj) <∞, since otherwise the inequality

holds trivially. Thus, there is a subsequence (εj, uj) such that Fεj(uj) = F̃εj(uj)→ α and
that id + εjuj is globally injective. By Theorem 4.1 we conclude [[u]]Γcr ≥ 0. Consequently

the liminf estimate above reduces to the liminf estimate for F̃ε:

F(u) = F̃(u) ≤ α = lim
j→∞

F̃εj(uj) = lim
j→∞

Fεj(uj).

Because F̃ is convex, by [MiS13, Lem. 4.2] it suffices to show the pointwise lim inf estimate
of the respective densities. From (1.3d) we even obtain pointwise equality using

∣∣ 1

ε2
W (I+εG)− 1

2
〈G,CG〉

∣∣ ≤ δ

2
〈G,CG〉 ≤ δ

|C|
2
|G|2 for G ∈ Brδ/ε(0).

Since δ > 0 is arbitrary, for each fixed G we have limε→0
1
ε2
W (I+εG) = 1

2
〈G,CG〉.

5 The lim sup estimate

Showing the lim sup estimate in (1.7) amounts in the construction of a recovery sequence
uε → u converging strongly in H1

g,Dir ⊂ H1(Ωcr;Rd). In the case without constraints

(1.1) or (1.2) the limsup estimate for the Γ-convergence F̃ε
Γ
⇀ F̃ is much simpler since

for u ∈ W1,∞(Ωcr;Rd) we can take the constant recovery sequence uj = u. Then, the

extension to general u ∈ H1
g,Dir follows by density and the strong continuity of F̃, see

[DNP02, Prop. 4.1].
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Due to the constraints (1.1) and (1.2) in the functionals Fε and F, respectively, we
have to do some extra work. First, setting

Cg := {u ∈ H1
g,Dir | [[u]]Γcr ≥ 0 }

we have to show that W1,∞ ∩ Cg is dense in Cg with respect to the H1 norm. Second
we would like to use that u ∈ W1,∞ ∩Cg implies that the close-to-identity deformations
id+εu is globally injective for sufficiently small ε > 0. The following example shows that
this cannot be expected in general.

Example 5.1 (Non-injectivity) Consider the domain Ω̃ = ]−1, 1[2 ⊂ R2, the crack

Γ̃cr = {0}×[0,∞[, the cracked domain Ω̃cr := Ω̃ \ Γ̃cr and the displacement

u : Ω̃cr → R2; u(x1, x2) =





(0, 0)> for x2 < 0,
(x2+(x2)2, x2)> for x2 ≥ 0 and x1 > 0,

(x2, 0)> for x2 ≥ 0 and x1 < 0.

Then, u ∈ W1,∞(Ω̃cr;R2), and along the crack we have ν̃(0, x2) = e1 = (1, 0)> and the

jump [[u]]Γ̃cr(0, x2) = (x2)2 > 0, except on the crack tip Γ̃edge = (0, 0)>.
However, yε := id+εu is not injective for any ε > 0 near the crack tip. To see this,

we set x+
ε =

(
( ε

2
)3, ε

2

)>
and x−ε =

(
−( ε

2
)3, ε

2
+ ε2

2

)>
which lie in the first and second

quadrant, respectively. We have yε(x
+
ε ) =

(
ε2

2
+ 3( ε

2
)3, ε

2
+ ε2

2

)>
= yε(x

−
ε ),which violates

injectivity. Even more, we see that the second quadrant is mapped to the set { y ∈ R2|y2 ≥
0, y1 < εy2 } while the first quadrant is mapped to { y ∈ R2 | y2 ≥ 0, y1 > hε(y1) } with
hε(z) = εz(1+ε+z)/(1+ε)2. Thus, each point in the area

{ (y1, y2) | 0 < y2 < ε(1+ε), εy2 < y < hε(y2) }
has two preimages.

The main problem in handling domains with cracks is that the missing Lipschitz
property. For Lipschitz domains Ω we have CLip(Ω) = W1,∞(Ω) with an estimate

LipΩ(u) ≤ CΩ‖∇u‖L∞(Ω). (5.1)

For convex domains one has CΩ = 1 but for general domains the constant depends on the
relation between Euclidian distance and the inner distance

dΩ : Ω×Ω→ R; dΩ(x, x̃) = inf{Length(γ) | γ connects x with x̃ inside Ω }.
Then, the chain rule guarantees |u(x)−u(x̃)| ≤ ‖∇u‖∞dΩ(x, x̃). Thus, we can choose
CΩ = sup{ dΩ(x, x̃)/|x−x̃| | x, x̃ ∈ Ω, x 6= x̃ } in (5.1).

In a domain Ωcr with a crack, we obviously have CΩcr =∞, since points x+ and x− on
two opposite sides may have arbitrary small Euclidian distance |x+−x−| but large inner
distance dΩcr(x

+, x−). This explains the difficulty in proving global injectivity, since for a
close-to-identity mapping yε = id+εu we have

|yε(x+)−yε(x−)| ≥ |x+−x−| − ε|u(x+)−u(x−)| ≥ |x+−x−| − ε‖∇u‖L∞(Ωcr)dΩcr(x
+, x−).

Thus, for Lipschitz domains Ω with CΩ < ∞ the global injectivity follows easily if
ε‖‖∇u‖L∞(Ω)CΩ ≤ 1/2, but for cracked domains Ωcr we have to be much more care-
ful. Indeed, we have to require that our functions u ∈ Cg ∩W1,∞(Ωcr;Rd) also have a
crack opening that is bounded from below linearly by the distance of the points on the
crack from the edge Γedge. In the next result, we will show that we can achieve this by a
suitable forcing apart.
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Proposition 5.2 Let u ∈W1,∞(Ωcr,Rd)∩Cg, then there is a sequence uk ∈W1,∞(Ωcr,Rd)∩
H1
g,Dir satisfying uk

H1

→ u and

∀ k ∈ N ∃εk > 0 ∀ ε ∈ ]0, εk[ : id+εuk satisfies (1.1). (5.2)

Proof. Motivated by the above example we will use the displacement ϕ̂δ,η : Ω̂cr → Rd,

which forces to two sides of the crack Γ̂cr apart. For two small parameters δ, η > 0 we
set ϕ̂δ,η(x̂) = δλη(x̂)n̂ ∈ H1(Ω̂cr,Rd) with n̂ = (1, 1, 0, ..., 0)> ∈ Rd. The scalar function

λη ∈W1,∞(Ω̂cr) with γ ∈ ]0, 1[ is given by

λη(x1, x2, . . . , xd) =





0 if x1 > 1,
min

{
1, 1

η
(1−x1)

}
for x1 ∈ ]0, 1] and x2 > 0,

−min
{

1, 1
η
(1−x1)

}
for x1 ∈ ]0, 1] and x2 < 0,

−1 for x2 ≤ 0.

Hence the jump of λη grows linearly with slope 1/η with the distance from Γ̂edge and then
saturates at the values ±1.

We now choose an exponent α ∈ ]1, 2[ and a positive sequence δk → 0 and set ηk = δαk .

With this we define ϕ̂k := ϕ̂δk,ηk on Ω̂cr. Using the pullback of ϕ̂k to the reference
configuration Ω via the Piola transform ϕk(x) = ∇T (x)−1ϕ̂k

(
T (x)

)
, see (2.2). Moreover,

using (2.7) we can choose a cut-off function γ ∈W1,∞(Ω; [0, 1]) that is 1 on a neighborhood
of Γcr and vanishes on ΓDir. With this we define the required sequence

uk ∈W1,∞(Ωcr,Rd); x 7→ uk(x) = u(x) + γ(x)ϕk(x).

Note that the boundary value on ΓDir is not changed, i.e. uk ∈ H1
g,Dir.

To show the convergence uk = u+ γϕk
H1

→ u we need the smallness of γϕk. Using

‖γϕk‖H1(Ωcr) ≤ ‖γ‖W1,∞(Ω)‖∇T−1‖W1,∞(Ω̂)‖ϕ̂k‖H1(Ω̂cr)
.

will give the first condition for α:

‖ϕ̂k‖2
L2(Ω̂)

≤ vol(Ω̂) |n̂|2 δ2
k

‖∇ϕ̂k‖2
L2(Ω̂cr)

≤
∫

Ω̂∩{1−ηk≤x1≤1}

(
δk/ηk

)2

dx ≤ diam(Ω̂)d−1 δ2−α
k ,

where we used ηk = δαk . Because of α < 2 we have ‖uk−u‖H1 → 0 as desired.
Let us now come to the global invertibility. We establish the existence of εk > 0

by a contradiction argument. For this, we fix k for the moment and assume there is a
sequence εj → 0 such that id+εjuk is not globally invertible for all j ∈ N. Thus, there
exist xj, yj ∈ Ωcr with (id+εjuk)(xj) = (id+εjuk)(yj), i. e.

0 6= xj − yj = εj
(
uk(yj)− uk(xj)

)
. (5.3)

By boundedness of Ω there is a (not relabeled) subsequence, such that xj and yj both
converge. Since (5.3) gives |xj−yj| ≤ εj‖uk‖L∞(Ωcr) ≤ εj(‖u‖L∞(Ωcr)+3δk), these two limits
are the same, from now denoted by z∞. We next establish the following claim:
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Claim: The point z∞ lies in the crack edge Γedge = T−1
(
{(1, 0)}×Rd−2

)
, and

the convergence gives a very specific picture, i.e. T (xj)·e2 > 0, T (yj)·e2 < 0,
T (xj)·e1 < 1, T (yj)·e1 < 1, and

|xj − yj|
(1− T (xj)·e1) + (1− T (yj)·e1)

→ 0 as j →∞. (5.4)

That means that xj and yj converge to z∞ by approaching the crack asymp-
totically from above and below, respectively.

A major part of the proof of the claim is due to Lipschitz continuity. If z∞ 6∈ Γcr, there
would be a Lipschitz neighborhood U ⊂ Ωcr of z∞, which contains subsequences of xj and
yj. With Lk = ‖∇uk‖L∞(U) ≤ ‖∇uk‖L∞(Ωcr) <∞ we obtain

|xj−yj| = εj|uk(yj)−uk(xj)| ≤ εjLkdU(xj, yj) ≤ εjLkCU |xj−yj|.

For εjLkCU < 1 this implies xj = yj, which contradicts (5.3). Thus, z∞ ∈ Γcr is estab-
lished.

To conclude z∞ ∈ Γedge we define the overlapping decomposition Ωcr = Ω+ ∪ Ω− via

Ω+ := T−1
(
{ x̂ ∈ Ω̂ | (x1 > 0 ∧ x2 > 0) ∨ x1 > 1 }

)
and

Ω− := T−1
(
{ x̂ ∈ Ω̂ | x1 < 0 ∨ x1 > 1 ∨ x2 < 0 }

)
.

Obviously there cannot be subsequences with xj, yj ∈ Ω+ or xj, yj ∈ Ω− because both
Ω+ and Ω− have Lipschitz boundary and the Lipschitz continuity of uk would lead to
a contradiction as in the step above. So without loss of generality we can assume xj ∈
Ω+ \ Ω− and yj ∈ Ω− \ Ω+.

If ẑ∞ := T (z∞) ∈ Γ̂cr \ Γ̂kink we have a normal vector to Γ̂cr given by

ν̂ =

{
e1 := (1, 0, . . . , 0) for e1 · z∞ = 0,

e2 := (0, 1, 0, . . . , 0) for e2 · z∞ = 0.

By the above choice xj ∈ Ω+ \ Ω− and yj ∈ Ω− \ Ω+ we obtain
(
T (xj)− T (yj)

)
· ν̂ > 0 (5.5)

for sufficiently big j ∈ N. Thus, exploiting the smoothness of of T across the crack and
the relation (5.3) again we obtain

0 <
1

εj

(
T (xj)−T (yj)

)
· ν̂ =

∫ 1

0

∇T
(
xj+t(yj−xj)

)
dt

1

εj
(xj−yj) · ν̂

(5.3)
=

∫ 1

0

∇T
(
xj+t(yj−xj)

)
dt
(
uk(yj)−uk(xj)

)
· ν̂.

Passing to the limit j →∞ we find the jump condition

0 ≤ ∇T (z∞)
(
u−k (z∞)−u+

k (z∞)
)
· ν̂ =

(
u−k (z∞)−u+

k (z∞)
)
· T (z∞)>ν̂.

However, because of the non-interpenetration condition [[uk]]Γcr = [[u]]Γcr + [[ϕk]]Γcr ≥ 0,
where [[ϕk]]Γcr > 0 except on the crack edge, we have

(
u+
k (z∞)− u−k (z∞)

)
· ∇T (z∞)>ν̂ ≥ 0,

where equality holds if and only if z∞ ∈ Γedge.
(5.6)
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Thus, we conclude that z∞ cannot lie in Γcr \ (Γkink ∪ Γedge).
It remains to exclude z∞ ∈ Γkink. If this is the case, then both (5.5) and (5.6) still

hold for some ν̂ but for different reasons: (5.5) holds for ν̂ = e1 or ν̂ = e2 for at least a
subsequence by the Pigeonhole principle because xj ∈ Ω+ and yj ∈ Ω− and (5.6) holds
for both ν̂ = e1 and ν̂ = e2 by continuity of uk. Thus, we similarly conclude z∞ 6∈ Γkink,
and z∞ ∈ Γedge, which is the first part of the above claim.

From here on let Û := B%

(
T (z∞)

)
⊂ Ω̂ with % < 1, such that Û does cannot touch

Γkink. Then, xj, yj ∈ Û for j big enough, and xj ∈ Ω+ \ Ω− and yj ∈ Ω− \ Ω+ gives

T (xj) · e1 < 1, T (xj) · e2 > 0, T (yj) · e1 < 1, T (yj) · e2 < 0,

which is the second part of the above claim.
To see the last part of the claim note that we have either (5.4) as claimed or

(1−T (xj) · e1) + (1−T (yj) · e1) ≤ C |xj−yj| (5.7)

with some positive constant C independent of j. We assume now (5.7) in order to generate
a contradiction. Indeed, the smallness of the quantities on the left-hand side allow us to

use the Lipschitz continuity of uk on T−1
(
{ x̂ ∈ Û | x̂1 ≥ 1 }

)
. Introducing the projections

x′j := T−1
(
T (xj)−

(
1− T (xj) · e1

)
e1

)
and y′j := T−1

(
T (yj)−

(
1− T (yj) · e1

)
e1

)
,

we can compare them with xj and yj, respectively, as well as x′j and y′j to each other:

1

εj
|xj−yj| = |uk(xj)−uk(yj)|

≤ |uk(xj)−uk(x′j)|+ |uk(x′j)−uk(y′j)|+ |uk(y′j)−uk(yj)|
≤ Lk

(
|xj−x′j|+ |x′j−y′j|+ |y′j−yj|

)

≤ Lk

(
2|xj−x′j|+ |xj−yj|+ 2|y′j−yj|

)

≤ Lk

(
|xj−yj|+ 2‖∇T−1‖L∞

(
|T (xj)−T (x′j)|+ |T (y′j)−T (yj)|

))

≤ L
(
|xj−yj|+ 2‖∇T−1‖L∞

(
(1−T (xj) · e1) + (1−T (yj) · e1)

))

(5.7)

≤ L |xj−yj|
(
1+2‖∇T−1‖L∞C

)
.

After dividing by |xj−yj| 6= 0, we see that this contradicts εj → 0, such that (5.7) must
be false, and hence (5.4) and the whole above claim is established.

We still have to produce a contradiction to show that (5.3) is false. But now we can
use the relations in the above claim, in particular the convergence (5.4). To this we will
use the assumption α > 1 in the definition ηk = δαk .

In the following calculation we use the abbreviation Aj :=
∫ 1

0
∇T (xj+t(yj−xj))dt and
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insert the relation (5.3):

0 ≤ 1

εj

(
T (xj)−T (yj)

)
· e2 =

1

εj
Aj(xj−yj) · e2 = Aj

(
uk(yj)−uk(xj)

)
· e2 (5.8)

= Aj

((
u(yj)−u(y′j)

)
+
(
u(y′j)−u(x′j)

)
+
(
u(x′j)−u(xj)

)
+
(
ϕk(yj)−ϕk(xj)

))
· e2

≤ ‖∇T‖L∞‖∇u‖L∞
(
|yj−y′j|+ |y′j−x′j|+ |x′j−xj|

)
+ Aj

(
ϕk(yj)−ϕk(xj)

)
· e2

≤ ‖∇T‖L∞‖∇u‖L∞

(
|xj−yj|+ 2

(
|xj−x′j|+ |yj−y′j|

))
+ Aj

(
ϕk(yj)−ϕk(xj)

)
· e2

≤ ‖∇T‖L∞‖∇u‖L∞

(
|xj−yj|+ 2‖∇T−1‖L∞

(
(1−T (xj)·e1)+(1−T (yj)·e1)

))

+ Aj
(
ϕk(yj)−ϕk(xj)

)
· e2

Dividing by (1−T (xj) · e1) + (1−T (yj) · e1) and taking the limit j → ∞, the assumed
convergence (5.4) implies that the first summand of the right-hand side converges to the
constant Cu := 2‖∇T‖L∞‖∇u‖L∞‖∇T−1‖L∞ , which is independent of k. The idea is now
to show that for our choice of α > 1 the second summand makes the right-hand side
negative for sufficiently small δk, which then produces a contradiction.

For this, we exploit the definition of ϕk via the function ληk and the choices xj ∈
Ω+ \ Ω− and yj ∈ Ω− \ Ω+. Since xj and yj are near Γedge we obtain

λη(T (xj)) =
1

η

(
1−T (xj)·e1

)
and λη(T (yj)) = −1

η

(
1−T (yj)·e1

)
.

Inserting this with η = δαk we find

Aj
(
ϕk(yj)−ϕk(xj)

)
· e2 = δkAj

(
∇T (yj)

−1λδαk
(
T (yj)

)
n̂−∇T (xj)

−1λδαk
(
T (xj)

)
n̂
)
· e2

= δkAj

(
− 1

δαk
∇T (yj)

−1
(
1−T (yj)·e1

)
n̂− 1

δαk
∇T (xj)

−1
(
1−T (xj)·e1

)
n̂
)
· e2

= −δ1−α
k

((
1−T (yj)·e1

)
e2·Aj∇T (yj)

−1n̂+
(
1−T (xj)·e1

)
e2·Aj∇T (xj)

−1n̂
)
.

The matrices Aj∇T (yj)
−1 and Aj∇T (xj)

−1 converge to I ∈ Rd×d by dominated conver-
gence and continuity of ∇T , thus we have e2·Aj∇T (xj)

−1n̂→ e2·n̂ = 1 and similarly for
yj. Because both (1−T (xj)·e1) and (1−T (yj)·e1) are positive, this implies the convergence

δα−1
k

Aj
(
ϕk(yj)−ϕk(xj)

)
·e2

(1−T (xj)·e1) + (1−T (yj)·e1)
→ −1 for j →∞.

Inserting this into (5.8) divided by (1−T (xj)·e1)+(1−T (yj)·e1)(1−T (xj)·e1)+(1−T (yj)·e1) >
0 we obtain 0 ≤ 2Cu−1

2
δ1−α
k for fixed k and sufficiently large j. Thus, making δk smaller

if necessary, we arrive at a contraction, because δk → 0 and α > 1.
This shows that (5.3) cannot hold for εj → 0. Thus, the existence of εk > 0 is

established, and Proposition 5.2 is proved.

To extend the achieved knowledge from the dense set W1,∞(Ωcr;Rd)∩Cg to the general
case u ∈ Cg, we have to show that all functions u ∈ Cg can be approximated by uk ∈
W1,∞(Ωcr;Rd) ∩ Cg, i.e. we have to approximate under the convex constraint of local
non-interpenetration. Similar approximation results for more classical state constraints
are contained in [HiR15, HRR16].

To handle our conditions of non-negativity of jumps over the crack we can use a
reflection and decomposition into odd and even parts. To simplify the reading of the
following proof, we illustrate this idea by a simple two-dimensional problem.
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Example 5.3 (Straight crack in R2) We consider Ω = R2, Γcr = R×{0}, and a func-
tion u ∈ H1(Ω \ Γcr) with [[u]]Γcr ≥ 0. To find a smooth approximation we define

ueven(x) =
1

2
(u(x1, x2)+u(x1,−x2)

)
and uodd(x) =

1

2
(u(x1, x2)−u(x1,−x2)

)
,

such that u = ueven + uodd, [[ueven]]Γcr = 0, and [[uodd]]Γcr = [[u]]Γcr .
We can easily approximate ueven by vk ∈ C∞c (R2), since it lies in H1(R2). For uodd we

don’t want to smoothen the jump along Γ. Hence, we define

ũ(x1, x2) =

{
uodd(x1, x2) for x2 > 0,

max{0, uodd(x1,−x2)} for x2 < 0.

Because of ũ(·, 0+) = u(·, 0+) = 1
2
[[uodd]]Γcr ≥ 0 we conclude that [[ũ]]Γcr = 0, which implies

ũ ∈ H1(R2). Defining convolution kernels ψk ∈ C∞c (R2) with ψk ≥ 0,
∫
R2 ψk dy = 1, and

supp(ψk) ⊂ B1/k((0,−1/k)) ⊂ R×]−∞, 0[ we can define ṽk = ψk ∗ ũ ∈ C∞(R2) and check
that ṽk → ũ in H1(R2) and that ṽk(x1, 0) ≥ 0, because ũ(x1, x2) ≥ 0 for x2 ≤ 0. Thus,
setting

uk(x1, x2) = vk(x1, x2) + sign(x2) ṽk(x1, |x2|)
we obtain uk ∈ C∞(Ω \ Γcr) with uk → u in H1(Ω \ Γcr) and [[uk]]Γcr ≥ 0.

The analogous construction for our general Γcr ⊂ Ω works similarly by mapping the
displacements u : Ωcr → Rd via the Piola transform onto displacements û : Ω̂cr → Rd,
where the positivity of the jumps are preserved, see (2.5). Of course, we can take full

advantage that the crack Γ̂cr is piecewise flat. The only point that is more delicate arises
for points in the intersection of Γcr and ∂Ω.

Proposition 5.4 Let u ∈ H1
g,Dir with [[u]]Γcr ≥ 0, then there is a sequence uk ∈ H1

g,Dir ∩
W1,∞(Ωcr,Rd) with [[uk]]Γcr ≥ 0 such that uk → u in H1(Ωcr;Rd).

Proof. It suffices to show the assertion locally in a neighborhood U of each point x∗ from
Ω because by compactness we have a finite cover of such neighborhoods and recombination
by partition of unity gives the result.

Bulk points in Ωcr: For x∗ ∈ Ωcr and an open neighborhood U with U ⊂ Ωcr the convolution

vk = ϕk ∗ u is smooth and converges in H1(U,Rd) to u, where ϕk(z) = kdϕ(kz) with any
mollifier ϕ ∈ C∞c (Rd), ϕ ≥ 0, suppϕ ⊂ B1(0),

∫
Rd ϕdz = 1, as u is of class H1 in an open

neighborhood of U .

Free boundary: The case x∗ ∈ ∂Ω\(Γcr∪ΓDir) is more difficult. To extend u to the outside of

Ω, one takes an open neighborhood V with V ∩Γcr = ∅ where we have by Lipschitz property
of ∂Ω a bi-Lipschitz chart Ψ : V → Rd such that Ω ∩ V ⊂ Ψ−1

(
{xd > 0}

)
, ∂Ω ∩ V ⊂

Ψ−1
(
{xd = 0}

)
and V \ Ω ⊂ Ψ−1

(
{xd < 0}

)
hold. An H1(V ,Rd)-extension of u can then

be given via a reflection by u◦Ψ−1◦R◦Ψ where R : (x1, . . . , xd) 7→ (x1, . . . , xd−1, |xd|). On
every open neighborhood U with U ⊂ V again mollification converges to u in H1(U,Rd).

Dirichlet part of the boundary: For x∗ ∈ ΓDir there is an open neighborhood U disjoint
from the crack Γcr and by definition of H1

g,Dir there is a W1,∞-sequence coinciding with the
Dirichlet data g on ΓDir.

Flat parts of the crack: For x∗ ∈ Γcr\(Γedge∪Γkink∪∂Ω) we proceed similarly as in Example

5.3 after using the transformation T : Ω → Ω̂ to the simpler geometry (Ω̂, Γ̂cr) via the
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Piola transform û
(
T (x)

)
= ∇T (x)u(x), which preserves the local non-interpenetration,

see (2.5).
Since x∗ is neither a point in ∂Ω nor in the crack kink Γkink or the crack edge Γedge tip

nor the kink, we can assume without loss of generality that T (x∗) ∈ {0}×(0,∞)×Rd−2, the

case T (x∗) ∈ (0, 1)×{0}×Rd−2 is analogous. Take a neighborhood V = T−1
(
Bδ

(
T (x∗)

))
⊂

Ω that touches neither of the critical parts. On this neighborhood we define the odd and
even parts of the Piola transform û(1) and û(0) by

û(i)(x1, . . . , xd) =
1

2

(
û(x1, . . . , xd) + (−1)iû(−x1, x2, . . . , xd)

)
.

These two parts need to be approximated on B+
γ (T (x∗)) := { x̂ ∈ Bγ(T (x∗)) | x̂1 >

0 } for some γ < δ, as if we have such û
(0)
k , û

(1)
k ∈ W1,∞ (B+

γ

(
T (x∗)

))
approximated

û(0) and û(1) on B+
γ

(
T (x∗)

)
, respectively. An approximation uk ∈ W1,∞ (U) with U :=

T−1
(
Bγ

(
T (x∗)

))
is given by uk(x

′) = ∇T (x′)−1ûk
(
T (x′)

)
, where

ûk(x1, . . . , xd) = û
(0)
k (|x1|, x2, . . . , xd) + sign(x1)û

(1)
k (|x1|, x2, . . . , xd).

This way, the requirement [[uk]]Γcr ≥ 0 translates into asking [[ûk]]Γ̂cr(0, x2, ..., xd) =

2u
(1)
k (0+, x2, ..., xd) · e1 ≥ 0 in the sense of traces. So û(0) and the every component except

the first of û(1) can be approximated on B+
δ

(
T (x∗)

)
by standard means for Lipschitz

domains. For the construction of û
(1)
1,k we exploit û

(1)
1 ≥ 0 on Bγ(T (x∗))∩ Γ̂cr by extending

it from B+
γ (T (x∗)) to Bγ(T (x)) by max{0, û(1)

1 (−x1, x2, . . . , xd)} for x1 ≤ 0. As in Example
5.3 mollifying with ϕ satisfying suppϕ ⊂ { z ∈ B1(0) | z1 < 0 } gives an approximation of

û
(1)
1 with nonnegative trace on the crack.

Crack edge: For a point x∗ ∈ Γedge = T−1({(1, 0)}×Rd) and V = T−1
(
Bδ

(
T (x∗)

))
⊂ Ω

with δ < 1 we proceed similar. The odd and even parts of the Piola transform in this
case read

û(i)(x1, . . . , xd) =
1

2

(
û(x1, . . . , xd) + (−1)iû(x1,−x2, x3, . . . , xd)

)

and as before we approximate these separately and put uk(x
′) = ∇T (x′)−1ûk

(
T (x′)

)
where

ûk(x1, . . . , xd) = û
(0)
k (|x1|, x2, . . . , xd) + sign(x1)û

(1)
k (|x1|, x2, . . . , xd).

Now, in addition to 0 ≤ û
(1)
2,k = 1

2
[[û]]Γ̂cr we have to guarantee û

(1)
2,k = 0 on {0}×[1, δ[×Rd−2

to obtain uk ∈ H1(Ωcr). Therefore we we have to refine the extension slightly. Consider a
bi-Lipschitz map S : Rd → Rd that maps R×[0,∞[×Rd−2 to {x ∈ Rd |x1 ≤ 0, x2 ≤ 1 } in
such a way, that it is the identity on ]−∞, 1[×{0}×Rd−2, while it maps ]1,∞[×{0}×Rd−2

to {1}×]−∞, 0[×Rd−2. (Think of taking (x1, x2) in polar coordinates around (1, 0) and

then bisecting and translating the angle R+×]0, 2π[ 3 (r, ϕ) 7→ (r, 1
2
ϕ + π).) Now û

(1)
2 is

extended from B+
δ (T (x∗)) to Bδ(T (x∗)) by max{0, û(1)

2 (S−1(x1, . . . , xd))} for x2 ≤ 0 and
x1 ≤ 1 and by 0 for x2 ≤ 0 and x1 ≥ 1. Mollifying with ϕ satisfying suppϕ ⊂ { z ∈
B1(0) | z1 > 0, z2 < 0 } gives an approximation of û

(1)
2 with the desired property of the

trace.

Crack kink: Let us come to x∗ ∈ Γkink = T−1
(
{(0, 0)}×Rd−2

)
∩ Ω and a neighborhood

V = T−1
(
Bδ

(
T (x∗)

))
⊂ Ω with δ < 1 such that V does not touch the crack edge. We
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again consider the Piola transform û and want to decompose in odd and even parts, except
we now have two hyperplanes to consider and consequently four parts:

û(i,j)(x) =
1

4

(
û(x1, x2, x3, . . . , xd) + (−1)iû(−x1, x2, x3, . . . , xd)

+ (−1)jû(x1,−x2, x3, . . . , xd) + (−1)i+jû(−x1,−x2, x3, . . . , xd)
)

with i, j ∈ {0, 1}. After approximating each of the four functions on B+
δ (T (x∗)) :=

{x ∈ Bδ(T (x∗)) | x1 > 0 ∧ x2 > 0 } separately, the plan would be again to put uk(x
′) =

∇T (x′)−1ûk
(
T (x′)

)
where

û
(i,j)
k (x) = û

(0,0)
k (|x1|, |x2|, x3, ..., xd) + sign(x1)û

(1,0)
k (|x1|, |x2|, x3, ..., xd)

+ sign(x2)û
(0,1)
k (|x1|, |x2|, x3, ..., xd) + sign(x1x2)û

(1,1)
k (|x1|, |x2|, x3, ..., xd).

There are now two scalar functions, the trace of which we have to take care of. On
{0}×[0, δ[×Rd−2 we have [[û]]Γ̂cr = 2(û

(1,0)
1 + û

(1,1)
1 ) ≥ 0 and on [0, δ[×{0}×Rd−2 we have

[[û]]Γ̂cr = 2(û
(0,1)
2 + û

(1,1)
2 ) ≥ 0. Consider first s := û

(1,0)
1 + û

(1,1)
1 , the other one can be treated

analogously. We can define an H1-extension of s to the full ball Bδ(T (x∗)) by taking
s((|x1|, |x2|, x3, ..., xd)) where x1 ≥ 0 and x2 ≤ 0 and by max{0, s((|x1|, |x2|, x3, ..., xd))}
where x2 ≤ 0. Mollifying with ϕ satisfying suppϕ ⊂ { z ∈ B1(0) | z1 < 0, z2 < 0 } gives
approximations sk of s with non-negative trace on {0}×[0, δ[×Rd−2. For any approximat-

ing sequence û
(1,0)
1,k of û

(1,0)
1 we can now approximate û

(1,1)
1 by û

(1,1)
1,k := sk− û(1,0)

1 to get the
non-negative trace of the sum.

Crack and boundary: When we now come to x∗ ∈ ∂Ω∩Γcr we again use reflection to extend

û from Ω̂∩T (U) to the outside but this time specialized by using Corollary 2.3. With U ,

ϕx∗ , and ηx∗ from there, we define the map R : Bδ(T (x∗))→ Ω̂ with

R(x) = x− 2 max
{

0, (x−T (x∗))·ηx∗ − ϕx∗
(
x− ηx∗·(x−T (x∗))ηx∗

)}
ηx∗ ,

which is Lipschitz continuous and satisfies the property R−1(Ω̂∩ Γ̂cr) ⊂ Γ̂cr. Thus, we can

extend û by û ◦ R ∈ H1(V \ Γ̂cr,Rd) where V = R−1(Ω̂ ∩ U) is an open neighborhood of
x. Now one can proceed as in the case x∗ ∈ Ω ∩ Γcr above.

Thus Proposition 5.4 is established.

We are now ready to proof the desired limsup estimate by constructing a recovery
sequence (uε)ε that converges strongly in H1(Ωcr;Rd). This result also provides the final

part of the proof of the main Theorem 2.1 on the Mosco convergence Fε
M−→ F.

Theorem 5.5 (Limsup estimate) For every u ∈ H1
g,Dir there exists a sequence (εj, uj)

with

εj → 0, uj → u in H1
g,Dir ⊂ H1(Ωcr;Rd), and lim sup

j→∞
Fεj(uj) ≤ F(u).

Proof. For F(u) = ∞ there is nothing to show, so we restrict to the case F(u) < ∞
which implies [[u]]Γcr ≥ 0.

Case u ∈W1,∞(Ωcr,Rd): We apply Proposition 5.2 and obtain a sequence (εk, uk) with
uk → u such that yk = id + εkuk satisfies the GMS condition (1.1), which implies

Fεk(uk) = F̃εk(uk) =

∫

Ωcr

1

ε2
k

W
(
I+εk∇uk(x)

)
dx =

∫

Ωcr

W ε(∇uk(x)
)

dx.
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Since all uk lie in W1,∞ we may assume that εk‖∇uk‖L∞ ≤ r1/2 with δ > 0 and rδ > 0
from (1.3d). Thus, we have

Wε(∇uk(x)) =
1

ε2
k

W (I+εk∇uk(x)) ≤
(1

2
+

1

2

)
|∇uk(x)|2C ≤ |C| |∇uk(x)|2.

Moreover, we may choose a subsequence (not relabeled) and h ∈ L1(Ω) such that

∇uk(x)
k→∞→ ∇u(x) and |∇uk(x)|2 ≤ h(x) for a.a. x ∈ Ω.

Using the convergence (1.4), i.e. W ε(·) M−→ 1
2
| · |2C we conclude W εk(∇uk(x))→ 1

2
|∇u(x)|2C

a.e. in Ω. Now Lebesgue’s dominated convergence theorem provides the desired limsup
estimate

lim
k→∞

Fεk(uk) = lim
k→∞

∫

Ωcr

W ε(∇uk(x))dx =

∫

Ωcr

1

2
〈∇u(x),C∇u(x)〉dx = F(u).

General u ∈ Cg: For a general u ∈ Cg Proposition 5.4 guarantees the existence of an

approximating sequence uj ∈ Cg ∩W1,∞(Ωcr;Rd). By the first case there are for each
j sequences (εj,k, uj,k)k∈N with uj,k ∈ Cg ∩ W1,∞(Ωcr;Rd), εj,k → 0, uj,k → uj, and
Fεj,k(uj,k)→ F(uj) as k →∞.

To construct a diagonal sequence we use the strong continuity of F restricted to the
convex set Cg, namely

∃CF > 0 ∀ v ∈ Cg with ‖v−u‖H1 ≤ 1 : |F(v)− F(u)| ≤ CF‖v−u‖H1 .

With this we can construct a diagonal sequence as follows. For n ∈ N we choose jn ≥ n
with with ‖u−ujn‖H1 < 1/n. Next we choose kn ≥ n with

εjn,kn < 1/n, ‖ujn,kn−ujn‖H1 < 1/n, and
∣∣Fεjn,kn (ujn,kn)− F(ujn)

∣∣ < 1/n.

Setting ε̃n = εjn,kn and ũn = ujn,kn we obtain ε̃n < 1/n, ‖ũn − u‖H1 < 2/n, and

∣∣Fε̃n(ũn)− F(u)
∣∣ ≤

∣∣Fεkn (ujn,kn)− F(ujn)
∣∣+
∣∣F(ujn)− F(u)

∣∣ ≤ 1/n+ CF/n→ 0.

Thus, (ε̃n, ũn)n∈N is a strongly converging recovery sequence for u ∈ Cg.
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