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Abstract

Transfer operators such as the Perron–Frobenius or Koopman operator play an im-
portant role in the global analysis of complex dynamical systems. The eigenfunctions
of these operators can be used to detect metastable sets, to project the dynamics onto
the dominant slow processes, or to separate superimposed signals. We extend transfer
operator theory to reproducing kernel Hilbert spaces and show that these operators
are related to Hilbert space representations of conditional distributions, known as con-
ditional mean embeddings in the machine learning community. Moreover, numerical
methods to compute empirical estimates of these embeddings are akin to data-driven
methods for the approximation of transfer operators such as extended dynamic mode
decomposition and its variants. In fact, most of the existing methods can be derived
from our framework, providing a unifying view on the approximation of transfer opera-
tors. One main benefit of the presented kernel-based approaches is that these methods
can be applied to any domain where a similarity measure given by a kernel is avail-
able. We illustrate the results with the aid of guiding examples and highlight potential
applications in molecular dynamics as well as video and text data analysis.

1 Introduction

Transfer operators such as the Perron–Frobenius or Koopman operator are ubiquitous in
molecular dynamics, fluid dynamics, atmospheric sciences, and also control theory. The
eigenfunctions of these operators can be used to decompose the system into fast and slow
dynamics and to identify so-called metastable sets, which, in the molecular dynamics con-
text, correspond to conformations of molecules. Compared to the fast vibrations of the
atoms, the transitions between different conformations are much slower, the time scales
typically differ by several orders of magnitude. We are in particular interested in the slow
conformational changes of molecules and the corresponding transition probabilities and tran-
sition paths. However, the methods presented in this paper can be applied to data generated
by any dynamical system and we will show potential novel applications pertaining to video
and text data analysis.
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Over the last decades, different numerical methods such as Ulam’s method (Ulam, 1960),
extended dynamic mode decomposition (EDMD) (Williams et al., 2015a,b, Klus et al., 2016),
the variational approach of conformation dynamics (VAC) (Noé and Nüske, 2013, Nüske
et al., 2014), and several extensions and generalizations have been developed to approximate
transfer operators and their eigenvalues and eigenfunctions. The advantage of purely data-
driven methods is that they can be applied to simulation or measurement data, information
about the underlying system itself is not required. An overview and comparison of such
methods can be found in Klus et al. (2017) and the recently published book Kutz et al.
(2016). Applications and variants of these methods are also described in Rowley et al.
(2009), Budǐsić et al. (2012), Tu et al. (2014), McGibbon and Pande (2015). Kernel-based
reformulations of the aforementioned methods have been proposed in Williams et al. (2015b)
and Schwantes and Pande (2015).

In this work, we construct representations of transfer operators using reproducing kernel
Hilbert space (RKHS) theory. An RKHS H is a Hilbert space of real-valued functions
in which all evaluation functionals are bounded (see Section 2). For any RKHS H, there
always exists a reproducing kernel k : X × X → R such that k(x, ·) ∈ H for all x ∈ X
and f(x) = 〈f, k(x, ·)〉H for all x ∈ X and f ∈ H. The latter is commonly known as the
reproducing property of H and implies that k(x, x′) = 〈k(x, ·), k(x′, ·)〉H. In other words,
the kernel evaluation k(x, x′) can be regarded as an inner product between implicit feature
maps of x and x′ in H. As we will see, defining the transfer operators (see Section 3) in
an RKHS enables us to model and analyze nonlinear dynamical systems without requiring
an explicit data representation (see Section 4). In particular, we can directly express the
kernel transfer operators in terms of covariance and cross-covariance operators in the RKHS.
Existing kernel-based approximations such as kernel EDMD (Williams et al., 2015b) or
kernel TICA (Schwantes and Pande, 2015) are special cases of our approach. The benefits
of kernel-based methods are twofold: First, the basis functions need not be defined explicitly,
which thereby allows us to handle infinite-dimensional feature spaces. Second, the proposed
method can not only be applied to dynamical systems defined on Euclidean spaces, but
also to systems defined on any domain that admits an appropriate kernel function such as
images, graphs, or strings. In other words, our methods allow to characterize wide-sense
stationary stochastic processes over many non-standard domains. We show that the kernel
transfer operators are closely related to recently developed Hilbert space embeddings of
probability distributions (Berlinet and Thomas-Agnan, 2004, Smola et al., 2007, Muandet
et al., 2017).

Moreover, we propose an eigendecomposition technique for kernel transfer operators. As
mentioned above, the eigenfunctions and eigenvalues of transfer operators provide insights
into fast and slow dynamics of the system. For kernel transfer operators, we show that the
corresponding eigenfunctions belong to the RKHS associated with the kernel function and
can be expressed entirely in terms of the eigenvectors and eigenvalues of Gram matrices
defined for training data. Therefore, our technique resembles several existing kernel-based
component analysis techniques in machine learning. For example, kernel principal com-
ponent analysis (KPCA) extends the well-known PCA to data mapped into an RKHS
(Schölkopf et al., 1998). KPCA aims to find a low-dimensional projection which maximally
preserves the variance of the data projected into the feature space. For a feature space
corresponding to an RKHS H, the basis of this projection can be expressed in terms of the
eigenfunctions of the covariance operator in H. Well-known applications of KPCA include
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dimension reduction (Schölkopf et al., 1998) and image denoising (Mika et al., 1999). Sim-
ilarly, our techniques can be used to reduce the dimension of high-dimensional dynamical
systems. Given variables X and Y , kernel canonical correlation analysis (KCCA) aims
to find projections of low-dimensional RKHS representations of each variable separately
such that the projections are maximally correlated (Fukumizu et al., 2007). The purpose of
KCCA is to find nonlinear projections that are important for explaining covariation between
sets of variables. In the context of this work, X and Y represent two distinct observations of
a stochastic process at time t and t+ τ , respectively. Our goal, on the other hand, is to find
a low-dimensional projection of the process governing these observations. Additionally, an
independent component analysis (ICA) is an important algorithm for the blind source sepa-
ration problem. It aims to recover a latent random vector x whose components are mutually
independent from observations of y = Ax where A is a mixing matrix (Hyvärinen and Oja,
2000). Bach and Jordan (2003) proposed a class of efficient algorithms for ICA which use
contrast functions based on canonical correlations defined in an RKHS. Due to the kernel
functions, the contrast functions and their derivatives can be computed efficiently. Lastly,
our work is also closely related to kernel-based functional principal component analysis
(FPCA). FPCA aims to find the dominant modes of variation of functional data (Yao et al.,
2005, Hall et al., 2006), which has applications in time series analysis, longitudinal data
analysis, and functional regression/classification. It has been shown that an orthonormal
basis which explains the most variation consists of the eigenfunctions of the autocovariance
operator, which can be viewed as a particular transfer operator (see Section 3). For detailed
exposition of the aforementioned techniques, we refer interested readers to some recent pa-
pers including Ramsay and Silverman (2005), Van Der Maaten et al. (2009), Burges (2010),
for example.

Our work provides a unified framework for nonlinear component analysis of transfer op-
erators pertaining to dynamical systems. Given that dynamical systems are ubiquitous in
machine learning, we believe it could potentially lead to novel applications such as visualiza-
tion of high-dimensional dynamics, dimension reduction, source separation and denoising,
data summarization, and clustering based on sequence information (see Section 5). The
main contributions of this work are:

1. We extend transfer operators, namely the Perron–Frobenius and the Koopman oper-
ator, to RKHSs and show that they can be expressed entirely in terms of covariance
and cross-covariance operators defined by the underlying process (Proposition 4.1 and
Corollary 4.2). Furthermore, we construct the empirical estimates of these operators
(Proposition 4.3) which, as opposed to existing methods such as EDMD, do not require
the basis functions to be given explicitly.

2. We propose an algorithm to obtain eigenfunctions and eigenvalues of the kernel transfer
operators (Section 4.6). Existing methods to approximate transfer operator eigendecom-
positions such as TICA and DMD can be obtained as special cases of our algorithm by
choosing a linear kernel function. It is also possible to obtain the non-linear counterparts
including VAC and EDMD by using kernels with explicitly given finite-dimensional fea-
ture spaces. Analogously, kernel TICA and kernel EDMD can be derived with the aid
of our kernel transfer operator framework (Section 4.7).

3. A particular kernel-based transfer operator, namely the embedded Perron–Frobenius
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Table 1: Overview of notation.

random variable X Y
domain X Y
observation x y
kernel function k(x, x′) l(y, y′)
feature map φ(x) ψ(y)
feature matrix Φ = [φ(x1), . . . , φ(xn)] Ψ = [ψ(y1), . . . , ψ(yn)]
Gram matrix GXX = Φ>Φ GYY = Ψ>Ψ
RKHS H G

operator (Section 4.2), is indeed equivalent to the conditional mean embedding (CME)
formulation (Song et al., 2009, 2013). The CME has applications ranging from proba-
bilistic inference to reinforcement learning. Exploiting transfer operator theory will thus
have an impact on the aforementioned applications.

4. Lastly, we demonstrate the use of kernel transfer operators in molecular dynamics as
well as video and text data analysis (Section 5).

The remainder of this paper is organized as follows: In Section 2, we first introduce the
notion of reproducing kernel Hilbert spaces, positive definite kernels, and Hilbert space
embeddings of conditional distributions. Section 3 gives a brief introduction to transfer
operators, followed by the kernel formulation of transfer operators in Section 4. We demon-
strate the proposed methods in Section 5 using several illustrative and real-world examples
and conclude with a short summary and future work in Section 6.

2 Reproducing Kernel Hilbert Spaces

In this section, we will introduce reproducing kernel Hilbert spaces and positive definite
kernels (Schölkopf and Smola, 2001, Hofmann et al., 2008) as well as Hilbert space embed-
dings of probability distributions (Berlinet and Thomas-Agnan, 2004, Smola et al., 2007,
Muandet et al., 2017), which will later on be used to reformulate the transfer operators
defined below. Readers familiar with these concepts can skip this section. The notation and
symbols, which we summarize in Table 1, are based on Song et al. (2009), Muandet et al.
(2017).

Definition 2.1 (Reproducing kernel Hilbert space, (Schölkopf and Smola, 2001)). Let X be
a set and H a space of functions f : X→ R. Then H is called a reproducing kernel Hilbert

space (RKHS) with corresponding scalar product 〈·, ·〉H and induced norm ‖f‖H = 〈f, f〉1/2H
if there is a function k : X× X→ R such that

(i) 〈f, k(x, ·)〉H = f(x) for all f ∈ H and

(ii) H = span{k(x, ·) | x ∈ X}.

The first requirement, which is called reproducing property of H, in particular implies
〈k(x, ·), k(x′, ·)〉H = k(x, x′) for any x, x′ ∈ X. As a result, the function evaluation of f at a
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given point x can be regarded as an inner product evaluation in H between the representer
k(x, ·) of x and the function itself. Furthermore, we may treat k(x, ·) as a feature map
φ(x) of x in H such that k(x, x′) = 〈φ(x), φ(x′)〉H. We refer to k(x, ·) as the canonical
feature map of x. Note that in most applications of kernel methods, we only require the
kernel evaluation k(x, x′), so k(x, ·) needs not be computed explicitly. For more details, see
Schölkopf and Smola (2001), Song et al. (2009).

Example 2.2. Let X ⊂ R2. If we want to use a polynomial nonlinearity, we have two
options of constructing a Hilbert space and endowing it with an inner product that would
result in methods that numerically give the same result:

• Given the polynomial kernel k(x, x′) = (1 + 〈x, x′〉)2, we use the canonical feature map
φcan(x) = k(x, ·) and the standard RKHS inner product satisfying the reproducing prop-
erty of Definition 2.1, i.e., 〈f, k(x, ·)〉H = f(x). The features are then a subset of the
function space H. Given factors αi ∈ R and points xi ∈ X, with i = 1, . . . , n, a function
f can be written as f(·) =

∑n
i=1 αi φcan(xi).

• Alternatively, the explicit feature map φexp(x) = [1,
√

2x1,
√

2x2x
2
1,
√

2x1x2, x
2
2]
> with

the standard Euclidean inner product could be used. The features are then a subset of R6.
Using the explicit feature map, the function f can be represented as f(·) = 〈fexp, φexp(·)〉
with fexp =

∑n
i=1 αiφexp(xi) ∈ R6. N

The second point of view is equivalent and will often save storage space and computing
time. Whenever the polynomial kernel is used, it might thus be preferred. However, the
polynomial kernel does not have the theoretical advantages of so-called characteristic kernels,
where an explicit feature map view typically does not exist. For this reason, we will mostly
stick to the first point of view.

The kernel k in Definition 2.1 is called a reproducing kernel of H. It fully characterizes the
RKHS H. That is, for every positive definite kernel k on X×X, there exists a unique RKHS
with k as its reproducing kernel. Conversely, the reproducing kernel of a given RKHS is
unique and positive definite (Aronszajn, 1950).

Definition 2.3 (Positive definite kernel). Given a set DX = {x1, . . . , xn} ⊂ X, let GXX ∈
Rn×n be the Gram matrix, i.e., [GXX ]ij = k(xi, xj). A bivariate function k on X × X is
positive definite if k(x, y) = k(y, x) and it satisfies

c>GXX c =
n∑

i,j=1

ci cj k(xi, xj) ≥ 0

for any n ∈ N, any choice of x1, . . . , xn ∈ X, and any c = [c1, . . . , cn] ∈ Rn. It is said to be
strictly positive definite if c>GXX c = 0 implies c = 0.

Example 2.4. The following functions are positive definite kernels on Rd:

(i) Linear kernel: k(x, x′) = x>x′.

(ii) Polynomial kernel of degree p: k(x, x′) = (x>x′ + c)p with c > 0.

(iii) Gaussian kernel: k(x, x′) = exp
(
− 1

2σ2 ‖x− x′‖22
)

with a bandwidth σ > 0.
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(iv) Laplacian kernel: k(x, x′) = exp
(
− 1
σ ‖x− x

′‖2
)

with a bandwidth σ > 0. N

The positive definiteness of the kernel ensures that we can always find a feature map
φ : X → H such that k(x, x′) = 〈φ(x), φ(x′)〉H. For example, the canonical feature map
φ(x) = k(x, ·) satisfies this property (cf. Definition 2.1). As a result, if all we need to eval-
uate is the inner product between φ(x) and φ(x′) in H, we need not construct φ explicitly,
which can be computationally expensive in high dimensional feature spaces. In fact, some
kernels such as the Gaussian kernel correspond to infinite-dimensional feature spaces which
make it impossible to construct φ in practice. Most kernel-based learning algorithms rely
on computations involving only Gram matrices. As we will see later, although our trans-
fer operators are defined in terms of φ and may live in an infinite-dimensional space, all
associated operations can be carried out in terms of the finite-dimensional Gram matrices
obtained from training data.

2.1 Hilbert Space Embedding of Marginal Distributions

The idea of kernel mean embeddings is to extend feature maps to the space of probability
distributions (Berlinet and Thomas-Agnan, 2004, Smola et al., 2007, Muandet et al., 2017).

Definition 2.5 (Mean embedding). Let M1
+(X) be the space of all probability measures P

on X and k : X×X→ R be a measurable real-valued kernel endowed with the RKHS H such
that supx∈X k(x, x) <∞. Then the kernel mean embedding µP ∈ H is defined by

µP = EX [φ(X)] =

∫
φ(x)dP(x) =

∫
k(x, ·)dP(x).

Given a set of training data DX = {x1, . . . , xn} drawn i.i.d. from P(X), the empirical
estimate of the mean embedding can be computed as

µ̂P =
1

n

n∑
i=1

φ(xi) =
1

n

n∑
i=1

k(xi, ·) =
1

n
Φ1,

where Φ = [φ(x1), . . . , φ(xn)] is the feature matrix and 1 = [1, . . . , 1]> the vector of ones.

Remark 2.6. It follows from the reproducing property of H that

EX [f(X)] = EX [〈f, φ(X)〉] = 〈f, EX [φ(X)]〉H = 〈f, µP〉H

for any f ∈ H and, analogously, 1
n

∑n
i=1 f(xi) = 〈f, µ̂P〉H. Thus, the computation of expec-

tations with respect to P can be regarded as a scalar product in a Hilbert space.

Different choices of kernel functions result in different representations of the distribution P.
In particular, the kernel mean embedding µP fully characterizes P if k is a characteristic
kernel (Fukumizu et al., 2004, Sriperumbudur et al., 2008, 2010).

Definition 2.7 (Characteristic kernel). If ‖µP − µQ‖H = 0 if and only if P = Q, then the
kernel k is defined to be characteristic. The Hilbert space H is said to be characteristic if
the associated kernel is characteristic.
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In other words, we do not lose any information about P by embedding it into a char-
acteristic RKHS. Characteristic kernels are closely related to universal kernels (Steinwart,
2002). Let Cb(X) be the space of bounded continuous function on a compact metric space X.
A kernel k on X is said to be universal if the corresponding RKHS H is dense in Cb(X),
i.e., for any f ∈ Cb(X) and ε > 0, there exists a function h ∈ H such that ‖f − h‖∞ < ε.
Gaussian kernels and Laplacian kernels, for instance, are known to be characteristic. In
fact, all universal kernels are characteristic (Gretton et al., 2012, Theorem 5).

Definition 2.8 (Integral operator). A kernel k gives rise to an integral operator Ek, defined
by

(Ekf)(·) :=

∫
X
k(x, ·)f(x)dx.

The operator can be viewed as a generalization of conventional matrix-vector multipli-
cation. The eigenvalues and eigenfunctions of this operator are, for instance, used to con-
struct the Mercer feature space, see Schölkopf and Smola (2001). We will sometimes omit
the subscript if it is clear which kernel is meant. It was shown in Kato (1980) that if∫
X |k(x, y)|dx ≤M1,

∫
X |k(x, y)|dy ≤M2, and f ∈ Lr(X), with 1 ≤ r ≤ ∞, then we obtain

‖Ekf‖ ≤ max(M1,M2) ‖f‖ and the operator is bounded. In particular, if X is compact
and k(x, y) continuous in x and y, this is satisfied. Furthermore, if the kernel is Hilbert–
Schmidt, i.e.,

∫∫
X×X |k(x, y)|2 dxdy < ∞, then Ek is bounded (Renardy and Rogers, 2006,

Lemma 8.2) and compact (Bump, 1998, Theorem 2.3.2). Whenever P has a density p, this
means µP = Ekp. For certain combinations of basis functions and kernels, the embedding
can be computed analytically, see Appendix A.

2.2 Covariance Operators

We now introduce the concept of covariance operators in Hilbert spaces (Baker, 1970, 1973).
Let (X,Y ) be a random variable on X×Y with corresponding marginal distributions P(X)
and P(Y ), respectively, and joint distribution P(X,Y ). In what follows, we assume integra-
bility, i.e., EX [k(X,X)] <∞ and EY [l(Y, Y )] <∞ so that H ⊂ L2(P(X)) and G ⊂ L2(P(Y )),
respectively, where L2(ν) denotes the space of square-integrable functions with respect to ν.
See Muandet et al. (2017) for details.

Definition 2.9 (Covariance operators). Let φ and ψ be feature maps associated with the
kernels k and l, respectively. Suppose that EX [k(X,X)] < ∞ and EY [l(Y, Y )] < ∞. Then
the covariance operator CXX : H → H and the cross-covariance operator CYX : H → G are
defined as

CXX =

∫
φ(X)⊗ φ(X)dP(X) = EX [φ(X)⊗ φ(X)],

CYX =

∫
ψ(Y )⊗ φ(X)dP(Y,X) = EYX [ψ(Y )⊗ φ(X)].

Remark 2.10. Note that ψ(y)⊗ φ(x) defines a rank-one operator from H to G via(
ψ(y)⊗ φ(x)

)
f = 〈φ(x), f〉H ψ(y) = f(x)ψ(y)

so that
〈(
ψ(y)⊗ φ(x)

)
f, g

〉
G = f(x) 〈ψ(y), g〉G = f(x)g(y).
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The centered counterparts of CXX and CYX are defined similarly using the mean-subtracted
feature maps φc(X) = φ(X)− µP(X) and ψc(Y ) = ψ(Y )− µP(Y ), where µP(X) := EX [φ(X)]
and µP(Y ) := EY [ψ(Y )]. Intuitively, one may think of CXX and CYX as a nonlinear general-
ization of covariance and cross-covariance matrices. We can express the cross-covariance of
two functions f ∈ H and g ∈ G in terms of CXY and CYX as

EXY [f(X)g(Y )] = 〈f, CXY g〉H = 〈CYXf, g〉G . (1)

Hence, CXY is the adjoint of CYX . The following result, which is due to Fukumizu et al.
(2004), shows the relation between CXX and CXY . We will use it later to define RKHS
transfer operators.

Proposition 2.11. If EY |X [g(Y ) | X = · ] ∈ H for all g ∈ G, then

CXXEY |X [g(Y ) | X = · ] = CXY g.

For a proof, see Fukumizu et al. (2004). The covariance operator and cross-covariance
operator can in general not be computed directly since the joint distribution P(X,Y ) is
typically not known. We can, however, estimate it from sampled data. Given n pairs of
training data DXY = {(x1, y1), . . . , (xn, yn)} drawn i.i.d. from the probability distribution
P(X,Y ), we define the feature matrices

Φ =
[
φ(x1) . . . φ(xn)

]
and Ψ =

[
ψ(y1) . . . ψ(yn)

]
.

The corresponding Gram matrices are given by GXX = Φ>Φ and GYY = Ψ>Ψ (see Table 1)
and the empirical estimates of CXX and CYX by

ĈXX =
1

n

n∑
i=1

φ(xi)⊗ φ(xi) =
1

n
ΦΦ>,

ĈYX =
1

n

n∑
i=1

ψ(yi)⊗ φ(xi) =
1

n
ΨΦ>.

Analogously, the mean-subtracted counterparts of ĈXX and ĈYX can be obtained as 1
nΦHΦ>

and 1
nΨHΦ>, where H is the centering matrix given by H = In− 1

n1n1
>
n . Note that if both

k and l are linear kernels for which φ and ψ are identity maps, we obtain covariance and
cross-covariance matrices as a special case.

2.3 Hilbert Space Embedding of Conditional Distributions

In Section 2.1, we showed how to embed any marginal distribution into the RKHS. We will
now extend this idea to conditional distributions. Interested readers should consult Song
et al. (2009, 2013), Muandet et al. (2017) for further details on this topic. First of all, note
that the embedding of a Dirac distribution supported on a single point x ∈ X is simply∫
k(z, ·)dδx(z) = k(x, ·). Given some x ∈ X, the embedding of P(Y | X = x) in G can be

defined according to Definition 2.5 as µY |x = EY |x[ψ(Y ) | X = x]. Hence, the Hilbert space
representation of P(Y | X) is not a single element in G, but a mapping which takes x to the
embedding of the associated conditional distribution.
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Definition 2.12 (Conditional mean embedding, (Song et al., 2009)). Let CXX be the covari-
ance operator for X and CYX be the cross-covariance operator from X to Y , respectively.
Then the conditional mean embedding of P(Y | X) is given by

UY |X = CYX C−1XX .

Under the assumption that EY |X [g(Y ) | X = · ] ∈ H for all g ∈ G, it follows from the
reproducing property of H and Proposition 2.11 that

EY |x[g(Y ) | X = x] = 〈EY |x[g(Y ) | X], k(x, ·)〉H
=
〈
C−1XX CXY g, k(x, ·)

〉
H

=
〈
g, CYX C−1XX k(x, ·)

〉
G

for all g ∈ G. That is, the conditional mean embedding of P(Y | X = x) can be expressed
as µY |x = UY |Xk(x, ·) = CYX C−1XX k(x, ·). See Song et al. (2009, Theorem 4) and Muandet
et al. (2017) for further details and Song et al. (2013) for applications of conditional mean
embeddings.

Remark 2.13. Since CXX is a compact operator, finding its inverse is an ill-posed problem,
i.e., C−1XX may not exist. That is, the assumption that EY |X [g(Y ) | X = · ] ∈ H for all g ∈ G
may not hold in general. Hence, the operator CYX C−1XX may not exist in the continuous
domain. A common approach to alleviate this problem is to consider the regularized version
(CXX + εI)−1 instead, where ε is a regularization parameter and I is the identity operator
in H. The empirical estimator of the conditional mean embedding is then given by

ÛY |X = ĈYX (ĈXX + εI)−1 = Ψ(GXX + nεIn)−1Φ>.

In Fukumizu et al. (2013, Theorem 8), the consistency and convergence of this estimator
are shown under some mild conditions. For a detailed derivation, we refer to Song et al.
(2009), Muandet et al. (2017).

3 Transfer Operators

We now give a brief introduction to transfer operators and their applications. A detailed
exposition on this topic can be found in the recent review paper Klus et al. (2017).

Let {Xt}t≥0 be a stochastic process defined on the state space X ⊂ Rd. Then the transition
density function pτ of observing the process near y at a time τ after it has been at x is
defined by

P[Xt+τ ∈ A | Xt = x] =

∫
A

pτ (y | x) dy,

where A is any measurable set. That is, pτ (y | x) is the conditional probability density of
Xt+τ = y given that Xt = x. The transfer operators considered in this work will be defined
in terms of the transition density function pτ . In what follows, Lr(X), with 1 ≤ r ≤ ∞,
denotes the spaces of r-Lebesgue integrable functions and ‖·‖Lr the corresponding norm.

Definition 3.1 (Transfer operators). Let pt ∈ L1(X) be a probability density and ft ∈
L∞(X) an observable of the system. For a given lag time τ :
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(i) The Perron–Frobenius operator P : L1(X)→ L1(X) is defined by

Ppt(y) =

∫
pτ (y | x)pt(x)dx.

(ii) The Koopman operator K : L∞(X)→ L∞(X) is defined by

Kft(x) =

∫
pτ (y | x)ft(y)dy = E[ft(Xt+τ ) | Xt = x].

Note that the operators and the corresponding eigenvalues implicitly depend on the lag
time τ . A density π that is invariant under the action of P is called invariant, equilibrium
or stationary density. That is, it holds that Pπ = π and thus π is an eigenfunction of P
with corresponding eigenvalue 1. If the expectation of the process is the same at any time,
then E[Xt2 ] = E[Xt1 ] and specifying τ completely characterizes the covariances between Xt

and Xt+τ , the process is called wide-sense stationary (see for example Definition 3.6.9 in
Gallager, 2013). For the following definition, we assume that there is a unique invariant
density π > 0, which for molecular dynamics problems is given by the Boltzmann distribu-
tion π ∼ exp(−βV ), see Schütte and Sarich (2013). We now define the Perron–Frobenius
operator reweighted with respect to this invariant density. The advantage of the reweighted
Perron–Frobenius operator is that it can easily be estimated from long equilibrated trajec-
tories, while other densities require, for instance, generating many short trajectories whose
starting points are sampled from the corresponding probability distribution. For more de-
tails and examples, see Nüske et al. (2014), Klus et al. (2017).

Definition 3.2 (Transfer operators cont’d). Let ut(x) = π(x)−1pt(x) be a probability den-
sity with respect to the equilibrium density π.

(iii) The Perron–Frobenius operator with respect to the equilibrium density, denoted by T ,
is defined as

T ut(y) =
1

π(y)

∫
pτ (y | x)π(x)ut(x)dx.

Under certain conditions, the transfer operators can be defined on other spaces Lr and Lr
′
,

with r 6= 1 and r′ 6=∞, see Baxter and Rosenthal (1995), Klus et al. (2016). The operators
P and K are adjoint to each other with respect to 〈·, ·〉, defined by 〈f, g〉 =

∫
X f(x)g(x)dx,

while T and K are adjoint with respect to 〈·, ·〉π, defined by 〈f, g〉π =
∫
X f(x)g(x)π(x)dx

for f ∈ Lrπ(X) and g ∈ Lr′π (X) where 1
r + 1

r′ = 1. That is, we have 〈Kf, g〉π = 〈f, T g〉π.

Definition 3.3 (Reversibility). A system is called reversible if the detailed balance condi-
tion

π(x)pτ (y | x) = π(y)pτ (x | y)

holds for all x, y ∈ X.

If the system is reversible, then K = T . Moreover, the operators’ eigenvalues λ` are
real and the eigenfunctions ϕ` form an orthogonal basis with respect to the corresponding
scalar product. As a result, the eigenvalues can be sorted in descending order so that
1 = λ1 > λ2 ≥ λ3 ≥ . . . . The eigenfunctions determine the metastable sets of the system
and the eigenvalues describe how fast the eigenfunctions converge to the invariant density.
See Noé and Nüske (2013), Nüske et al. (2014), Klus et al. (2017) for more details.
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Example 3.4. As a guiding example, we will use a simple one-dimensional Ornstein–
Uhlenbeck process, given by the stochastic differential equation

dXt = −αDXtdt+
√

2DdWt,

where α is the friction coefficient, D = β−1 the diffusion coefficient, and {Wt}t≥0 a one-
dimensional standard Wiener process. The parameter β is also called the inverse tempera-
ture. The transition density of the Ornstein–Uhlenbeck process is

pτ (y | x) =
1√

2πσ2(τ)
exp

(
−(y − x exp(−αDτ))2

2σ2(τ)

)
,

with σ2(τ) = α−1 (1− exp(−2αDτ)). For this simple dynamical system, the eigenfunctions
can be computed analytically. See Pavliotis (2014), Klus et al. (2017) for more details. N

Remark 3.5. Definition 3.1 introduces the stochastic Koopman operator. For a determin-
istic dynamical system of the form ẋ = F (x), we obtain pτ (y | x) = δΦτ (x)(y), where Φτ

denotes the flow map and δx the Dirac distribution centered in x. Thus, Kf = f ◦Φτ . For
a discrete dynamical system of the form xi+1 = F (xi), we obtain Kf = f ◦ F . Note that
in this case there is no implicit dependence on τ , the Koopman operator simply determines
the observable mapped forward by the dynamical system. In the same way, the Perron–
Frobenius operator can be defined for deterministic systems, see, e.g., Lasota and Mackey
(1994), Koltai (2010), Klus et al. (2016).

Example 3.6. Consider the discrete dynamical system F : R2 → R2, taken from Tu et al.
(2014), with [

x1
x2

]
7→
[

ax1
bx2 + (b− a2)x21

]
.

For the numerical experiments, we set a = 0.8 and b = 0.7. The eigenvalues of the Koopman
operator associated with the system are λ1 = 1, λ2 = a, and λ3 = b with corresponding
eigenfunctions ϕ1(x) = 1, ϕ2(x) = x1, and ϕ3(x) = x2 + x21. Furthermore, products of
eigenfunctions are again eigenfunctions, for instance, ϕ4(x) = ϕ2(x)2 = x21 with eigenvalue
λ4 = λ22 = a2. Note that the ordering of the eigenvalues and eigenfunctions depends on the
values of a and b. N

Given the eigenvalues and eigenfunctions of the Koopman operator, we can predict the
evolution of the dynamical system. To this end, let g(x) = x be the full-state observable.
We then write g(x) in terms of the eigenfunctions as

g(x) = x =
∑
`

ϕ`(x)η`.

The vectors η` are called Koopman modes. Defining the Koopman operator to act compo-
nentwise for vector-valued functions, we obtain

Kg(x) = E[g(Xτ ) | X0 = x] =
∑
`

λ`(τ)ϕ`(x)η`.
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Example 3.7. For the simple deterministic system introduced in Example 3.6, we obtain
the Koopman modes η1 = [0, 0]>, η2 = [1, 0]>, η3 = [0, 1]>, and η4 = [0, −1]> so that
g(x) =

∑4
`=1 ϕ`(x)η` and

Kg(x) =
4∑
`=1

λ`ϕ`(x)η` =

[
λ2ϕ2(x)

λ3ϕ3(x)− λ4ϕ4(x)

]
= F (x). N

The above example illustrates that with the aid of the Koopman decomposition into
eigenvalues, eigenfunctions, and modes, we can now evaluate the dynamical system at any
data point. This is particularly useful if the system is not known explicitly. The Koopman
representation of the system can be learned from training data as shown in Budǐsić et al.
(2012), Williams et al. (2015a).

4 Transfer Operators in RKHS

In this section, we express the transfer operators introduced in Section 3 in terms of the
covariance and cross-covariance operators defined on some RKHS H (see Section 2.2). For
the transfer operators, the input and output spaces and thus also the kernels and resulting
Hilbert spaces are identical, i.e., X = Y, k = l, and H = G. However, note that X and Y
may be distinct random variables. For example, if X ∼ δx, then Y ∼ pτ (· | x). In addition
to the standard transfer operators, we will derive transfer operators for embedded densities
and observables and analyze the relationships between them. To this end, we define—similar
to the standard Gram matrices GXX and GYY —the time-lagged Gram matrices GXY = Φ>Ψ
and GYX = Ψ>Φ. In what follows, we assume that the Gram matrices and time-lagged
Gram matrices are invertible or regularized in such a way that they become invertible.

We want to stress that especially the embedded operators can be used to describe any
wide-sense stationary stochastic process, even if the marginal distribution at any time t
does not allow a density. This opens up the possibility to analyze stochastic processes over,
for example, string and graph domains, which do not admit densities since the domain
is discrete. The main assumption is that a positive definite kernel function exists which
enables measuring similarity of domain elements.

4.1 Kernel Perron–Frobenius Operator

Recall that the Perron–Frobenius operator P pushes forward any density pt at time t to
the density after the system has evolved for time τ . This density is denoted by pt+τ . Now
we consider the kernel Perron–Frobenius operator Pk defined on the RKHS H induced by
the kernel k. That is, we assume that pt ∈ H and pt+τ ∈ H. In general, this will not be
the case and the question is how and under which conditions this operator approximates
the Perron–Frobenius operator defined on L1. In this paper, we will develop the framework
for representing transfer operators using RKHS theory and compare it with other existing
methods. The convergence properties are beyond the scope of this paper and will be studied
in future work. For kernels with explicitly given feature spaces, related convergence results
can be found in Williams et al. (2015a), Klus et al. (2016), Korda and Mezić (2017). Also
the relationships with the projected transfer operators defined in Schütte and Sarich (2013)
will be studied subsequently. Notice that the assumption that the relevant densities are in
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H is different from the embedding approach discussed in Sections 2.1 and 2.3. A Perron–
Frobenius operator for embedded densities is derived in Section 4.2.

Proposition 4.1. Let pX be the reference density on X and let Ak : H → H be the kernel
transfer operator with respect to this density, i.e., Ak g(y) = 1

pX(y)

∫
pτ (y | x)g(x)pX(x)dx

for g ∈ H. Then
CXXAk g = CYXg.

Proof. The proof is similar to the proof of Proposition 2.11, which can be found, e.g.,
in Fukumizu et al. (2004). Using (1), it holds that

〈f, CXXAk g〉H = EX [f(X)Ak g(X)]

=

∫
f(y)

1

pX(y)

∫
pτ (y | x)pX(x)g(x)dxpX(y)dy

=

∫∫
f(y)g(x)pτ (y | x)pX(x)dxdy

=

∫∫
f(y)g(x)pτ (x, y)dxdy

= EXY [g(X)f(Y )]

= 〈f, CYXg〉H . �

It follows that Ak = C−1XX CYX , where a regularized version of CXX might be required as
described above. Let uX denote the uniform density on X and π the invariant density defined
in Section 3. If pX = uX, then Ak = Pk and if pX = π, then Ak = Tk, where Tk denotes
the kernel Perron–Frobenius operator with respect to the invariant density. We will later
generate training data using these densities. It is important to note here that X and Y as
well as H and G have to be the same spaces, otherwise the operator would be undefined
since CYX is a mapping from H to G and C−1XX a mapping from H to H.

Corollary 4.2. For specific choices of pX, we obtain:

(i) If pX = uX, then Pk = C−1XX CYX .

(ii) If pX = π, then Tk = C−1XX CYX .

This is consistent with the derivation of EDMD for the Perron–Frobenius operator in Klus
et al. (2016), where—from a kernel point of view—explicitly given finite-dimensional feature
spaces are considered. In this case, the empirical estimates of the operators converge to a
Galerkin approximation, i.e., the operator projected onto the space spanned by the feature
map functions. For the Koopman operator, this was shown in Williams et al. (2015a).

Proposition 4.3. The empirical estimate P̂k of the kernel Perron–Frobenius operator Pk
can be written as P̂k = ΨAΦ>, where A is a real matrix. Estimates for A are given by
A1 = G−1XY G

−1
XX GXY and A2 = G−1XY G

−1
YX GYY .

Proof. The idea is to simply solve the equation P̂k = Ĉ−1XX ĈYX = (ΦΦ>)−1ΨΦ> = ΨAΦ> for
A. Dropping the Φ>, we multiply the equations from the left by ΦΦ> and then by

(i) Φ>, which leads to GXY = GXX GXYA yielding the estimator A1,
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(ii) Ψ>, which leads to GYY = GYX GXYA yielding the estimator A2. �

We conjecture that both estimators are identical when taking the number of data points
to infinity, assuming common support of pt and pt+τ . Using the reproducing property of H
and assuming that p ∈ H, we can write

Pk p(x) =
〈
C−1XX CYX p, k(x, ·)

〉
H =

〈
p, CXY C−1XX k(x, ·)

〉
H = 〈p, KE k(x, ·)〉H ,

where KE = CXY C−1XX . Thus, the action of the Perron–Frobenius operator can be interpreted
as an inner product in a Hilbert space. We will call KE the embedded Koopman operator
and discuss it in detail in Section 4.4.

4.2 Embedded Perron–Frobenius Operator

In the previous subsection, we assumed that the densities pt and pt+τ are elements of the
RKHS H. Now we first embed the densities into the RKHS H using the mean embedding
and consider the corresponding embedded densities µt and µt+τ . Since the definition of the
Perron–Frobenius operator resembles the sum rule, we can extend it to the RKHS using
the kernel sum rule (Song et al., 2013, Fukumizu et al., 2013). Let µt = Ept [k(X, ·)] = Ek pt
be a Hilbert space embedding of the density pt, then the Perron–Frobenius operator for
embedded densities can be expressed in terms of the conditional mean embedding UY |X as

µt+τ = UY |X µt = CYX C−1XX µt,

where µt+τ is the Hilbert space embedding of the density pt+τ . The above equality is
guaranteed under the assumption that CXX is injective, µt ∈ Range(CXX ), and EY |X [g(Y ) |
X = · ] ∈ H for all g ∈ H (see also Fukumizu et al. (2013, Theorem 2)). Thus, we define
PE = UY |X to be the embedded Perron–Frobenius operator. The empirical estimate of the
embedded Perron–Frobenius operator is given by

P̂E = ĈYX Ĉ−1XX = (ΨΦ>)(ΦΦ>)−1 = ΨG−1XX Φ>.

If the Gram matrix GXX is not invertible, we may resort to the regularized estimate, given
by P̂E = Ψ (GXX + nεIn)−1 Φ>.

Proposition 4.4. Let µt := Ek pt be an embedded probability density. Then the diagram

L1 3 pt µt ∈ H

L1 3 pt+τ µt+τ ∈ H

Ek

P PE

Ek

is commutative.

Proof. Applying P to pt and then embedding the resulting density leads to

Ek(Ppt) =

∫
k(y, ·)

∫
pτ (y | x)pt(x)dxdy,
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a) b)

Figure 1: a) Propagation of the initial density p0 by the Perron–Frobenius operator, where
p1 = Pp0 and p2 = Pp1. b) Propagation of the embedded density µ0 by the embedded
Perron–Frobenius operator, where µ1 = PEµ0 and µ2 = PEµ1. The dashed black lines show
the invariant and embedded invariant density, respectively.

embedding pt and then applying the embedded Perron–Frobenius operator to

PE(Ek pt) = PE
∫
k(x, ·)pt(x)dx

=

∫
PE k(x, ·)pt(x)dx

=

∫
EY |x[φ(Y ) | X = x]pt(x)dx

=

∫∫
pτ (y | x)φ(y)dypt(x)dx

=

∫
k(y, ·)

∫
pτ (y | x)pt(x)dxdy. �

For the empirical estimates, the commutativity can be seen as follows: Let pt be a prob-
ability density, then the empirical estimate of the kernel mean embedding is µ̂t = 1

nΦ1.

Applying P̂E yields

P̂E µ̂t = 1
n ĈYX Ĉ−1XX Φ1 = 1

nΨΦ>(ΦΦ>)−1Φ1 = 1
nΨ1 = µ̂t+τ .

That is, we obtain the empirical estimate of the mean embedding of the density pt+τ . In
the last step, we again used the identity Φ(Φ>Φ)−1 = (ΦΦ>)−1Φ.

Example 4.5. Let us consider the Ornstein–Uhlenbeck process from Example 3.4. We
choose τ = 1

2 , α = 4, D = 1
4 , and the Gaussian kernel with σ2 = 1

2 . Figure 1a shows the
piecewise constant initial probability density p0 pushed forward by the Perron–Frobenius op-
erator, Figure 1b the embedded initial density µ0 pushed forward by the embedded Perron–
Frobenius operator. N

The Perron–Frobenius operator P maps densities pt ∈ L1 to pt+τ ∈ L1, while the embed-
ded Perron–Frobenius operator PE , given by the conditional mean embedding UY |X , maps
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embedded densities µt ∈ H to µt+τ ∈ H. Thus, the conditional mean embedding plays a
similar role as the classical Perron–Frobenius operator in that it pushes forward—in this
case: embedded—densities. Note that if we embed an eigenfunction of P, we automatically
obtain an eigenfunction of PE . This is due to the linearity of the integral.

4.3 Kernel Koopman Operator

The Koopman operator K applied to an observable f evaluated at x results in the expecta-
tion of f when starting in x and evolving the system for time τ . Analogously to the kernel
Perron–Frobenius operator, we now introduce the corresponding kernel Koopman opera-
tor, denoted by Kk. That is, we assume that the observables and the observables mapped
forward by the Koopman operator are elements of H. From Proposition 2.11, it follows that

Kk = C−1XX CXY

and thus for f ∈ H that

Kkf(x) =
〈
C−1XX CXY f, k(x, ·)

〉
= 〈f, PE k(x, ·)〉 .

Alternatively, the kernel Koopman operator can be derived using the reproducing property
directly:

Kkf(x) =

∫
pτ (y | x)f(y)dy =

∫
〈f, k(y, ·)〉 pτ (y | x)dy

=

〈
f,

∫
k(y, ·)pτ (y | x)dy

〉
= 〈f, PE k(x, ·)〉 .

The empirical estimate of the Koopman operator is then given by

K̂k = Ĉ−1XX ĈXY = (ΦΦ>)−1(ΦΨ>) = ΦG−1XX Ψ>.

Example 4.6. Let us approximate the kernel Koopman operator associated with the system
defined in Example 3.6 using the kernel from Example 2.2. Generating 10000 test points
xi sampled from a uniform distribution on X = [−2, 2] × [−2, 2] and the corresponding
yi = F (xi) values, we can compute the empirical estimator

K̂k = Ĉ−1XX ĈXY =
(
ΦΦ>

)−1(
ΦΨ>

)
=
(
ΨΦ+

)> ∈ R6×6.

Here, + denotes the pseudoinverse. The dominant eigenvalues and right eigenvectors as well
as the corresponding eigenfunctions are given by

λ1 = 1.0, v1 = [ 1 0 0 0 0 0 ]>, ϕ1(x) = 〈v1, φ(x)〉 = 1,
λ2 = 0.8, v2 = [ 0 0.7071 0 0 0 0 ]>, ϕ2(x) = 〈v2, φ(x)〉 ≈ x1,
λ3 = 0.7, v3 = [ 0 0 0.7071 1 0 0 ]>, ϕ3(x) = 〈v3, φ(x)〉 ≈ x2 + x21.

This is in good agreement with the analytically computed results. The eigenfunctions are
clearly in H since they can be written as linear combinations of φ(xi) for appropriately chosen
xi, e.g., v2 = φ

(
[14 , 0]>

)
− φ

(
[−1

4 , 0]>
)
. The subsequent eigenvalues and eigenfunctions are

simply products of the eigenvalues and eigenfunctions listed above, see Example 3.6. Note,
however, that other than ϕ4 further products of eigenfunctions cannot be represented as
functions in H anymore since the feature space does not contain polynomials of order greater
than two. Here, we used the explicit feature map of the polynomial kernel. N
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The approach to obtain an approximation of transfer operators from data as described in
the above example is also referred to as EDMD (Williams et al., 2015a, Klus et al., 2016).
The data matrices are embedded into a typically high-dimensional feature space, given, for
instance, by monomials up to a certain order, which corresponds to the feature space of a
polynomial kernel. Details regarding the relationships with other methods can be found in
Section 4.7 and further examples in Section 5.

4.4 Embedded Koopman Operator

If we want to embed the Koopman operator in the same way as the Perron–Frobenius
operator, we need to introduce embedded observables first, which can be interpreted as the
counterpart of the mean embedding of distributions. Let f : X→ R be an observable of the
system. We define ν := Ekf to be the embedded observable. Given a set of training data,
the empirical estimate ν̂ of the embedded observable is given by

ν̂ =
1

n

n∑
i=1

φ(xi)f(xi) =
1

n

n∑
i=1

k(xi, ·)f(xi) =
1

n
Φf̂ ,

where f̂ = [f(x1), . . . , f(xn)]> contains the values of the observable evaluated at the train-
ing data points. Note that the data points do not have to be drawn from a particular
probability distribution. Alternatively, we could perform regression to approximate the
observable f by an element f̃ ∈ H and then compute the integral.

Remark 4.7. Let ν be the embedding of the observable f with respect to the kernel k and let
p be a density lying in the RKHS H spanned by k. Then 〈ν, p〉H =

∫
f(x) 〈k(x, ·), p〉H dx =∫

p(x)f(x)dx.

This result is an analogue of what has been attained previously for the kernel mean
embedding of distributions, which also allows the representation of integration as an inner
product in the RKHS, see Remark 2.6. Note that when using embedded distributions we
have to assume that the observable is in H, while when using embedded observables we
assume the relevant density to be in H. One possible use of embedded observables arising
from Remark 4.7 is when one is unsure of the RKHS an observable lies in, while the RKHS
of the density of interest is given. Another might be that by embedding the observable
instead of the distribution one can take advantage of a smoother RKHS.

Analogously to the embedded Perron–Frobenius operator, we define the embedded Koop-
man operator by KE = CXY C−1XX .

Proposition 4.8. Let νt := Ekft be the embedded observable. Then the diagram

L∞ 3 ft νt ∈ H

L∞ 3 ft+τ νt+τ ∈ H

Ek

K KE

Ek

is commutative.

Proof. The proof is similar to the proof of Proposition 4.4. �
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As for P, embedding an eigenfunction of K results in an eigenfunction of KE . For the
kernel Koopman operator Kk, the commutativity can be seen as follows: Assume that the
observable is given by ft ∈ H. Thus, Kkft = C−1XX CXY ft, while the embedding of ft results
in νt = CXXft. Applying KE , this results in

KE(Ekft) = CXY C−1XX CXXft = CXX C−1XX CXY ft = Ek(Kkft).

Proposition 4.9. The empirical estimate K̂E of the embedded Koopman operator KE can
be written as K̂E = ΦAΨ>, where A is a real matrix. Estimates for A are given by A1 =
GYXG

−1
XXG

−1
YX and A2 = GYYG

−1
XYG

−1
YX .

Proof. The proof is analogous to the proof of Proposition 4.3. �

Example 4.10. Let us consider again the system from Example 3.6 whose eigenfunctions
ϕ1, ϕ2, and ϕ3 we estimated numerically in Example 4.6 using the kernel from Example 2.2.
Computing the corresponding embedded eigenfunctions analytically, we obtain the (properly
rescaled) functions ν1, ν2, and ν3 and associated vector representations w1, w2, and w3, given
by

λ1 = 1.0, w1 = [ 3 0 0 4 0 4 ]>, ν1(x) = 3 + 4x21 + 4x22,

λ2 = 0.8, w2 = [ 0 1 0 0 0 0 ]>, ν2(x) =
√

2x1,

λ3 = 0.7, w3 = [ 1 0
√

2 12
5 0 4

3 ]>, ν3(x) = 1 + 2z2 + 12
5 z

2
1 + 4

3z
2
2 .

The vectors w1, w2, and w3 are indeed eigenvectors of the matrix K̂E = ĈXY Ĉ−1XX correspond-
ing to the eigenvalues λ1, λ2, and λ3. N

4.5 Relationships between Operators

Overall, we derived four different operators that can be written in terms of the covariance
and cross-covariance operators introduced in Section 2.

Kernel operator Embedded operator

Perron–Frobenius
Pk = C−1XXCYX

≈ ΨAΦ>

PE = CYXC−1XX

≈ ΨG−1XX Φ>

Koopman
Kk = C−1XXCXY

≈ ΦG−1XX Ψ>

KE = CXYC−1XX

≈ ΦA>Ψ>

We can express the kernel Perron–Frobenius operator using the embedded Koopman oper-
ator and the kernel Koopman operator using the embedded Perron–Frobenius operator—or
mean embedding—via

Pk p(x) = 〈Pk p, k(x, ·)〉H = 〈p, KE k(x, ·)〉H ,
Kk f(x) = 〈Kk f, k(x, ·)〉H = 〈f, PE k(x, ·)〉H .

That is, Pk and KE as well as Kk and PE are adjoint to each other with respect to the
inner product in H. This is also reflected in the empirical estimators. Here, A is either
A1 = G−1XY G

−1
XX GXY or A2 = G−1XY G

−1
YX GYY .
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4.6 Eigendecomposition of RKHS Operators

If the feature space is finite-dimensional and known explicitly, we can compute eigenfunc-
tions as shown in Example 4.6, provided that the dimension of the feature space is small
enough so that the resulting eigenvalue problem can still be solved numerically. The advan-
tage of this approach is that the matrix size does not depend on the number of test points n.
As described above, this approach converges to a Galerkin approximation of the respective
operator for n → ∞. The basis functions for the Galerkin ansatz are given by the feature
map.

Now, we want to consider also the cases where the dimension of the feature space is larger
than the number of test points or where the feature space is even infinite-dimensional.
Let S = ΥBΓ> be a Hilbert–Schmidt operator mapping from H to itself, with Υ =
[k(z1, ·), . . . , k(zn, ·)], Γ = [k(z′1, ·), . . . , k(z′n, ·)], and B ∈ Rn×n for some n. Assume fur-
ther that

⋃n
i=1{zi, z′i} contains only pairwise different objects. Then the eigenvalues and

eigenfunctions of S can be computed from eigenvalues and eigenvectors of GΓΥB or BGΓΥ ,
where GΓΥ = Γ>Υ.

Proposition 4.11. The Hilbert–Schmidt operator S = ΥBΓ> has an eigenvalue λ 6= 0 with
corresponding eigenfunction

υ = Υv

if and only if v is an eigenvector of BGΓΥ associated with λ. Similarly, S has an eigenvalue
λ 6= 0 with corresponding eigenfunction

γ = ΓG−1ΓΓ v.

if and only if v is an eigenvector of GΓΥ B.

Proof. Let υ = Υv be an eigenfunction of S associated with λ. Then

Sυ = λυ ⇔
ΥBGΓΥ v = λΥv ⇔
BGΓΥ v = λv.

For the second part, let γ = ΓG−1ΓΓ v be an eigenfunction of S. Then

Sγ = λγ ⇔
ΥBGΓΓ G

−1
ΓΓ v = λΓG−1ΓΓ v ⇔

GΓΥBv = λv. �

While these eigendecomposition derivations are the most elegant, other derivations exist.
We conjecture that the eigenfunction expressions would coincide when taking the infinite-
dimensional limit in the number of data points n (and thus in the size of B, Υ, and Γ).

Setting Υ = Φ and Γ = Ψ or Υ = Ψ and Γ = Φ as well as B = A or B = A>, we
thus obtain eigendecomposition expressions for all empirical operator estimates listed in
Section 4.5. In particular, let P∗ = ΨBΦ>. Then we need to solve the eigenvalue problem
GXYBv = λv (which reduces to G−1XX GXY v = λv for Pk with the estimator B = A1). We
obtain an eigenfunction of P∗ as ϕ = ΦG−1XX v. For the Koopman operators, let K∗ = ΦBΨ>.
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a) b)

Figure 2: a) Dominant eigenfunctions of the Perron–Frobenius operator P associated with
the Ornstein–Uhlenbeck process. b) Dominant eigenfunctions of the Koopman operator K.
The solid lines are the numerically computed and the dotted lines the analytically computed
eigenfunctions. Also the numerically computed eigenvalues agree with the analytically com-
puted values.

Then we solve BGXY v = λv (i.e., G−1XX GYX v = λv for Kk). We get the eigenfunction
ϕ = Φv. We will use these methods, which are consistent with the derivations in Williams
et al. (2015a), Klus et al. (2018), for the experiments in Section 5.

Example 4.12. Let us analyze the Ornstein–Uhlenbeck process introduced in Example 3.4.
We use again τ = 1

2 , α = 4, and D = 1
4 and generate 5000 uniformly distributed test

points in [−2, 2]. Furthermore, we use the Gaussian kernel with σ2 = 0.3. Applying our
eigendecomposition result to the kernel Perron–Frobenius operator—since the test points
are distributed uniformly, we obtain Pk, see Corollary 4.2—and kernel Koopman operator
yields the results shown in Figure 2. This special case is equivalent to the kernel EDMD
method. A similar experiment using conventional EDMD with a basis comprising monomials
is described in Klus et al. (2017). N

More complex examples from various application areas and different use cases will be
discussed in Section 5.

4.7 Relationships with Other Methods

There are several existing methods such as time-lagged independent component analysis
(TICA) (Molgedey and Schuster, 1994, Pérez-Hernández et al., 2013), dynamic mode decom-
position (DMD) (Schmid, 2010, Tu et al., 2014), and their respective generalizations—the
aforementioned VAC and EDMD—to approximate transfer operators and their eigenvalues,
eigenfunctions, and eigenmodes. Although developed independently from each other, these
methods are strongly related as shown in Klus et al. (2017). Our methods subsume existing
ones and thereby provide a unified framework for transfer operator approximation using
RKHS theory.
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4.7.1 TICA and DMD

TICA can be used to separate superimposed signals (Molgedey and Schuster, 1994), solving
the so-called blind source separation problem, and also for dimensionality reduction (Pérez-
Hernández et al., 2013), by projecting a high-dimensional signal onto the main TICA coordi-
nates (see Section 5 for an example). The method aims to find the time-lagged independent
components that are uncorrelated and maximize the autocovariances at lag time τ . Given
again training data DXY = {(x1, y1), . . . , (xn, yn)}, where xi = Xti and yi = Xti+τ , we define
the associated data matrices X,Y ∈ Rd×n by

X =
[
x1 · · · xn

]
and Y =

[
y1 · · · yn

]
.

By setting k(x, x′) = x>x′ and l(y, y′) = y>y′, the eigenvalue problem for the Koopman
operator reduces to the standard eigenvalue problem

Ĉ−1XX ĈXY ξ = λξ,

where ĈXX and ĈXY denote the covariance and cross-covariance matrices, respectively, defined
by ĈXX = 1

nXX> and ĈXY = 1
nXY>. The resulting eigenvectors are defined to be the TICA

coordinates.
DMD is frequently used for the analysis of high-dimensional fluid flow problems (Schmid,

2010). The DMD modes correspond to coherent structures in these flows. The derivation is
based on the least-squares minimization problem ‖Y −MX‖F , whose solution is given by

M = YX+ =
(
YX>

)(
XX>

)−1
= ĈYX Ĉ−1XX .

Eigenvectors of this matrix are then called DMD modes. Equivalently, the DMD modes
can be interpreted as the left eigenvectors of the TICA matrix Ĉ−1XX ĈXY . More details on the
relationships between TICA and DMD can be found in Klus et al. (2017). As shown above,
both TICA and DMD can be obtained as special cases of our algorithms.

4.7.2 VAC and EDMD

For a given set of basis functions φ1, . . . , φr, we define the vector-valued function φ =
[φ1, . . . , φr]

> : Rd → Rr. In the context of the kernel-based methods introduced above, the
function φ corresponds to an explicitly defined feature map. This results in the feature
matrices Φ,Ψ ∈ Rr×n, given by

Φ =
[
φ(x1) · · · φ(xn)

]
and Ψ =

[
φ(y1) · · · φ(yn)

]
.

Note that the same basis functions—and thus the same kernel—are used for x and y, a gen-
eralization of this approach can be found in Wu and Noé (2017). VAC and EDMD, which
are equivalent for reversible dynamical systems, can be understood as nonlinear extensions
of TICA and DMD, respectively. Both methods utilize the transformed data matrices Φ and
Ψ for an explicitly given set of basis functions. VAC uses the matrix Ĉ−1XX ĈXY as an approx-
imation of T (which is equivalent to K for a reversible system) to compute eigenfunctions.
Similarly, EDMD considers the matrix ĈYX Ĉ−1XX , which can be interpreted as a least-square
approximation of the Koopman operator using the transformed data matrices. (In the same
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way, we obtain ĈXY Ĉ−1XX for the Perron–Frobenius operator.) By defining the kernels k and l
explicitly as k(x, x′) = φ(x)>φ(x′) and l(y, y′) = φ(y)>φ(y′) for some finite-dimensional fea-
ture spaces H and G, we can also see the close relationship between the methods described
in this paper and VAC and EDMD. Given a finite-dimensional feature space, ĈXX = 1

nΦΦ>

and ĈYX = 1
nΨΦ> can be computed explicitly. See also Example 4.6 and Section 5.

4.7.3 Kernel TICA and Kernel EDMD

The advantage of our method compared to VAC and EDMD is that the eigenvalue problem
can be expressed entirely in terms of the Gram matrices GXX , GXY , GYX , and GYY . The
transformed data matrices Φ and Ψ need not be computed explicitly. This also allows us
to work implicitly with infinite-dimensional feature spaces. Kernel-based variants, based on
algebraic transformations of the conventional counterparts, of TICA and EDMD have also
been proposed in Schwantes and Pande (2015), Williams et al. (2015b), Klus et al. (2018).
Similar to VAC, kernel TICA is based on a variational approach and requires reversibility,
whereas kernel EDMD is also defined for non-reversible systems. Although kernel TICA
and kernel EDMD are generalizations of different methods—TICA is related to DMD and
VAC to EDMD—, the resulting methods are strongly related again. In Schwantes and
Pande (2015), conventional TICA is first implicitly extended to VAC and then to kernel
TICA, whereas the derivation of kernel EDMD explicitly uses the EDMD feature space
representation, see also Klus et al. (2018).

5 Experiments

We will briefly show how the methods introduced above can be used to analyze dynamical
systems and time-series data. In the first example, we analyze two simple molecular dynam-
ics related problems using methods that correspond to EDMD and TICA. The second exam-
ple illustrates that the kernel-based reformulations can also be applied to high-dimensional
video data. The third example shows another new application, the analysis of text data.
Further molecular dynamics examples can be found in Nüske et al. (2014), McGibbon and
Pande (2015), Schwantes and Pande (2015), Klus et al. (2016, 2017, 2018) and applications
in fluid dynamics, e.g., in Budǐsić et al. (2012), Williams et al. (2015b), Rowley et al. (2009).

5.1 Molecular Dynamics

In this section, we apply the proposed techniques to extract meta-stable sets and to reduce
the dimension of time series data.

5.1.1 Meta-stable sets

As a first example, let us illustrate how the eigendecomposition of Kk—for an explicitly
defined feature space, which corresponds to EDMD as described above—can be used for
molecular dynamics applications. We consider a simple multi-well diffusion process given
by a stochastic differential equation of the form

dXt = −∇V (Xt)dt+
√

2D dWt,
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Figure 3: a) Potential V associated with the multi-well diffusion process. b) Partitioning
of the state space based on the dominant eigenfunctions of the Koopman operator.

where V is the potential, D = β−1 again the diffusion coefficient, and Wt a standard Wiener
process. The potential, shown in Figure 3a, is given by

V (x) = cos (k arctan(x2, x1)) + 10

(√
x21 + x22 − 1

)2

,

see also Bittracher et al. (2017). We set k = 5. A particle will typically spend a long
time in one of the wells and then jump to one of the adjacent wells. The transitions
between the wells are rare events. Thus, this system exhibits metastable behavior and the
five metastable sets—which are encoded in the five dominant eigenfunctions of the transfer
operators associated with the system—correspond to the five wells of the potential.

We use a 50× 50 box discretization of the domain X = [−2, 2]× [−2, 2] to define a basis
containing 2500 radial basis functions ki(x, ci) = exp(− 1

2σ2 ‖x− ci‖2) whose centers ci are
the centers of the boxes. This defines a kernel

k(x, x′) =

2500∑
i=1

ki(x, ci)ki(x
′, ci) =

2500∑
i=1

exp

(
− 1

2σ2

(
‖x− ci‖2 +

∥∥x′ − ci∥∥2)) .
Furthermore, we choose the lag time τ = 0.2 and σ2 = 0.9. We generate 250000 uniformly
distributed test points xi ∈ X and solve the initial value problem with the Euler–Maruyama
method to obtain the corresponding yi values. We then compute the eigenvalues and eigen-
functions of the Koopman operator Kk. There exist five dominant eigenvalues close to one
and then there is a spectral gap between the fifth and sixth eigenvalue. We apply a k-means
clustering to the dominant eigenfunctions to obtain the partitioning of the domain into the
five metastable sets shown in Figure 3b. There are more sophisticated techniques to iden-
tify the metastable sets based on the eigenfunctions, but the example illustrates the basic
workflow.
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Figure 4: a) Original data set. b) Projection onto the TICA coordinates. Only the first
two variables corresponding to the dominant eigenvalues exhibit metastable behavior.

5.1.2 Dimensionality reduction and blind source separation

Another use case of the methods introduced above is dimensionality reduction. Before
methods to compute eigenfunctions of transfer operators such as EDMD or VAC can be
applied to high-dimensional systems, the data often needs to be projected onto a lower-
dimensional subspace first. This can be accomplished by approximating the eigenfunctions
of the Koopman operator Kk using a linear kernel (i.e., TICA, see Section 4.7). Let us
consider the simple data set x ∈ R4×10000 shown in Figure 4a. From this data set, we
extract X = [x1, . . . , x9999] and Y = [x2, . . . , x10000], where xi denotes the ith column
vector of x. Applying TICA, we see that there are two dominant eigenvalues close to 1, the
other two are close to 0. This indicates that two of the four variables exhibit metastable
behavior. Projecting the data onto the TICA coordinates results in the trajectories shown
in Figure 4b. The first two new variables corresponding to the dominant eigenvalues contain
the metastability, while the other two variables contain just noise. (In fact, this is how the
data set was constructed.) Since we are only interested in the slow metastable dynamics,
we can neglect the last two variables and thus reduce the state space. At the same time,
we can view the projection onto eigenfunction coordinates as the unmixing of previously
mixed signal sources. Thus, our methods can be used for solving blind source separation
problems.

5.2 Movie Data

Let us analyze a simple movie showing a pendulum1. We want to analyze this data set using
the eigendecomposition of Kk for a Gaussian kernel k (corresponding to kernel EDMD). To
this end, we convert each 576 × 720 RGB video frame to a grayscale intensity image—all
intensities are between 0 and 1—and define a kernel k(x, y) = exp

(
− 1

2σ2 ‖x− y‖F
)
, with

1ScienceOnline: The Pendulum and Galileo (www.youtube.com/watch?v=MpzaCCbX-z4).
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a) Frame 1 b) Frame 13 c) Frame 36

d)

Figure 5: a) No angular displacement. b) Maximum displacement right-hand side. c) Max-
imum displacement left-hand side. d) Values of the normalized eigenfunctions ϕ2 and ϕ3

for each frame. The eigenfunctions encode the frequency of the pendulum. The frames 13
and 36 correspond to the first maximum and minimum of the eigenfunction ϕ2. The period
of ϕ3 is twice the period of ϕ2. The black dashed line shows the angular displacement ϑ
(rescaled for the sake of comparison) obtained by a numerical simulation of the pendulum.
The dominant eigenfunction parametrizes the angular displacement. The video snapshots
are reproduced with the kind permission of ScienceOnline.

σ2 = 500. Here, ‖·‖F denotes the Frobenius norm. It would also be possible to use the
RGB signal directly, e.g., by defining kRGB(x, y) = k(xR, yR) + k(xG, yG) + k(xB, yB), i.e.,
each primary color is compared separately. The video comprises 501 frames so that X,Y ∈
R576×720×500. That is, the data sets are now tensors of order three. Analogously, we could
reshape the snapshot matrices into vectors. We choose the regularization parameter ε =
0.05. Thus, for our analysis, we have to solve the eigenvalue problem (GXX +εIn)−1GYX v =
λv to obtain eigenfunctions of Kk.

The values of the resulting nontrivial dominant eigenfunctions ϕ2 and ϕ3 evaluated for
each frame are shown in Figure 5. The first nontrivial eigenfunction encodes the frequency of
the pendulum and the second eigenfunction twice the frequency. As a result, we could now
sort the frames according to the angular displacement of the pendulum using the eigen-
functions. The example shows that even for high-dimensional problems the kernel-based
methods are able to extract relevant information about the global dynamics. The frames
attaining maxima and minima of the eigenfunctions provide a summary of the video using
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typical (but maximally different) frames. This use of our methods resembles determinantal
point processes as applied to data summarization (Kulesza and Taskar, 2012).

For this simple example, we used the raw video data. For more complex systems, pre-
processing steps might be beneficial, e.g., mean subtraction, Sobel edge detection, or more
sophisticated feature detection approaches such as SIFT or HOG (Bo et al., 2010). In this
way, it would be possible to track features of images over time. Another potential appli-
cation that we considered but did not include here is the analysis of persons walking or
running. The eigenfunctions then describe the gait pattern and gait velocity.

5.3 Text Data

In this section, we show how the eigendecomposition of the kernel Perron–Frobenius operator
with respect to the invariant density, denoted by Tk, can be used for non-vectorial data.
Consider the following scenario: Given a collection of text documents, erase all words not
contained in a predefined vocabulary. Of the remaining words, one word (denoted by yi)
following another (denoted by xi) is considered to be its time evolved version or successor.
The lists of all such words xi and yi are denoted by X and Y, respectively. We choose the
vocabulary shown in Table 2 and collect 1000 word pairs from news articles. Typically, the
same word or related words are used several times within one article, but words related to
other topics are rarely mentioned. Since we consider the sequence of articles as one long
document2, transitions occur, for instance, when one article ends and the next one about a
different topic starts, when different topics are mixed, or when words such as state or cell
are used in a different context. These are the rare transitions that are similar to the jumps
between the wells in the molecular dynamics example. Although this is a slightly artificial
example, it illustrates how to extend transfer operator approaches to new domains where
only a similarity measure given by a kernel is available.

Table 2: Predefined set of keywords.

browser cell computer damage department

disease e-mail election hurricane internet

midterm president rain science state

stem storm tablet therapy weather

We generate the Gram matrices GXY and GXX and compute eigenfunctions of the op-
erator Tk. Here, [GXY ]ij = k(xi, yj), where xi is the ith word in X and yj the jth word
in Y. Correspondingly, GXX is the standard Gram matrix. Moreover, k is the text kernel
proposed in Lodhi et al. (2002)3. We compute again the leading nontrivial eigenfunctions
ϕ2 and ϕ3 and use the the eigenfunctions as coordinates. The results are shown in Figure 6.
Note that the words are not clustered based on string kernel similarity but on proximity in
the document collection. Words that often occur together are grouped into clusters. For
this simple example, it would also have been possible to assign each word a distinct num-
ber and to generate a Markov state model by approximating the transition probabilities

2Parts of the same articles are used several times to increase the size of the data set, this is thus a synthetic
example, mainly to illustrate the concept.

3We use the String Kernel Software implementation (https://github.com/mmadry/string_kernel).
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Figure 6: Topic modeling by clustering using on the dominant eigenfunctions. Words that
are found in close proximity represent a topic. Our method identified four topic clusters:
information technology, medicine, weather, and politics.

between words. The eigenvectors of the Markov matrix would then lead to a similar clus-
tering. The text kernel, however, takes into account string similarity. This is important to
account, for example, for grammatical variations reflected in word form (green vs. greener)
and misspellings (love vs. loove) without necessarily resorting to lemmatizing, stemming, or
other normalization techniques. Another possibility here would be to design linguistically
informed string kernels. In German for example, a Visumantrag (visa application) is more
similar to Antrag (application) than to Visum. A string kernel taking this into account
would instantly be reflected in the word clusters discovered by our method, which could
never be achieved when using a pure Markov state model.

Compared to latent Dirichlet allocation (LDA) (Blei et al., 2003), our method of uncov-
ering topics in texts differs in several respects. First of all, LDA is derived as a Bayesian
model, while our method can be considered frequentist. Second, LDA makes a bag-of-words
assumption, i.e., the order of words in texts is not taken into account. Our method, on
the other hand, relies first and foremost on word order. Third, the semantic content of
words in LDA could be summarized as a real vector using their frequency in topics, while a
clustering of words into topics is the primary object of interest. Our method, on the other
hand, produces a semantic word representation, the eigenfunction values of a word, while a
clustering into topics can be implemented as a postprocessing step. This is an interesting
application warranting further research that follows directly from our general principle of
decomposing an RKHS operator.
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6 Conclusion

We have shown how to extend transfer operator theory to reproducing kernel Hilbert spaces
and illustrated similarities with the conditional mean embedding framework. While the con-
ventional transfer operator propagates densities, the kernel mean embedding can be viewed
as an operator that propagates embedded densities. Moreover, we have highlighted rela-
tionships between the covariance and cross-covariance operator based methods to obtain
empirical estimates of the conditional mean embedding and other well-known methods for
the approximation of transfer operators developed by the dynamical systems, molecular dy-
namics, and fluid dynamics communities. One main benefit of purely kernel-based methods
is that these methods can be applied to non-vectorial data such as strings or graphs, enabling
the analysis of many (wide-sense) stationary processes. We demonstrated the efficiency and
versatility of these methods using guiding examples as well as simple molecular dynamics
applications, video data, and text data. Future work includes applying the aforementioned
kernel-based methods to more realistic data sets. In particular the analysis of real-world
text data and more complicated video data, potentially in combination with machine learn-
ing based preprocessing approaches, will be a challenging task. An open question is also
the convergence of the RKHS operator to the actual transfer operator. Furthermore, the
influence of the kernel itself, the regularization parameter, and the number of test points
on the accuracy of the eigenfunction approximations is not clear yet. These questions will
be addressed in future work. Another extension of the framework presented within this
paper would be to use singular value decompositions instead of eigenvalue decompositions
for the transfer operator representations. The resulting methods could then also be applied
to problems where the spaces X and Y are different.
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A Analytical Mean Embeddings and Its Inversion

If the function is given by a sum of Gaussians and the kernel is Gaussian or Student-t, the
embedding and its inverse can be computed analytically.

A.1 Gaussian functions, Gaussian kernels

Let k(x, x′) be the kernel given by the normalized d-dimensional Gaussian density with
covariance Σk, mean x′, and evaluation at point x. Let g(·) =

∑∞
i=1 aiN (· ;µi,Σi), where

the N (· ;µi,Σi) are d-dimensional multivariate Gaussian densities and ai ∈ R. Then

(Ek g)(·) =

∞∑
i=1

aiN (· ;µi,Σi + Σk).
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Thus, we can analytically embed any function defined by a weighted sum of Gaussian
densities. Furthermore, if g lies in the RKHS generated by k,

(E−1k g)(·) =
∞∑
i=1

aiN (· ;µi,Σi − Σk).

This means that for any function that is an embedding into a Gaussian RKHS with known
Σk and given by a sum of Gaussian densities, we can find its pre-image in closed form.

A.2 Gaussian functions, Student-t kernels

A similar construction holds also for multivariate Student-t kernels. Let l(x, x′) be the
kernel given by a multivariate Student-t density with scale matrix Σl, ν degrees of freedom,
mean x′, and evaluation at point x. Then for f(·) =

∑∞
i=1 aiN (· ;µi,Σi), we have

(El f)(·) =
∞∑
i=1

aiMVT(· ;µi,Σi + Σl, ν)

and for g(·) =
∑∞

i=1 aiMVT(· ;µi,Σi, ν), if g lies in the RKHS generated by l, we have

(E−1l g)(·) =
∞∑
i=1

aiN (· ;µi,Σi − Σl).
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F. Nüske, B. G. Keller, G. Pérez-Hernández, A. S. J. S. Mey, and F. Noé. Variational
approach to molecular kinetics. Journal of Chemical Theory and Computation, 10(4):
1739–1752, 2014.
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