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1. Introduction

It is one of the standard problems in statistical physics and its computational applications,
e.g., in molecular dynamics, that one desires to compute expected values of an observable f with
respect to a given (equilibrium) probability density π,

Eπ [ f ] =
∫

f (x)π(x)dx

Even if samples from the density π are available, the simplest Monte Carlo estimator, the mean
value, may suffer from a large variance (compared to the quantity that one tries to estimate), such that
the accurate estimation of Eπ [ f ] requires an unreasonably large sample size. Various approaches
to circumvent this problem and to reduce the variance of an estimator are available, one of the
most prominent representatives being importance sampling where samples are drawn from another
probability density ρ and reweighted with the likelihood ratio π/ρ [1,2]. It is well-known that
theoretically (and under certain assumptions) there exists an optimal importance sampling density
ρ∗ such that the resulting estimator has variance zero. By a clever choice of the importance sampling
proposal density, it is thus possible to completely remove the stochasticity from the problem and to
obtain what is sometimes called certainty equivalence. Yet, drawing samples from the optimal density
(or an approximation of it) is a difficult problem in itself, so that the striking variance-reduction due to
importance sampling often does not pay off in practice.

The zero variance property of importance sampling and the challenge to utilize it algorithmically
is the starting point of this article where the focus is on its generalization to path sampling problems
and its algorithmic realization. Regarding the former, we will show that the Donsker–Varadhan
variational principle, a well-known measure-theoretic characterization of the cumulant generating
functions [3] that gives rise to a variational characterization of the thermodynamic free energy [4,5]
permits several stunning utilizations of the importance sampling framework for path sampling

Entropy 2017, 19, 626; doi:10.3390/e19110626 www.mdpi.com/journal/entropy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository: Freie Universität Berlin (FU), Math Department (fu_mi_publications)

https://core.ac.uk/display/267951828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e19110626
http://www.mdpi.com/journal/entropy


Entropy 2017, 19, 626 2 of 27

problems; examples involve trajectory-dependent expectations like expected hitting times or free
energy differences [6,7]. We will see that finding the optimal change of measure in path space is
equivalent to solving an optimal control problem for the underlying dynamical system in which the
dynamics is controlled by external driving forces and thus driven out of equilibrium [8,9].

One of the central contributions of this paper is that we prove that the resulting path space
importance sampling scheme features zero variance estimators under quite general assumptions.
We furthermore elaborate on the connection between optimized importance sampling and the famous
Jarzynski fluctuation relation for the thermodynamic free energy [10]. In particular we will explore this
connection and describe how to devise better non-equilibrium free energy algorithms, and hopefully
obtain a better understanding of Jarzynski-based estimators; cf. [11–14].

Regarding the algorithmic realization, the theoretical insight into the relation between (adaptive)
importance sampling and optimal control leads to novel algorithms that aim at utilizing the zero
variance property without having to sample from the optimal importance sampling density. We will
demonstrate how this can be achieved by discretizing the optimal control problem, using ideas from
stochastic approximation and stochastic optimization [9,15]; see [16–18] for an alternative approach
using ideas from the theory of large deviations. The examples we present are mainly pedagogical and
admittedly very simple, but they highlight important features of the importance sampling scheme,
such as the exponential tilting of the (path space) probability measure or the uniqueness of the
solution to the stochastic approximation problem within a certain parametric family of trial probability
measures, and this is why we confine our attention to such low-dimensional examples. Regarding the
application of our approach to molecular dynamics simulation, we allude to the relevant literature.

Outline

The article is organized as follows: Firstly, in Section 2 we review certainty equivalence
and the zero variance property of optimized importance sampling in state space, starting from
the Donsker–Varadhan principle and its relation to importance sampling, and comment on some
algorithmic issues. Then, in Section 3, we consider the generalization to path space, discuss the relation
to stochastic optimal control and revisit Jarzynski-based estimators for thermodynamic free energies.
Section 4 surveys and discusses novel algorithms that are exploiting the theoretical properties of
the control-based importance sampling scheme. We briefly discuss some of these algorithms with
simple toy examples in Section 5, before the article concludes in Section 6 with a brief summary and a
discussion of open issues. The article contains four appendices that record various technical identities,
including a brief derivation of Girsanov’s change of measure formula, and the proof of the main
theorem: the zero-variance property of optimized importance sampling on path space.

2. Certainty Equivalence

In mathematical finance, the guaranteed payment that an investor would accept instead of
a potentially higher, but uncertain return on an asset is called a certainty equivalent. In physics,
certainty equivalence amounts to finding a deterministic surrogate system that reproduces averages
of certain fluctuating thermodynamic quantities with probability one. One such example is the
thermodynamic free energy difference between two equilibrium states that can be either computed by
an exponential average over the fluctuating nonequilibrium work done on the system or by measuring
the work of an adiabatic transformation between these states.
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2.1. Donsker–Varadhan Variational Principle

Before getting into the technical details, we briefly review the classical Donsker–Varadhan
variational principle for the cumulant generating function of a random variable. To this end, let X be a
real-valued, n-dimensional random variable with smooth probability density π and call

Eπ [ f (X)] =
∫
Rn

f (x)π(x)dx (1)

the expectation with respect to π for any integrable function f : Rn → R.

Definition 1. Let W : Rn → R be a bounded random variable. The quantity

γ : B(Rn)→ R , W 7→ − log Eπ [exp(−W)] (2)

is called the free energy of the random variable W = W(X) with respect to π, where B(Rn) is the set of bounded
and measurable, real-valued functions on Rn (“If you can write it down, it’s measurable!”, S. R. Srinivasa
Varadhan).

Definition 2. Let ρ be another probability density on Rn. Then

D(ρ|π) =
∫
Rn

log
ρ(x)
π(x)

ρ(x)dx (3)

is called the relative entropy of ρ with respect to π (or: Kullback–Leibler divergence), provided that π(x) = 0
implies that ρ(x) = 0 for every x ∈ Rn. Otherwise, we set D(ρ|π) = +∞.

The requirement that π(x) must not be zero without ρ(x) being zero is known as absolute
continuity and guarantees that the likelihood ratio L = ρ/π is well defined. In what follows, we may
assume without loss of generality that π > 0. (Otherwise we may exclude those states x ∈ Rn for
which π(x) = 0.)

A well-known thermodynamic principle states that the free energy is the Legendre transform of
the entropy. The following variant of this principle is due to Donsker and Varadhan and says that
(e.g., see [3] and the references therein)

− log Eπ [exp(−W)] = min
ρ≥0

{
Eρ[W] + D(ρ|π)

}
, (4)

where the minimum is over all probability density functions ρ on Rn. The last equality easily follows
from Jensen’s inequality by noting that

− log
∫
Rn

exp(−W)π dx = − log
∫
Rn

exp(−W)
π

ρ
ρ dx

= − log
∫
Rn

exp
(
−W − log

ρ

π

)
ρ dx

≤
∫
Rn

(
W + log

ρ

π

)
ρ dx

=
∫
Rn

Wρ dx +
∫
Rn

log
ρ

π
ρ dx .

Additionally, it can be readily seen that equality is attained if and only if

ρ∗ = exp(γ−W)π , (5)

which defines a probability measure with γ given in Equation (2).
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Importance Sampling

The relevance of Equations (4) and (5) lies in the fact that, by sampling X from the probability
distribution with density ρ∗, one removes the stochasticity from the problem, since the random variable

U∗ = W(X) + log
ρ∗(X)

π(X)

is almost surely (a.s.) constant. As a consequence, the Monte Carlo scheme for computing the free
energy on the left hand side of Equation (4) based on the empirical mean of the independent draws of
U∗ = U∗(X) with X ∼ ρ∗, will have a zero variance. This zero-variance property is a consequence of
Jensen’s inequality and the strict concavity of the logarithmic function which implies that equality is
attained if and only if the random variable inside the expectation is almost surely constant. The next
statement makes this precise.

Theorem 1 (Optimal importance sampling). Let ρ∗ be the probability density given in Equation (5). Then the
random variable Z = exp(−W)π/ρ∗ has zero variance under ρ∗, and we have:

Z = Eπ [exp(−W)] , ρ∗-a.s.

Proof. We need to show that Varρ∗(Z) = Eρ∗ [Z2]− (Eρ∗ [Z])2 = 0. Using Equation (5) and noting that
ρ∗ > 0 since W is bounded and π > 0, it follows that Z has finite second moment and

Eρ∗ [Z2]− (Eρ∗ [Z])2 = Eπ [exp(−2W)π/ρ∗]− (Eπ [exp(−W)])2

= exp(−γ)Eπ [exp(−W)]− exp(−2γ)

= 0 ,

where we have used that exp(−γ) = Eπ [exp(−W)].

The above theorem asserts that ρ∗-almost surely (ρ∗-a.s.)

Z = Eρ∗ [Z] , (6)

which means that the importance sampling scheme based on estimating Eρ∗ [Z] using draws from the
density ρ∗ is a zero-variance estimator of Eπ [exp(−W)]. We will discuss the problem of drawing from
an approximation of the optimal distribution ρ∗ later on in Section 4.

Remark 1. Equation (4) furnishes the famous relation F = U − TS for the Helmholtz free energy F, with U
being the internal energy, T the temperature and S denoting the Gibbs entropy. If we modify the previous
assumptions by setting π ≡ 1 and W = βE where β = (kBT)−1 with kB > 0 being Boltzmann’s constant and
E denoting a smooth potential energy function that is bounded from below and growing at infinity, then

−β−1 log
∫

exp(−βE) dx︸ ︷︷ ︸
=F

= min
ρ>0


∫

Eρ dx︸ ︷︷ ︸
=U

+ β−1
∫

ρ log ρ dx︸ ︷︷ ︸
=−TS

 ,

with the unique minimizer being the Gibbs-Boltzmann density ρ∗ = exp(−βE)/Z with normalization constant
Z = exp(−βF). In the language of statistics, ρ∗ is a probability distribution from the exponential family with
sufficient statistic E(X) and parameter β > 0.

An alternative variational characterization of expectations is discussed in Appendix A.
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2.2. Computational Issues

In practice, the above result is of limited use because the optimal importance sampling distribution
is only known up to the normalizing constant C where the latter is just the sought quantity
C = exp(−γ). Clearly we can resort to Markov Chain Monte Carlo (MCMC) to generate samples
(Ŷi)i≥1 that are asymptotically distributed according to (see, e.g., [19])

ρ∗(y) =
exp(−Φ(y))

C
, Φ(y) = V(y) + W(y) .

However, in the situation at hand, we wish estimate Eρ∗(Z) in Equation (6), where Z = exp(−W)π/ρ∗

is given in Theorem 1, and the problem is that the likelihood ratio π/ρ∗ is only known up to the normalizing
factor. In this case, the self-normalized importance sampling estimator must be used (see, e.g., [20]):

ĈN =

N

∑
i=1

exp(−W(Ŷi)) exp(W(Ŷi))

N

∑
i=1

exp(W(Ŷi))

=
N

N

∑
i=1

exp(W(Ŷi))

, (7)

which is a consistent estimator for C = exp(−γ). Note that unlike in the case of the importance
sampling estimators with known likelihood ratio, the self-normalized estimator is only asymptotically
unbiased, even if we can draw exactly from ρ∗ (see Appendix B for details.)

To avoid the bias due to the self-normalization, it is helpful to note that exp(γ) = Eρ∗ [exp(W)]

holds ρ∗-a.s. As a consequence,

Ĉ−1
N =

N

∑
i=1

exp(W(Ŷi))

N
(8)

is an unbiased estimator of C−1 = exp(γ), provided that we can generate i.i.d. samples from ρ∗.
Taking the logarithm, it follows that

γ̂N = − log N + log

(
N

∑
i=1

exp(W(Ŷi))

)
(9)

is a consistent estimator for γ, which by Jensen’s inequality and the strict concavity of the logarithm
will again be only asymptotically unbiased.

Comparison with the Standard Monte Carlo Estimator

In most cases, the samples from ρ∗ will be generated by MCMC or the like. If we consider the
advantages of γ̂N as compared to the plain vanilla Monte Carlo estimator

γ̃N = log N − log

(
N

∑
i=1

exp(−W(X̂i))

)
, (10)

with (X̂i)i≥1 being a sample that is drawn from the reference distribution π, there are two aspects that
will influence the efficiency of Equation (9) relative to Equation (10), namely:

(a) the speed of convergence towards the stationary distribution and
(b) the (asymptotic) variance of the estimator.

By construction, the asymptotic variance of the importance sampling estimator is zero or close to
zero if we take numerical discretization errors into account, hence the efficiency of the estimator (9) is
solely determined by the speed of convergence of the corresponding MCMC algorithm to the stationary
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distribution ρ∗, which, depending on the problem at hand, may be larger or smaller than the speed
of convergence to π. It may even happen that π is unimodal, whereas ρ∗ ∝ e−Wπ is multimodal and
hence difficult to generate, for example when π is the standard Gaussian density and W = (x2 − d)2

with d� 0 is a bistable (energy) function. We refrain from going into details here and instead refer to
the review article [21] for an in-depth discussion of the asymptotic properties of reversible diffusions.

In Sections 4 and 5, we discuss alternatives to Monte Carlo sampling based on stochastic
optimization and approximation algorithms that are feasible even for large-scale systems.

Remark 2. The comparison of Equations (9) and (10) suggests that the importance sampling estimator (9) is
an instance of Bennett’s bidirectional estimator for a positive random variable, called “weighting function” in
Bennett’s language [22]. As a consequence, Theorem 1 implies that Bennett’s bidirectional estimator has zero
variance when the negative logarithm of the weighting function equals the bias potential.

3. Certainty Equivalence in Path Space

The previous considerations nicely generalize from the case of real-valued random variables to
time-dependent problems and path functionals.

3.1. Donsker–Varadhan Variational Principle in Path Space

Let (Xs)s≥0 with X0 = x ∈ Rn be the solution of the stochastic differential equation (SDE)

dXs = b(Xs, s)ds + σ(Xs)dBs , X0 = x , (11)

where b : Rn × [0, ∞) → Rn is a smooth, possibly time-dependent vector field, σ : Rn → Rn×m is a
smooth matrix field and B is an m-dimensional Brownian motion. Our standard example will be an
SDE with b(x, s) = −∇V(x) for a smooth potential energy function V and σ(x) =

√
2In×n, so that Xs

satisfies a gradient dynamics. We assume throughout this paper that the functions b, σ, V are such that
Equation (11) or the corresponding gradient dynamics have unique strong solutions for all s ≥ 0.

Now, suppose that we want to compute the free energy (2) where W is now considered to be a
functional of the paths X = {Xs : 0 ≤ s ≤ τ} for some bounded stopping time τ:

Wτ(X) =
∫ τ

0
f (Xs, s) ds + g(Xτ) , (12)

for some bounded and sufficiently smooth, real valued functions f , g. We assume throughout the rest
of the paper that f , g are bounded from below and that W is integrable.

We define P to be the probability measure on the space Ω = C([0, ∞),Rn) of continuous
trajectories that is induced by the Brownian motion (Bs)s≥0 that drives the SDE (11). We call P a
path space measure, and we denote the expectation with respect to P by EP[·].

Definition 3 (Path space free energy). Let (Xs)s≥0 be the solution of Equation (11) and Wτ = Wτ(X) ≥ 0
be integrable and defined by Equation (12). The quantity

γ = − log EP [exp(−Wτ)] = − log EP

[
exp

(
−
∫ τ

0
f (Xs, s) ds− g(Xτ)

)]
(13)

is called the free energy of Wτ with respect to the path space measure P.

Note that Equation (13) simply is the path space version of Equation (2) which now implicitly
depends on the initial condition X0 = x. The Donsker–Varadhan variational principle now reads

γ = inf
Q�P

{
EQ

[∫ τ

0
f (Xs, s) ds + g(Xτ)

]
+ D(Q|P)

}
, (14)
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where Q� P stands for absolute continuity of Q with respect to P, which means that P(E) = 0 implies
that Q(E) = 0 for any measurable set E ⊂ Ω, as a consequence of which

D(Q|P) =
∫

Ω
log

dQ
dP

(ω) dQ(ω) , (15)

exists. Note that Equation (15) is just the generalization of the relative entropy (3) from probability
densities on Rn to probability measures on the measurable space (Ω, E), with E being a σ-algebra
containing measurable subsets of Ω, where we again declare that D(Q|P) = ∞ when Q is not absolutely
continuous with respect to P. Therefore it is sufficient that the infimum in Equation (14) is taken over
all path space measures Q� P.

If Wτ ≥ 0, it is again a simple convexity argument (see, e.g., [4]), which shows that the minimum
in Equation (14) is attained at Q∗ given by:

dQ∗

dP

∣∣∣∣
[0,τ]

= exp(γ−Wτ) , (16)

where ϕ|[0,τ] denotes the restriction of the path space density ϕ(X) = (dQ∗/dP)(X) to trajectories
X = (Xs)s≥0 of length τ. More precisely, ϕ|[0,τ] is understood as the restriction of the measure Q∗

defined by dQ∗ = ϕdP to the σ-algebra Fτ that contains all measurable sets E ∈ E , with the property
that for every t ≥ 0 the set E ∩ {τ ≤ t} is an element of the σ-algebra Ft = σ(Xs : 0 ≤ s ≤ t) that is
generated by all trajectories (Xs)0≤s≤t of length t. In other words, Fτ ⊂ E is a σ-algebra that contains
the history of the trajectories of (the random) length τ.

Even though Equation (16) is the direct analogue of Equation (5), this result is not particularly
useful if we do not know how to sample from Q∗. Therefore, let us first characterize the admissible
path space measures Q� P and discuss the practical implications later on.

3.1.1. Likelihood Ratio of Path Space Measures

It turns out that the only admissible change of measure from P to Q such that D(Q|P) < ∞ results
in a change of the drift in Equation (11). Let (us)s≥0 be an Rm-valued stochastic process that is adapted,
in that ut depends only on the Brownian motion Bs up to time s ≤ t, and that satisfies the Novikov
condition (see, e.g., [23]):

EP

[
exp

(
1
2

∫ τ

0
|us|2 ds

)]
< ∞ . (17)

Now, define the auxiliary process

Bu
t = Bt −

∫ t

0
us ds .

Using the definition of Bu
t , we may write Equation (11) as

dXs = (b(Xs, s) + σ(Xs)us) ds + σ(Xs)dBu
s , X0 = x . (18)

Note that Equations (11) and (18) govern the same process (Xs)s≥0, because the extra drift σ(·)u is
absorbed by the shifted mean of the process (σ(Xs)Bu

s )s≥0. By construction, (Bu
s )s≥0 is not a Brownian

motion under P, because its expectation with respect to P is not zero in general. On the other hand,
(Bs)s≥0 is a Brownian motion under the measure P, and our aim is to find a measure Q � P under
which (Bu

s )s≥0 is a Brownian motion. To this end, let (Zu
s )s≥0 be the process defined by

Zu
t =

∫ t

0
us · dBs −

1
2

∫ t

0
|us|2 ds , (19)



Entropy 2017, 19, 626 8 of 27

or, equivalently,

Zu
t =

∫ t

0
us · dBu

s +
1
2

∫ t

0
|us|2 ds . (20)

Girsanov’s theorem (see, e.g., [23], Theorem 8.6.4, or Appendix C) now states that (Bu
s )0≤s≤τ is a

standard Brownian motion under the probability measure Q with likelihood ratio

dQ
dP

∣∣∣∣
[0,τ]

= exp(Zu
τ ) (21)

with respect to P where the Novikov condition (17) guarantees that EP[exp(Zu
τ )] = 1, i.e., that Q

is a probability measure. Inserting Equations (20) and (21) into the Donsker–Varadhan formula
Equation (14), using that Bu

s is Brownian motion with respect to Q, it follows that the term in Zu
τ in the

expression of the relative entropy, which is linear in u, drops out, and what remains is (cf. [4,6]):

γ = inf
u

EQ

[∫ τ

0

(
f (Xs, s) +

1
2
|us|2

)
ds + g(Xτ)

]
,

with Xs being the solution of Equation (18). Since the distribution of Bu under Q is the same as the
distribution of B under P, an equivalent representation of the last equation is

γ = inf
u

EP

[∫ τ

0

(
f (Xu

s , s) +
1
2
|us|2

)
ds + g(Xu

τ )

]
. (22)

where Xu
s is the solution of the controlled SDE

dXu
s = (b(Xu

s , s) + σ(Xu
s )us) ds + σ(Xu

s )dBs , Xu
0 = x , (23)

with Bs being our standard, m-dimensional Brownian motion (under P). See Appendix C for a sketch
of derivation of Girsanov’s formula.

3.1.2. Importance Sampling in Path Space

Similarly to the finite dimensional case considered in the last section, we can derive optimal
importance sampling strategies from the Donsker–Varadhan principle. To this end, we consider
the case that τ is a random stopping time, which is a case that is often relevant in applications
(e.g., when computing transition rates or committor functions [7]), but that is rarely considered in the
importance sampling literature. Let T > 0 and O ⊂ Rn be an open and bounded set with smooth
boundary ∂O. We define

τO = inf{s > 0 : Xu
s /∈ O} ,

as the first exit time of the set O and define the stopping time

τ = τO ∧ T (24)

to be the minimum of τO and T, i.e., the exit from the set O or the end of the maximum time
interval, whatever comes first. For the ease of notation, we will use the same symbol τ to denote the
stopping time under the controlled or uncontrolled process (i.e., for u = 0) throughout the article.
Unless otherwise noted, it should be clear from the context whether τ is understood with respect to Xu

or X = Xu=0. Here, Xu
s satisfies the controlled SDE (23).

We will argue that the optimal Q∗, which yields zero variance in the reweighting scheme

EQ[Yu
τ ] = EP[exp (−Wτ)]
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via Yu
τ = exp(−Zu

τ −Wu
τ ), can be generated by a feedback control of the form

u∗s = c(Xu∗
s , s) ,

with a suitable function c : Rn× [0, ∞) ⊃ D → Rm. Finding u∗ turns the Donsker–Varadhan variational
principle (14) into an optimal control problem by virtue of Equations (22) and (23). The following
statement characterizes the optimal control by which the infimum in Equation (14) is attained and
which, as a consequence, provides a zero variance reweighting scheme (or: change of measure).

Theorem 2. Let

Ψ(x, t) = EP

[
exp

(
−
∫ τ

t
f (Xs, s) ds− g(Xτ)

) ∣∣∣∣∣Xt = x

]
(25)

be the exponential of the negative free energy, considered as a function of the initial condition Xt = x with
0 ≤ t ≤ τ ≤ T. Then, the path space measure Q∗ induced by the feedback control

u∗s = σ(Xu∗
s )T∇x log Ψ(Xu∗

s , s) (26)

yields a zero variance estimator, i.e.,
Yu∗

τ = Ψ(x, 0) , Q∗-a.s. (27)

Proof. See Appendix D.

Remark 3. We should mention that Theorem 2 covers also the special cases that either τ = T is a deterministic
stopping time (see, e.g., [24], Proposition 5.4.4) or, by sending T → ∞, that τ = τO is the first exit time of the
set O, assuming that the stopping time τO is a.s. finite (but not necessarily bounded).

3.2. Revisiting Jarzynski’s Identity

The Donsker–Varadhan variational principle shares some features with the nonequilibrium free
energy formula of Jarzynski [10], and, in fact, the variational form makes this formula amenable to
the analysis of the previous paragraphs, with the aim of improving the quality of the corresponding
statistical estimators. Jarzynski’s identity relates the Helmholtz equilibrium free energy to averages
that are taken over an ensemble of non-equilibrium trajectories generated by forcing the dynamics.

We discuss a possible application of importance sampling to free energy calculation à la Jarzynski
with a simple standard example, but we stress that all considerations easily generalize to more general
situations than the one treated below.

As an example, let (Vλ)0≤λ≤1 be a parametric family of smooth potential energy functions
Vλ : Rn → R and define the free energy difference between the two equilibrium densities π0 ∝ exp(−V0)

and π1 ∝ exp(−V1) as the log-ratio

∆F = − log

∫
Rn

exp(−V1(x))dx∫
Rn

exp(−V0(x))dx
. (28)

(Often π0 and π1 are called thermodynamic states.) Defining the energy difference Vdiff = V1 −V0 and
the equilibrium probability density

π0(x) =
exp(−V0(x))∫

Rn
exp(−V0(x))dx

,
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the Helmholtz free energy is seen to be an exponential average of the familiar form (2):

∆F = − log Eπ0 [exp(−Vdiff)] . (29)

Jarzynski’s formula [10] states that the last equation can be represented as an exponential
average over non-stationary realizations of a parameter-dependent process Xλ = (Xλ

s )0≤s≤T .
Specifically, letting Wλ

T = Wλ
T (Xλ) denote the nonequilibrium work done on the system by varying

the parameter from λ = 0 to λ = 1 within time [0, T], Jarzynski’s equality states that

∆F = − log E[exp(−Wλ
T )] , (30)

where Wλ
T will be specified below. In the last equation the expectation is taken over all realizations

of Xλ, with initial conditions distributed according to the equilibrium density π0. To be specific,
we assume that the parametric process Xλ

s is the solution of the SDE

dXλ
s = −(1− λs)∇V0(Xλ

s )ds− λs∇V1(Xλ
s )ds +

√
2dBs , (31)

with (λs)0≤s≤T being a differentiable parameter process (called: protocol) that interpolates between
λ0 = 0 and λT = 1. Further, let the work exerted by the protocol be given by

Wλ
T =

∫ T

0

∂Vλ

∂λ

∣∣∣∣
Xλ

s

λ̇s ds =
∫ T

0
Vdiff(Xλ

s )λ̇s ds , (32)

where Vλ(x) = (1− λ)V0(x) + λV1(x) is the interpolated potential, and λ̇s = dλs/ds denotes the
time derivative of λs. Note that Wλ

τ is a path functional of the standard form (12), with bounded
deterministic stopping time τ = T and cost functions

f (Xs, s) = Vdiff(Xλ
s )λ̇s , g ≡ 0 .

Letting now P denote the path space measure that is generated by the Brownian motion (Bs)s≥0

in the parameter dependent SDE (31), we can express Jarzynski’s equality (30) by

∆F = − log E[exp(−Wλ
T )] = − log

∫
Rn

EP

[
exp(−Wλ

T )
]

π0(x)dx , (33)

where the (conditional) expectation EP[exp(−Wλ
T )] = EP[exp(−Wλ

T (Xλ))|Xλ
0 = x] is understood over

all realizations of (31) with initial condition Xλ
0 = x.

Optimized Protocols by Adaptive Importance Sampling

The applicability of Jarzynski’s formula heavily depends on the choice of the protocol λs.
The observation that an uneducated choice of a protocol may render the corresponding statistical
estimator virtually useless because of a dramatic increase of its variance is in accordance with what
one observes in importance sampling. An attempt to optimize the protocol by minimizing the
variance of the estimator has been carried out in [12], but here, we shall follow an alternative route,
exploiting the fact that Jarzynski’s formula has the familiar exponential form considered in this paper;
cf. also [11,13,14].

Having this said and recalling Theorem 2, it is plausible that there exists a zero variance
estimator for EP[exp(−Wλ

T )] which appeared in the integrand of Jarzynski’s equality (33), under certain
assumptions on the functional Wλ

T . For simplicity, we confine the following considerations to the above
example of a diffusion process of the form (31) with a deterministic protocol (λs)s∈[0,T]. To make the
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idea of optimizing the protocol more precise, we introduce the shorthand Ys = Xλ
s for the solution of

Equation (31) and define

γ(x, t) = min
v

EP

[∫ T

t

(
f (Yv

s , s) +
1
2
|vs|2

)
ds
∣∣∣∣Yv

t = x
]

, (34)

with f (x, s) = Vdiff(x)λ̇s and the expectation taken over all realizations of Yv
s . The process Yv

s solves a
controlled variant of the SDE (31), specifically,

dYv
s =

(
bλ(Yv

s , s) +
√

2vs

)
ds +

√
2dBs , Yv

t = x . (35)

Here, we have used the shorthand bλ(x, s) = −(1− λs)∇V0(x) − λs∇V1(x). Theorem 2 that
specifies the zero-variance importance sampling estimator in terms of a feedback control policy
can be adapted to our situation (see, e.g., [7,18]) by letting O ↑ Rn so that τ = τO ∧ T → T a.s.
The zero-variance estimator is generated by the feedback control

v∗s = −
√

2∇yγ(Yv∗
s , s) ,

with γ(x, t) given by Equation (34), and thus, by the SDE

dYv∗
s =

(
bλ(Yv∗

s , s)− 2∇yγ(Yv∗
s , s)

)
ds +

√
2dBs , Yv∗

0 = x . (36)

Specifically, given N independent draws x1, . . . , xN ∼ π0 from the equilibrium distribution and
corresponding N independent trajectories (Yv∗

s )s∈[0,T] of the SDE (36) with initial conditions Yv∗
0 = xi,

an asymptotically unbiased, the minimum variance estimator of the free energy is given by

∆̂FN = − log
1
N

N

∑
i=1

G∗T(xi) , (37)

where G∗T = exp(−Zv∗
T −Wλ

T (Y
v∗)) with Zu=v∗

T given by Equation (19) and Wλ
T (Y

v∗) being the
nonequilibrium work (32) under the controlled process (36).

Remark 4. Generally, the discretization of the work Wλ
T requires some care, because the discretization error

may introduce some “shadow work” that may spoil the properties of the importance sampling estimator [25].
Further note that, even if time-discretization errors are ignored, the estimator (37) is not a zero-variance estimator
because we have minimized only the conditional estimator (for fixed initial condition). Moreover the estimator is
only asymptotically unbiased by Jensen’s inequality and the strict concavity of the logarithm.

Further notice that the estimator hinges on the availability of γ(x, t) which is typically difficult to compute.
An idea, inspired by the adaptive biasing force (ABF) algorithm [26–28] is to estimate γ on the fly and then
iteratively refine the estimate in the course of the simulation using a suitable parametric representation [29,30].
If good collective variables or reaction coordinates are known, it is further possible to choose a representation that
depends only on these variables and still obtain low variance estimators [31,32].

4. Algorithms: Gradient Descent, Cross Entropy Minimization and beyond

According to Theorem 2 designing reweighting (importance sampling) schemes on path space
that feature zero variance estimators comes at the price of solving an optimal control problem of the
following form: minimize the cost functional

J(u) = EP

[∫ τ

0

(
f (Xu

s , s) +
1
2
|us|2

)
ds + g(Xu

τ )

]
(38)
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over all admissible controls and subject to the dynamics

dXu
s = (b(Xu

s , s) + σ(Xu
s )us) ds + σ(Xu

s )dBs . (39)

Here, admissible controls are Markovian feedback controls us = c(Xu
s , s) such that Equation (39)

has a unique strong solution. Leaving all technical details aside see Section IV.3 in [8], it can be shown
that the value function (or: optimal cost-to-go)

γ(x, t) = EP

[∫ τ

t

(
f (Xu∗

s , s) +
1
2
|u∗s |2

)
ds + g(Xu∗

τ )

∣∣∣∣Xu∗
t = x

]
, (40)

with u∗ being the unique optimal control given by Equation (26), is the solution of a nonlinear partial
differential equation of Hamilton–Jacobi–Bellman type. Solving this equation numerically is typically
even more difficult than solving the original sampling problem by brute-force Monte Carlo (especially
when the state space dimension n is large).

Note that Equations (38) and (39) is simply the concrete form of the Donsker–Varadhan principle
when the path space measure is generated by a diffusion. Therefore the equivocation with the path
space free energy (13) or (34) is not a coincidence, because by definition the value function is the free
energy, considered as a function of the initial conditions. In other words and in view of Theorem 2,
there is no need for further sampling once the value function is known.

We will now discuss concrete numerical algorithms to minimize Equations (38) and (39) without
resorting to the associated Hamilton–Jacobi–Bellman equation.

4.1. Gradient Descent

The fact that solving the optimal control problem can be as difficult as solving the sampling
problem suggests to combine the two in an iterative fashion using a parametric representation of the
value function (or: free energy). To this end, notice that the optimal control is essentially a gradient
force that can be approximated by

ûs = −σ(Xu
s )

T
N

∑
i=1

αi∇xφi(Xu
s , s) , (41)

based on a finite-dimensional approximation

γ̂(x, t) =
N

∑
i=1

αiφi(Xu
s , s) (42)

of the value function with suitable smooth basis functions {φi : D → Rm : i = 1, . . . , N} that span
an N-dimensional subspace of the space C2,1(D) ∩ C(D) of classical solutions of the associated
Hamilton–Jacobi–Bellman equation. Here we denote by Cr,s(Rn × [0, ∞) the Banach space of functions
that are r and s times continuously differentiable in their first and second arguments, respectively,
and C(Rn × [0, ∞)) = C0,0(Rn × [0, ∞)) for continuous functions. Plugging the above representation
into Equations (38) and (39) yields the following finite-dimensional optimization problem: minimize

J(û) = EP

[∫ τ

0

(
f (Xû

s , s) +
1
2
|ûs|2

)
ds + g(Xû

τ )

]
(43)

over the controls û where Xû is the solution of the SDE (23) with control u = û.
Let us define Ĵ(α) = J(û(α)), with the shorthand α = (α1, . . . , αN)

T ∈ RN . Because of the
dependence of the process Xα and the random stopping time τ = τα on the parameter α, the functional
Ĵ is not quadratic in α, but it has been shown [33] that it is strongly convex if the basis functions φi are
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non-overlapping. In this case Ĵ has a unique minimum, which suggests to do a gradient descent in the
parameter α:

α(m+1) = α(m) − hm∇ Ĵ
(

α(m)
)

. (44)

Here, (hm)m≥0 is a sequence of step sizes that goes to zero as m → ∞, and the gradient ∇ Ĵ(α)
must be interpreted in the sense of a functional derivative:

δJ(û) · ξ =
d
dε

J(û + εξ)

∣∣∣∣
ε=0

, (45)

for suitable test functions ξ ∈ V (i.e., square-integrable and adapted to the Brownian motion). Then, the
gradient ∇ Ĵ(α) has the components

∂ Ĵ
∂αk

= −δJ(û(α)) · (σT∇xφk) . (46)

Introducing the shorthand

`(Xû, û) =
∫ τ

0

(
f (Xû

s , s) +
1
2
|ûs|2

)
ds + g(Xû

τ )

for the cost and the convention E[·] = EP[·] for the expectation with respect to P, the derivative (45)
can again be found by means of Girsanov’s formula: there exists a measure Qε that is absolutely
continuous with respect to the reference measure P, such that

d
dε

J(û + εξ)

∣∣∣∣
ε=0

=
d
dε

E
[
`(Xû+εξ , û + εξ)

]∣∣∣∣
ε=0

=
d
dε

E
[
`(X, û + εξ)

dQε

dP

]∣∣∣∣
ε=0

, (47)

with the likelihood ratio
dQε

dP

∣∣∣∣
[0,τ]

= exp(Zu+εξ
τ ) .

Assuming that the derivative and the expectation in Equation (47) commute, we can differentiate
inside the expectation E[·] which is independent of the parameter ε and then switch back to the
controlled process Xu under the reference measure P, by which we obtain (see [33]):

δJ(û) · ξ = E
[
`(Xû, û)

∫ τ

0
ξs · dBs +

∫ τ

0
ûs · ξs ds

]
. (48)

Hence, using Equation (46), we find

∂ Ĵ
∂αk

= −E
[
`(Xû, û)

∫ τ

0
(σT∇xφk)(Xû

s , s) · dBs +
∫ τ

0
ûs · (σT∇xφk)(Xû

s , s)ds
]

. (49)

where the last expression can be estimated by Monte Carlo, possibly in combination with variance
minimizing strategies to improve the convergence of the gradient estimation in the course of the
gradient descent [33,34]. Before we conclude, we shall briefly explain why the gradient vanishes when
the variance is zero.

Lemma 1. Under the optimal control u∗, it holds that:

δJ(u∗) · ξ = 0 ∀ξ ∈ V .
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Proof. By the Itô isometry (see [23], Corollary 3.1.7), we can recast Equation (48) as:

δJ(u∗) · ξ = E
[(

`(Xu∗ , u∗) +
∫ τ

0
u∗s · dBs

) ∫ τ

0
ξs · dBs

]
= E

[(
W(Xu∗) + Zu∗

τ

) ∫ τ

0
ξs · dBs

]
=
(

W(Xu∗) + Zu∗
τ

)
E
[∫ τ

0
ξs · dBs

]
,

(50)

where in the last equality we have used that W + Z is a.s. constant under the optimal control. Since B
is a Brownian motion under P, the expectation is zero, and it follows that

δJ(u∗) · ξ = 0 ∀ξ ∈ V ,

and hence, the assertion is proven.

We summarize the above considerations in Algorithm 1 below.

Algorithm 1 Gradient descent

Set maximum no. of iteration Maxit and ε > 0
Initialize m = 0, α(0) ∈ RN and h0 > 0
Evaluate G0 = ∇ Ĵ(α(0))
while m < Maxit & hm > ε do

α(m+1) = α(m) − hmGm
Evaluate Gm+1 = ∇ Ĵ(α(m+1))

Evaluate step size, e.g., hm+1 =

(
α(m+1)−α(m)

)
·
(

Gm+1−Gm
)∣∣Gm+1−Gm

∣∣2
m 7→ m + 1

end while

Remark 5. The step size control in Algorithm 1 follows the Barzilai-Borwein procedure that guarantees
convergence as m → ∞ when the functional is convex. Another alternative is to do a line search after each
iterate in the descent direction and then determine hm+1 so that it satisfies the Wolfe condition; see [35] for
further details.

Remark 6. In practice, it may be advantageous to pick the basis functions so that they are not explicitly
time-dependent (e.g., Gaussians, Chebyshev polynomials or the alike). If the associated control problem is
stationary, as is for example the case when the SDE is homogeneous and the stopping time is a hitting time,
the value function will be stationary too and, as a consequence, the control policy will be stationary. If, however,
the problem is explicitly time-dependent, one may change the ansatz (42) to have stationary basis functions,
but time-dependent coefficients αi, where the time-dependence is mediated by the initial data; see [29] for
a discussion.

4.2. Cross-Entropy Minimization

Another algorithm for minimizing J(û) is based on an entropy representation of J(u), namely,

J(u) = J(u∗) + D(Q|Q∗) (51)
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where u is any admissible control for Equations (38) and (39), u∗ is the optimal control, and Q = Q(u)
and Q∗ = Q(u∗) are the corresponding path space measures. Equation (51) is a consequence of the
zero-variance property of the optimal change of measure, since Equation (27) implies that

exp(−W)
dP

dQ∗
= ψ(x, 0) = exp(−J(u∗)) (52)

and hence

W − log
(

dP
dQ

dQ
dQ∗

)
= J(u∗) . (53)

Taking the expectation with respect to Q and using that both Q and Q∗ are absolutely continuous
with respect to P and vice versa yields Equation (51).

The idea now is to seek a minimizer of D(Q|Q∗) in the set of probability measures Q ∈ M̂ that
are generated by the discretized controls û, i.e., one would like to minimize

Î(α) = D(Q(û(α))|Q∗) (54)

over α ∈ RN , such that Q̂ = Q(û(α)) is absolutely continuous with respect to Q∗. By Equation (16)
the optimal change of measure is only known up to the normalizing factor exp(γ), which enters
Equation (54) only as an additive constant; note that we call exp(γ) or exp(J(u∗)) a normalizing factor,
even though it is clearly a function of the initial conditions (x, t) or (x, 0). Nevertheless minimizing Î
is not easily possible since the functional may have several local minima. With a little trick, however,
we can turn the minimization of Equation (54) into a feasible minimization problem, simply by flipping
the arguments. To this end, we define:

Ĥ(α) = D(Q∗|Q(û(α))) . (55)

Clearly, Equation (51) does not hold with arguments in the Kullback-Leibler (or: KL) divergence
term reversed, since D(·|·) is not symmetric; nevertheless, it holds that

Î(α) ≥ 0 , Ĥ(α) ≥ 0 and Î(α) = 0 if and only if Ĥ(α) = 0 , (56)

where the minimum is attained if and only if Q̂ = Q∗. Hence, by continuity of the relative entropy,
we may expect that by minimizing the “wrong” functional Ĥ we get close to the optimal change of
measure, provided that the optimal Q∗ can be approximated by our parametric family Q̂. We have the
following handy result (see [15]).

Lemma 2 (Cross-entropy minimization). The minimization of (55) is equivalent to the minimization of the
cross-entropy functional

CE(α) = −E
[
log ϕ(û)e−W(X)

]
(57)

where the log likelihood ratio log ϕ = log(dQ/dP) between controlled and uncontrolled trajectories is quadratic
in the unknown α and can be computed via Girsanov’s theorem.

Proof. By definition of the KL divergence, we have

Ĥ(α) =
∫

log
(

dQ∗

dP

)
dQ∗

dP
dP−

∫
log

(
dQ̂
dP

)
dQ∗

dP
dP ,

since all measures are mutually absolutely continuous. The first term in the last equation is independent
of α, and the second term is proportional to the cross-entropy functional −E[log ϕ exp(−W)] up to the
unknown normalizing factor exp(γ).
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The fact that the cross-entropy functional is quadratic in α implies that the necessary optimality
condition is of the form

Sα = b , (58)

where S = (Sij)1≤i,j≤N and b = (bi)1≤i≤N are given by:

Sij = E
[

e−W(X)
∫ τ

0
(σT∇xφi)(Xs, s)(σT∇xφj)(Xs, s) ds

]
bi = −E

[
e−W(X)

∫ τ

0
(σT∇xφi)(Xs, s) · dBs

]
.

(59)

Note that the average in Equation (59) is over the uncontrolled realizations X. It is easy to see
that the matrix S is positive definite if the basis functions φi are linearly independent, which implies
that Equation (58) has a unique solution and our necessary condition is in fact sufficient. Nevertheless
it may happen in practice that the coefficient matrix S is badly conditioned, in which case it may be
advisable to evaluate the coefficients using importance sampling or a suitable annealing strategy;
see [15,29] for further details.

A simple, iterative variant of the cross-entropy algorithm is summarized in Algorithm 2.

Algorithm 2 Simple cross-entropy method

Set maximum no. of iteration Maxit and α(0) = 0
Evaluate S = S(0) and b = b(0) according to (59)
for m = 0 to Maxit do

Solve linear system of equations S(m)α(m+1) = b(m)

Evaluate S(m+1) and b(m+1) by importance sampling using realizations of Xα(m+1)

end for

4.3. Other Monte Carlo-Based Methods

We refrain from listing all possibilities to compute the optimal change of measure or the
optimal control, and mention only two more possibilities that are functional in situations in which
grid-based discretization methods (e.g., for solving the nonlinear Hamilton–Jacobi–Bellman equation)
are unfeasible. The strength of the methods described below is that they can be combined with
model reduction methods such as averaging, homogenization or Markov state modeling if either
suitable collective variables, a reaction coordinate or some dominant metastable sets are known;
see, e.g., [7,15,29,32,36,37] for the general approach and the application to molecular dynamics.

4.3.1. Approximate Policy Iteration

The first option is based on successive linearization of the Hamilton–Jacobi–Bellman equation
of the underlying optimal control problem. The idea is the following: Given any admissible control
us = c(Xu

s , s), the Feynman–Kac theorem [23] (Theorem 8.2.1) states that the cost functional J(u),
considered as a function of the initial data (x, t) of the controlled process Xu = (Xu

s )s≥t with Xu
t = x,

solves a linear boundary value problem of the form

A(c)Θ(c) = `(x, c) , (60)

whereA(c) is a linear differential operator that depends on the chosen control policy and which precise form
(e.g., parabolic, elliptic or hypoelliptic) depends on the problem at hand. Clearly, γ(x, t) = minc Θ(c; x, t) is
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the value function (or free energy), i.e., the solution we seek. For an arbitrary initial choice of a control policy
c0 6= c∗ we have γ < Θ(c0), and a successive improvement of the policy can be obtained by iterating

cn+1(x, s) = −σ(x, s)T∇xΘ(cn; x, t) , n ≥ 0 . (61)

Under suitable assumptions on the drift and diffusion coefficients, iteration of Equations (60) and (61)
yields a convergent series of control policies cn that converges to the unique optimal control, hence the
name of the method is policy iteration. Clearly, solving the linear partial differential Equation (60) by any
grid-based method will be unfeasible if the state space dimension is larger than, say, three or four. In this
case, it is possible to approximate the infinitesimal generatorsA(c) by a sparse and grid-free Markov State
Model (MSM) that captures the underlying dynamics Xu = Xu(c); see, e.g., [36] for the error analysis of the
corresponding nonequilibrium MSM and an application to molecular dynamics. In this case, one speaks of
an approximate policy iteration. For further details on approximate policy iteration algorithms we refer to
the article [38] and the references therein.

4.3.2. Least-Squares Monte Carlo

If τ = T is a finite stopping time, another alternative is to exploit that the value function of the
control problem Equations (38) and (39) can be computed as the solution to a forward-backward
stochastic differential equation (FBSDE) of the form

dXs = b(Xs, s)ds + σ(Xs)dBs , Xt = x

dYs = − f (Xs, s)ds +
1
2
|Zs|2 + Zs · dBs , YT = g(XT) ,

(62)

where t ≤ s ≤ T and the second equation must be interpreted as an equation that runs backwards in
time. A solution of the FBSDE (62) is a triplet (Xs, Ys, Zs), with the property that Ys′ and Zs′ at time
s′ ∈ [t, T] depend only on the history of the forward process (Xs)t≤s≤s′ up to time s′. In particular,
since Xt = x, the backward process Yt is a deterministic function of the initial data (x, t) only, and it
holds that (e.g., [39])

γ(x, t) = Yt . (63)

The specific structure of the control problem Equations (38) and (39) implies that the forward
equation is decoupled from the backward equation and that the backward process (Ys, Zs) can be
expressed by

Ys = γ(Xs, s) , Zs = −σ(Xs)
T∇xγ(Xs, s) ,

where Xs is the uncontrolled forward process. Since we can simulate the forward process and we
know the functional dependence of (Ys, Zs) on Xs, the idea here is again to use the representation
Equation (42) of γ in terms of a finite basis. It turns out that the coefficient vector α ∈ RN can be
computed by solving a least-squares problem in every time step of the time-discretized backward SDE,
which is why methods for solving an FBSDE like Equation (62) are termed least squares Monte Carlo;
for the general approach we refer to [40,41]; details for the situation at hand will be addressed in a
forthcoming paper [42].

5. Illustrative Examples

From a measure-theoretic viewpoint, changing the drift of an SDE (also known as Girsanov
transformation) is an exponential tilting of a Gaussian measure on an infinite-dimensional space.
Here, for illustration purposes, we consider a one-dimensional paradigm that is in the spirit of Section
2 and that illustrates the basic features of Gaussian measure changes, Girsanov transformations and
the cross-entropy method.
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To this end, let π = N (0, 1) the density of the standard Gaussian distribution on R, and define an
exponential family of “tilted” probability densities by

ρα(x) = exp
(

αx− α2

2

)
π(x) . (64)

It can be readily checked that ρα is the density of the normal distributionN (α, 1) with mean α and
unit variance, in other words, the exponential tilting results in a shift of the mean, which represents a
change of the drift in the case of an SDE (compare Equations (19) and (21)).

5.1. Example 1 (Moment Generating Function)

Let β > 0 and define
ψβ = Eπ [exp(−βX)] . (65)

By Jensen’s inequality, it follows that

− β−1 log Eπ [exp(−βX)] ≤ Eα

[
X + β−1 log

ρα

π

]
, (66)

where Eα[·] denotes the expectation with respect to ρα. A simple calculation shows that the inequality
is sharp where equality is attained for α = −β, i.e., when ρα = ρ∗, with

ρ∗ = N (−β, 1) . (67)

As a consequence, the Donsker–Varadhan variational principle (4) holds when the minimum is
taken over the exponential family (64) with sufficient statistic X.

We will now show that ρ∗ can be computed by the cross-entropy method. To this end, let

J(α) = Eα

[
X + β−1 log

ρα

π

]
. (68)

As we have just argued, there exists a unique minimizer α∗ = −β of J that by Theorem 1 has the
zero variance property, which implies that

J(α) = J(α∗) + β−1D(ρα|ρ∗) . (69)

The associated cross-entropy functional has the form (see Section 4.2):

CE(α) = −Eπ

[
log

ρα

π
exp(−βX)

]
. (70)

Using Equation (64), it is easily seen that the cross-entropy functional is quadratic,

CE(α) = Eπ

[(
α2

2
− αX

)
exp(−βX)

]
, (71)

with unique minimizer:

α̂ =
Eπ [X exp(−βX)]

Eπ [exp(−βX)]
= − ∂

∂β
log ψβ , (72)

where the second equality follows from Equation (65), using the fact that the derivative and the
expectation commute because π is Gaussian and hence the moment-generating function ψβ exists for
all β ∈ R. Rearranging the terms in the last equation, we obtain

− ∂

∂β
log ψβ = Eπ

[
X exp

(
−βX− β2

2

)]
= E−β[X] = −β , (73)



Entropy 2017, 19, 626 19 of 27

showing that:
α̂ = α∗ = −β .

The above consideration readily generalize to the multidimensional Gaussian case, and hence this
simple example illustrates that the cross-entropy method yields the same result as direct minimization
of the functional (68)—at least in the finite-dimensional case.

5.2. Example 2 (Rare Event Probabilities)

The following example illustrates that the cross-entropy method can be used and produces
meaningful results, even though the Donsker–Varadhan principle does not hold. To this end consider
again the case of a real-valued random variable X ∼ P with density π = N (0, 1) and W = − log 1{X>d}
with d� 0. Then

P(X > d) = Eπ [exp(−W)] (74)

is a small probability that is difficult to compute by brute-force Monte Carlo. In this case, a zero-variance
change of measure exists, but it is not of the form (64). As a consequence, equality in Equation (66)
cannot be attained within the exponential family {ρα : α ∈ R} given by Equation (64). Instead,
the optimal density in this case would be the conditional density

ρ∗(x) =
1{x>d}

p
π(x) , (75)

where the normalization constant p = P(X > d) is of course the quantity we want to compute
(cf. Section 2.1). Note that this expression formally agrees with the optimal density (5), which was
derived under different assumptions though.

The idea now is to minimize the distance between ρα and ρ∗ in the sense of relative entropy,
i.e., we seek a minimizer of the Kullback–Leibler divergence D(ρ∗|ρα) in the exponential family
{ρα : α ∈ R}. The associated cross-entropy functional is given by

CE(α) = Eπ

[(
α2

2
− αX

)
1{X>d}

]
, (76)

with unique minimizer

α∗ =
Eπ [X1{X>d}]

Eπ [1{X>d}]
= Eπ [X|X > d] . (77)

Comparing Equations (77) and (75), we observe that both densities ρα∗ and ρ∗ 6= ρα∗ have the
same mean (namely α∗), hence the suboptimal density ρα∗ is concentrated around the typical values
that the optimal density ρ∗ would produce when samples were drawn from it.

Clearly, the optimal tilting parameter (77) is probably as difficult to compute by brute-force Monte
Carlo as the probability p = P(X > d) since {X > d} is a rare event when d� 0 is far away from the
mean. The strength of both gradient descent and cross-entropy method is, however, that the optimal
tilting parameter can be computed iteratively. This is illustrated numerically in Figure 1 for the choice
d = 5, where we use Algorithm 1 with a constant stepsize and Algorithm 2 as specified. In each
iteration m we draw a sample of size N = 108 from the density ρα(m)

, and estimate the mean,

p̂ =
1
N

N

∑
i=1

1{Xi>d}
π

ρα(m)
(Xi)

and the sample variance in each sample. The latter is proportional to the normalized variance K Var( p̂)
of an estimator that has been estimated K times.

For this (admittedly simple) example both gradient descent and cross-entropy method converge
well and lead to a drastic reduction of the normalized relative error δ =

√
Var( p̂)/ p̂ of the estimator



Entropy 2017, 19, 626 20 of 27

by a factor of about 1000, from about 2000 without importance sampling to about δ ≈ 2.38 under
(suboptimal) importance sampling with exponential tilting, indicating that both methods can handle
situations in which the optimal (i.e., δ = 0) change of measure is not available within the set of
trial densities.
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Figure 1. Comparison of the cross-entropy (green) and the gradient descent method (blue) for a rare
event with probability p ≈ 2.867× 10−7 for fixed sample size N = 108. Both algorithms quickly
converge to the optimal tilting parameter α∗ ≈ 5.187 for the family N (α, 1) of importance sampling
distributions (left panel) and lead to a drastic reduction of the normalized relative error by a factor of
1000, from about 2000 to 2.38 after few iterations (right panel).

6. Conclusions

We have presented a method for constructing minimum-variance importance sampling estimators.
The method is based on a variational characterization of the thermodynamic free energy and essentially
replaces a Monte Carlo sampling problem by a stochastic approximation problem for the optimal
importance sampling density. For path sampling, the stochastic approximation problem boils down to
a Markov control problem, which again can be solved by stochastic optimization techniques. We have
proved that for a large class of path sampling problems that are relevant in, e.g., molecular dynamics
or rare events simulation, the (unique) solution to the optimal control problem can yield zero-variance
importance sampling schemes.

The computational gain when replacing the sampling problem by a variational principle is,
besides improved convergence due to the variance reduction and often a higher hitting rate of the
relevant events, due to the fact that the variational problem can be solved iteratively, which makes it
amenable to multilevel approaches. The cross-entropy method as an example of such an approach
has been presented in some detail. A substantial difficulty still is a clever choice of basis functions
that is highly problem-specific, and hence, future research should address non-parametric approaches,
as well as model reduction methods in combination with the stochastic optimization/approximation
tools that can be used to solve the underlying variational problems.
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Appendix A. Yet Another Certainty Equivalence

A similar variational characterization of expected values as in Equation (4), based on convexity
arguments and Jensen’s inequality, can be formulated for non-negative random variables W = W(X) ≥ 0.
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For simplicity and as in Section 2.1, we assume W to be bounded and measurable and π > 0.
Then, for all p ∈ [1, ∞), it holds that

(Eπ [Wp])1/p = max
η≥0

Eη

[
W
( η

π

)−1/p
]

, (A1)

where η is any non-negative probability density. If we exclude the somewhat pathological case W ≡ 0
a.s., it follows that Eπ [Wp] > 0 and the supremum is attained for

η∗ =
Wp

Eπ [Wp]
π . (A2)

The proof is along the lines of the proof of the Donsker–Varadhan principle Equation (4).
Indeed, applying Jensen’s inequality and noting that η/π is non-zero η-a.s. it readily follows that

(Eπ [Wp])1/p ≥ Eη

[
W
( η

π

)−1/p
]

,

and it is easy to verify that the supremum in Equation (A1) is attained at η = η∗ given by Equation (A2).
Similar as in Section 2.1, the above discussions can be applied to study the importance sampling

schemes for the p-th moment of random variable W. We have:

Theorem A1 (Optimal importance sampling, cont’d). Let p > 1 and η∗ be defined in Equation (A2).
Then the random variable Y = Wp(η∗/π)−1 has zero variance under η∗, and we have:

Y = Eπ [Wp] , η∗-a.s.

Again, Theorem A1 implies that drawing random variable X from η∗ and then estimating the
reweighted expectation Eη∗ [Y] provides a zero variance estimator for the quantity Eπ [Wp].

Remark A1. When 0 < p ≤ 1 the function f (u) = up is concave for u ≥ 0 and the variational principle (A1)
needs to be modified as (see [4])

(Eπ [Wp])1/p = min
η≥0

Eη

[
W
( η

π

)−1/p
]

, (A3)

where the minimizer η∗ is given by Equation (A2). If W > 0 a.s., then η∗ belongs to the exponential family with
sufficient statistic S(X) = p log W(X) and reference density π.

Appendix B. Ratio Estimators

We shall briefly discuss the properties of the self-normalized importance sampling estimator (7)
that is based on estimating a ratio of expected values

qN =
1
N

N

∑
i=1

Qi , pN =
1
N

N

∑
i=1

Pi

where Qi and Pi are i.i.d. random variables living on a joint probability space and having finite
variances σ2

Q and σ2
P and covariance σQP. Further assume that q = E[Q1] 6= 0, then, by the strong law

of large numbers, the ratio pN/qN converges a.s. to p/q where p = E[P1].

Appendix B.1. The Delta Method

We can apply the delta method (e.g., [20] (Section 4.1)) to analyze the behavior of the ratio
estimator in more detail. Roughly speaking, the delta method says that for a sum SN = X1 + . . . + XN ,
N ∈ N of square-integrable, i.i.d. random variables Xk with mean µ ∈ Rn, covariance matrix Σ ∈ Rn×n
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and a sufficiently smooth function φ : Rn → R which can be Taylor expanded about µ, the central limit
theorem applies. Specifically, using mean value theorem, it is easily seen that

φ(SN/N)− φ(µ) = ∇φ(ζN)(SN/N − µ)

for some ζN ∈ Rn lying component-wise in the half open interval between SN/N and µ. By the
continuity of∇φ at µ, the fact that SN/N → µ a.s. as N → ∞ and that

√
N(SN/N−µ) is approximately

Gaussian with mean zero and covariance Σ, we have

√
N (φ(SN/N)− φ(µ))

L→ N
(

0,∇φ(µ)TΣ∇φ(µ)
)

, N → ∞ ,

where “ L→” denotes convergence in law (or: convergence in distribution), and N (m, C) denotes a
Gaussian distribution with mean m and covariance C.

Appendix B.2. Asymptotic Properties of Ratio Estimators

Applying the delta method to the function φ : R2 → R, (u, v) 7→ u/v, and assuming that |v|
is bounded away from zero, we find that the ratio estimator satisfies a central limit theorem too.
Specifically, assuming that q 6= 0 so that |qN | is asymptotically bounded away from zero, the delta
method yields

√
N
(

pN
qN
− p

q

)
L→ N

(
0, σ2

)
,

with variance

σ2 =
Var

(
P1 − p

q Q1

)
q2 .

In particular, the estimator is asymptotically unbiased.

Appendix C. Finite-Dimensional Change of Measure Formula

We will explain the basic idea behind Girsanov’s theorem and the change of measure Formula (21).
To keep the presentation easily accessible, we present only a vanilla version of the theorem based on
finite-dimensional Gaussian measures, partly following an idea in [43].

Appendix C.1. Gaussian Change of Measure

Let P be a probability measure on a measurable space (Ω, E), on which an m-dimensional
random variable B : Ω→ Rm is defined. Further suppose that B has standard Gaussian distribution
PB = P ◦ B−1. Given a (deterministic) vector b ∈ Rn and a matrix σ ∈ Rn×m, we define a new random
variable X : Ω→ Rn by

X(ω) = b + σB(ω) . (A4)

The similarity to the SDE (11) is no coincidence. Since B is Gaussian, so is X, with mean b and
covariance C = σσT . Now, let u ∈ Rn and define the shifted Gaussian random variable

Bu(ω) = B(ω)− u ,

and consider the alternative representation

X(ω) = bu + σBu(ω) (A5)

of X that is equivalent to Equation (A4) if and only if

σu = bu − b
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has a solution (that may not be unique though). Following the line of Section 3.1, we seek a probability
measure Q� P such that Bu is standard Gaussian under Q, and we claim that such a Q should have
the property:

dQ
dP

(ω) = exp
(

u · B(ω)− 1
2
|u|2

)
(A6)

or, equivalently,
dQ
dP

(ω) = exp
(

u · Bu(ω) +
1
2
|u|2

)
, (A7)

in accordance with Equations (19)–(21). To show that Bu is indeed standard Gaussian under the above
defined measure Q, it is sufficient to check that for any measurable (Borel) set A ⊂ Rm, the probability
Q(Bu ∈ A) is given by the integral against the standard Gaussian density:

Q(Bu ∈ A) =
1

(2π)m/2

∫
A

exp
(
−|x|

2

2

)
dx .

Indeed, since B is standard Gaussian under P, it follows that:

Q(Bu ∈ A) =
∫
{ω : Bu(ω)∈A}

exp
(

u · B(ω)− 1
2
|u|2

)
dP(ω)

=
∫
{ω : B(ω)−u∈A}

exp
(

u · B(ω)− 1
2
|u|2

)
dP(ω)

=
1

(2π)m/2

∫
{x : x−u∈A}

exp
(

u · x− 1
2
|u|2 − 1

2
|x|2

)
dx

=
1

(2π)m/2

∫
{x : x−u∈A}

exp
(
−|x− u|2

2

)
dx

=
1

(2π)m/2

∫
A

exp
(
−|y|

2

2

)
dy ,

showing that Bu has a standard Gaussian distribution under Q.

Appendix C.2. Reweighting

Clearly, by the definition of Q, it holds that:

E[ f (X)] = EQ

[
f (X) exp

(
−u · Bu(ω)− 1

2
|u|2

)]
(A8)

for any bounded and measurable function f : Rn → R, where E[·] = EP[·] denotes the expectation
with respect to the reference measure P. Now, let

Xu(ω) = bu + σB(ω) .

Since the distribution of the pair (Xu, B) under P is the same as the distribution of the pair (X, Bu)

with X = bu + σBu under Q, the reweighting identity Equation (A8) entails that

E[ f (X)] = E
[

f (Xu) exp
(
−u · B(ω)− 1

2
|u|2

)]
, (A9)

with E[B] = 0. Equation (A9) is the finite dimensional analogue of the reweighting identity that has
been used to convert the Donsker–Varadhan Formula (14) into its final form (22).
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Remark A2. If σ(·) in the SDE (18) is square and invertible, then an alternative derivation of Girsanov’s
theorem and Equation (21) can be based on the Euler-Maruyama discretization of the SDE and a change of
measure for the corresponding Markov chain.

Appendix D. Proof of Theorem 2

The proof is based on the Feynman–Kac formula and Itô’s lemma. Here, we give only a sketch of
the proof and leave aside all technical details regarding the regularity of solutions of partial differential
equations, for which we refer to [8] (Section VI.5). Recall the definition

Ψ(x, t) = EP

[
exp

(
−
∫ τ

t
f (Xs) ds− g(Xτ)

) ∣∣∣∣Xt = x
]

.

By the Feynman–Kac formula, function Ψ solves the parabolic boundary value problem

(A− f )Ψ = 0 , for (x, t) ∈ O× [0, T) ,

Ψ = exp (−g) , for (x, t) ∈ D+
(A10)

on the domain D = O× [0, T) where D+ = (∂O× [0, T)) ∪ (O× {T}) denotes the terminal set of the
augmented (control-free) process (Xt, t) and

A =
∂

∂t
+

1
2

σσT : ∇2
x + b · ∇x

is its infinitesimal generator under the probability measure P.
By construction, the stopping time τ is bounded, and we assume that Ψ is of class C2,1 on D, and

continuous and uniformly bounded away from zero on the closure D. Now, let us define the process

ζu
s = − log Ψ(Xu

s , s) ,

with Xu
s given by Equation (18). Then, using Itô’s lemma (e.g., [23] (Theorem 4.2.1)) and introducing

the shorthands
Ψu

s = Ψ(Xu
s , s) , bu

s = b(Xu
s , s) , σu

s = σ(Xu
s ) ,

we see that (ζu
s )0≤s<τ satisfies the SDE

dζu
s =− ∂

∂t
log Ψu

s ds−∇x log Ψu
s · (bu

s + σu
s us) ds

− 1
2

σu
s (σ

u
s )

T : ∇2
x(log Ψu

s )ds−
(
(σu

s )
T∇x log Ψu

s

)
· dBu

s

=−
[
AΨu

s
Ψu

s
+

(
(σu

s )
T∇xΨu

s
Ψu

s

)
· us −

1
2
|(σu

s )
T∇xΨu

s |2
(Ψu

s )
2

]
ds−

(
(σu

s )
T∇xΨu

s
Ψu

s

)
· dBu

s

=−
[

f (Xu
s , s) +

(
(σu

s )
T∇xΨu

s
Ψu

s

)
· us −

1
2
|(σu

s )
T∇xΨu

s |2
(Ψu

s )
2

]
ds−

(
(σu

s )
T∇xΨu

s
Ψu

s

)
· dBu

s .

In the last equation, we have used that the first equality in Equation (A10) holds in the interior of
the bounded domain D, i.e., for s < τ. Choosing us = u∗s for 0 ≤ s < τ to be the optimal control

u∗s = σ(Xu∗
s , s)T∇x log Ψ(Xu∗

s , s) ,

as in Equation (26), the last equation can be recast as

dζu∗
s = −

(
f (Xu∗

s , s) +
1
2
|u∗s |2

)
ds− u∗s · dBu∗

s .
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Similar to Equation (20), if we introduce

Zu∗
s,τ =

∫ τ

s
u∗r · dBu∗

r +
1
2

∫ τ

s
|u∗r |2dr ,

then Zu∗
0,τ = Zu∗

τ , and we have:
dζu∗

s = − f (Xu∗
s , s)ds− dZu∗

s,τ .

As a consequence, using the continuity of the process as s ↓ 0,

ζu∗
τ = ζu∗

0 − Zu∗
τ −

∫ τ

0
f (Xu∗

s , s)ds . (A11)

By definition of ζu
s , the initial value ζu∗

0 = − log Ψ(Xu∗
0 , 0) = − log Ψ(x, 0) is deterministic.

Moreover ζu∗
τ = − log Ψ(Xu∗

τ , τ) = g(Xu∗
τ ), which in combination with Equation (A11) yields:

− log Ψ(x, 0) = g(Xu∗
τ ) +

∫ τ

0
f (Xu∗

s , s)ds− Zu∗
τ . (A12)

Rearranging the terms in the last equation, we find

Ψ(x, 0) = exp
(
−Zu∗

τ −
∫ τ

0
f (Xu∗

s , s)ds− g(Xu∗
τ )

)
, (A13)

with probability one, which yields the assertion of Theorem 2.

Remark A3. Letting T → ∞ in the proof of the theorem it follows that τ → τO a.s. where τO is the first exit
time of the set O. As a consequence, the zero variance property of the importance sampling estimator carries over
to the case of a.s. finite (but not necessarily bounded) hitting times or first exit times.
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