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Particle-based membrane model for mesoscopic simulation of cellular

dynamics
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We present a simple and computationally efficient coarse-grained and solvent-free model for simulating lipid
bilayer membranes. In order to be used in concert with particle-based reaction-diffusion simulations, the model
is purely based on interacting and reacting particles, each representing a coarse patch of a lipid monolayer.
Particle interactions include nearest-neighbor bond-stretching and angle-bending, and are parameterized so as
to reproduce the local membrane mechanics given by the Helfrich energy density over a range of relevant cur-
vatures. In-plane fluidity is implemented with Monte Carlo bond-flipping moves. The physical accuracy of the
model is verified by five tests: (i) Power spectrum analysis of equilibrium thermal undulations is used to verify
that the particle-based representation correctly captures the dynamics predicted by the continuum model of
fluid membranes. (ii) It is verified that the input bending stiffness, against which the potential parameters are
optimized, is accurately recovered. (iii) Isothermal area compressibility modulus of the membrane is calcu-
lated and is shown to be tunable to reproduce available values for different lipid bilayers, independent of the
bending rigidity. (iv) Simulation of two-dimensional shear flow under a gravity force is employed to measure
the effective in-plane viscosity of the membrane model, and show the possibility of modeling membranes with
specified viscosities. (v) Interaction of the bilayer membrane with a spherical nanoparticle is modeled as a test
case for large membrane deformations and budding involved in cellular processes such as endocytosis. The
results are shown to coincide well with the predicted behavior of continuum models, and the membrane model
successfully mimics the expected budding behavior. We expect our model to be of high practical usability for
ultra coarse-grained molecular dynamics or particle-based reaction-diffusion simulations of biological systems.

I. INTRODUCTION

Lipid bilayer membranes are integral parts of the ma-
chinery of living cells. Apart from the obvious role of
providing a mechanical and chemical barrier for the cell,
they form the boundary of nearly all the organelles in-
side the eukaryotic cells and also take part in cellular
functions such as signal transduction1. Biologically rel-
evant processes at membranes, such as protein recruit-
ment and insertion, assembly of protein scaffold at mem-
branes, and membrane remodeling often involve spa-
tial scales from tens to hundreds of nanometers, and
time scales from milliseconds to minutes1. As an ex-
ample, consider endocytosis and exocytosis at plasma
membranes2. While all-atom molecular simulations are
extremely successful for the study of individual macro-
molecules and small complexes3–9 and can reach ther-
modynamics and kinetics at very long timescales with
the aid of enhanced sampling methods and Markov state
modeling7,10–18, they have severe limitations in terms of
system sizes that can be sampled exhaustively19. Even
for the simple case of equilibrating micron-sized biomem-
branes, a blind scale up in all-atom molecular dynam-
ics would be out of reach of computational power for
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decades to come20. To fill this computational gap,
and gain insights into cellular processes, the develop-
ment and application of coarse-grained models is an im-
portant aspect of computer simulation. A particularly
promising framework to model cellular signaling pro-
cesses at membranes, involving space exclusions and spe-
cific geometries found at membrane scaffolds, is particle-
based reaction-diffusion (PBRD) simulation21–24, espe-
cially the so-called interacting-particle reaction-diffusion
(iPRD) models that include interaction forces between
particles25–29. The particles in such models typically rep-
resent entire proteins, protein domains or metabolites,
and thus represent a spatial resolution of a few nanome-
ters. Despite the success of such models in simulating
cellular signal transduction processes28,30–32, these ap-
proaches are missing membrane mechanics in order to
be able to model signaling at biomembranes. In spite
of the extensive research on membrane models, there
is arguably no readily usable model at the same scale,
that is suited to be integrated into such a particle-based
reaction-diffusion framework. Especially when it is re-
quired that the model be easily tunable, robust, and yet
computationally efficient.

Bilayer membranes have been the subject of computer
simulations for more than three decades33–35. Apart
from all-atom simulations based on general purpose36

or specifically developed force-fields37, a vast variety of
coarse-grained computational models developed for bi-
layer membranes exist (see33,38 and references therein for
an overview). While we don’t aim to provide a compre-
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hensive review of all coarse-grained membrane models,
it is useful to look at important modeling approaches
and categorize them based on the level of coarse-graining
achieved. This way, it becomes clear where the proposed
model fits, and how it provides features suitable for its
integration in iPRD simulations.

The first level of coarse-graining is achieved through
grouping a specific set of atoms in lipid molecules into
interaction centers and building effective force-fields39.
The well-known MARTINI force-field falls into this
category40–42. Though considerably reducing the num-
ber of particles, this approach is still only suitable for
simulating relatively small scale processes43. More re-
cently, Srivastava and Voth devised a general approach
for developing similar coarse-grained models for mem-
branes composed of specific lipid molecules or lipid mix-
tures. Their approach consists of calibrating the interac-
tion potentials to result in desired macroscopic mechanics
and structural properties44. Simunovic et al employed
this model to successfully simulate membrane remodel-
ing by curvature-inducing proteins45–47. The next step
in coarse-graining is to develop “bead” models, in which
various lipid molecules are represented not by interac-
tion groups pertaining to their atomistic representations,
but by a small chain of generic particles48–57. A major
challenge with these models is the choice of interaction
potentials50. A higher level of coarse-graining pertains to
one-particle-thick models in which the curvature elastic-
ity is recovered through orientation-dependent pairwise
interactions58–61. Drouffe et al. pioneered this approach,
and showed that through these orientation-dependent in-
teractions, stable membranes and vesicles can form58;
though with the side-effect of predicting considerably
low bending rigidities. To control the bending rigidity,
Kohyama proposed a model in which local curvature of
the membrane affects the particle-particle interactions59.
Ayton and Voth developed a systematic approach for pa-
rameterizing the interaction potential in their EM-DPD,
and later, EM2 membrane models62–65. They performed
detailed atomistic simulations, and employed energy
equivalence in bending and bulk expansion/contraction
modes to obtain optimal parameters for the mesoscopic
model. They further applied these models in the study
of membrane remodeling65,66. From a different perspec-
tive, one-particle-thick models are also approached as dis-
cretized continuum models. Triangulated-surface models
developed by Gompper and Kroll67–69, and Noguchi and
Gompper70,71 follow such an approach, and instead of re-
lying on pairwise orientation-dependent potentials, uses
angle-bending potentials between neighboring triangles
to directly reproduce the curvature elasticity in a dis-
cretized model. Bahrami et al. used a similar model to
study interaction of nanoparticles with membranes72,73

and formation of membrane tubules74. Atilgan and Sun
also incorporated the effect of transmembrane proteins
into a triangulated model75. As the dimensions and areas
of triangular elements in these models can fluctuate, it
is common practice with triangulated-surface models to

utilize additional area-preserving constraints to control
the surface area of the membrane. Another approach
is to include the elasticity of an underlying continuous
membrane into a particle-based description through po-
tentials that depend on local surface fitting76,77. Finally,
the continuum description with curvature elasticity can
also be solved numerically through available finite ele-
ment methods developed for thin shell mechanics78. In
effect, these approaches substitute particles with compu-
tational nodes of a discretized continuum model.
In this paper, we introduce a novel coarse-grained

membrane model which employs a two-particle-thick de-
scription of the bilayer membrane, with each particle ef-
fectively representing a patch of lipids on each leaflet.
This is a minimal structure that allows for flexibility
in modeling interactions of biomolecules with the mem-
branes. The model relies on simple bond-stretching
and angle-bending potentials in a dynamically updated
bonded network, and thus, provides enhanced compu-
tational efficiency through the exclusion of non-bonded
pairwise interactions. The proposed model is essen-
tially an elastic membrane model, comparable to tri-
angulated models, with the difference that the desired
elastic properties are reproduced through simple bonded
interactions in contrast to complicated orientation- or
curvature-dependent potentials. Through a parameter-
space optimization scheme, these interactions are easily
tuned to reproduce membranes with desired elastic prop-
erties. The ultimate aim of developing such a model is to
include it in large-scale simulations of cellular dynamics,
and to specifically use it for studying cellular signal trans-
duction using iPRD models. The computer experiments
laid out in the following are designed to show that, de-
spite its relative simplicity, inexpensive simulations done
with the model very well reproduce expected behavior
in terms of thermal undulations, area compressibility, in-
plane viscosity, and budding under the influence of ex-
ternal forces.

II. THE MODEL

As shown in Fig. 1a, two close-packed lattices of
particles correspondingly represent the two leaflets of
the membrane in this model. The elastic energy den-
sity contributed to the membrane is usually expressed
in terms of the local curvature of the mid-surface of the
bilayer. We aim to avoid computing complex potential
functions based on numerically obtained local curvature
values. Thus, only bond-stretching and angle-bending
interactions amongst nearest neighbor particles are con-
sidered. Considering an arbitrarily curved membrane,
and based on its local surface geometry, relative configu-
ration of particles, and the resulting bond lengths and an-
gles are obtained. An effective energy density pertaining
to bonded interactions is thus calculated, and compared
with the curvature elasticity modeled via the Helfrich en-
ergy density to parameterize the interaction potentials.
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Figure 1: (a) Snapshot of the proposed membrane
model with particles forming top and bottom leaflets in

red and cyan color, respectively. (b) Local surface
geometry of the mid-surface in an arbitrary state of

deformation (blue surface) with a collection of particle
dimers whose positions are dictated by the mid-surface
geometry. Distances and angles between these particles
are used in order to probe the local curvature and relate
between the particle model and continuum description

of membrane mechanics.

A. Curvature elasticity of the bilayer membrane

The Helfrich energy density of a curved fluid bilayer
membrane is expressed as79–81

fH = 2κ(H −H0)
2 + κ̄G (1)

in which the constant κ is the bending rigidity or splay
modulus of the membrane and κ̄ is its Gaussian curvature
rigidity or saddle-splay modulus. H and G represent the
mean and Gaussian curvatures, respectively, which are
defined based on the principal curvatures, c1 and c2, as
H = (c1 + c2) /2 and G = c1c2. H0 is the spontaneous
mean curvature of the membrane, corresponding to a lo-
cal curvature that is induced in the membrane not by
external forces, but by internal effects such as the geom-
etry of phospholipid molecules82.

B. Differential geometry of the particle-based membrane

model

In this model, in which the membrane is effectively
composed of “particle dimers”, i.e. pairs of particles be-
longing to the top and bottom leaflets, a hypothetical
mid-surface is assumed to lie halfway between the par-

ticle dimers. Inspired by classical continuum shell theo-
ries, we assume that bending of the double layer deforms
it such that a normal vector originating from a point p
on the mid-surface, pointing to a particle P on the upper
or lower layer, remains perpendicular to the mid-surface,
independent of the state of deformation (see Fig. 1b).
Thus, the position of the particle P is always given as
rP = rp ± t

2n, where n is the normal vector of the mid-
surface at point p, t is the thickness of the membrane,
and the plus and minus signs correspond to particles on
the top or bottom leaflets, respectively. Without loss of
generality, we focus on particles positioned on the top
leaflet for the following derivations. For two neighboring
particles P and Q, corresponding mid-surface projections
are considered to be p and q, given by local coordinates,
rp = (0, 0) and rq =

(

u1, u2
)

, respectively (Fig. 1b).

Thus, the set of coordinates, u1 and u2, provide a lo-
cal parameterization of the mid-surface in the vicinity of
point p. For point q, this description can be approxi-
mated through a second-order Taylor expansion:

rq ≈ rp + uµeµ +
1

2
uµuνeµ,ν

= rp + uµeµ +
1

2
uµuν

(

Γσµνeσ + bµνn
)

(2)

where eµ = ∂µr are the base vectors for the tangent space
at point p, Γσµν = eµ,ν · e

σ are the Christoffel symbols of
the second kind and bµν = eµ,ν ·n are the components of
the second fundamental form tensor83. It is to be noted
that summation convention between a pair of upper and
lower indices is used here. Similarly, another Taylor ex-
pansion can be used to approximate the normal vector
at point q, making it possible to express the position of
particle Q with respect to particle P as:

rPQ = rQ − rP

≈

[

uσ +
1

2
Γσµνu

µuν −
h

2
bµνg

νσuµ
]

eσ

+
1

2
bµνu

µuνn

(3)

in which gµν = eµ · eν is the metric tensor and we
have gµσgσν = gµσg

σν = δµν with δµν being the Kro-
necker’s delta. For the purpose of calculating partial
derivatives of the normal vector, the Weingarten’s for-
mula, n,µ = −bνµeν = −bµνg

νσeσ has been used83. It is
noteworthy to mention that first order partial derivatives
of the normal vector contain second order derivatives of
the position vector, r, through the inclusion of the bµν
tensor components, effectively making the two approx-
imations of the same order. The length of the vector
rPQ as well as the angle it makes with the normal vector
at point p, are obtained by forming the following inner
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products,

|rPQ|
2 = rPQ · rPQ

≈ I(u)

(

1−
t2

4
G

)

− II(u) t

(

1−
t

2
H

)

+
1

4
II2(u) + C1 −

t

2
C2 +

1

4
C3

(4)

and

|rPQ| |n| cos θpPQ = −rPQ · n ≈ −
1

2
II(u) (5)

where,

I(u) = gµνu
µuν

II(u) = bµνu
µuν

(6)

are the first and second fundamental forms. The remain-
ing parameters in eq. (4) are defined as follows:

C1 = Γµνσu
µuνuσ

C2 = Γσµνbσγu
µuνuγ

C3 = ΓσµνΓµ′ν′σu
µuνuµ

′

uν
′

(7)

where Γµνσ = Γγµνgγσ are the Christoffel symbols of the

first kind83. Up to this point, the derived equations hold
in all local coordinate systems at point p. A smart choice
of the coordinate system can simplify the equations con-
siderably. A perfect candidate is the locally tangent co-
ordinate system, with the following implicit definition:

uσ = u⋆σ −
1

2
Γσµνu

⋆µu⋆ν (8)

in which
(

u⋆1, u⋆2
)

are the new coordinates with the same
origin at point p, and the Christoffel symbols are calcu-
lated in the old coordinate system at point p. It can be
shown that in this coordinate system, Christoffel symbols
vanish identically, and yet, because (∂uµ/∂u⋆ν)p = δµν ,
first order length differentials as well as the first and sec-
ond fundamental forms remain unchanged.

C. Parameter-space optimization of interaction potentials

Now that we have obtained equations describing the
relative configuration of model particles in an arbitrarily
curved membrane (Eqs. 4 and 5), we can select inter-
action potentials which are functions of |rPQ| and θpPQ,
and calculate effective energy densities corresponding to
arbitrary curvature states. In effect, we seek to obtain
numerical values of the energy density arising from a spe-
cific set of interaction potentials, as a function of mid-
surface curvature, prior to running an actual simulation
with these potentials. As a simple choice, we assume
that nearest neighbor particles on both top and bottom
leaflets are connected via lateral bonds. Also, an angle-
bending potential is assumed to exist for out-of-plane ro-
tations of such bonds. These two bonded interactions

are handled respectively with the following Morse-type
bond-stretching and harmonic angle-bending potentials:

Ustretch (|rPQ|) = De

[

1− e−α(|rPQ|−a)
]2

Ubend (θP′PQ) = Kb

(

θP′PQ −
π

2

)2
(9)

where a denotes the lattice parameter (or equilibrium
separation of particles on each leaflet) and P′ is the par-
ticle residing on the bottom leaflet, forming a dimer with
particle P. The equilibrium angle is chosen to be π/2,
which corresponds to angle-bending with respect to a flat
membrane.
It is to be noted that this choice of bonded interactions,

and the potentials to handle them, is by no means unique.
The general procedure laid out here can be applied to
many other choices, with the condition that geometric
information can be extracted uniquely from the curvature
of the mid-surface.
In order to calculate the effective energy density, an

area element on the mid-surface corresponding to a set
of interactions has to be defined. We propose Voronoi
tessellation be used to do so in a systematic way. In the
simple case of a hexagonal close-packed lattice of parti-
cles, Voronoi tessellation simply yields hexagons centered
at particles’ projections on the mid-surface. Though in
general, the shape and area of elements corresponding
to particle projections is a function of their coordination
number. Especially considering the fact that the coordi-
nation number changes due to bond-flipping Monte Carlo
moves that will be discussed in Sec. II E. With such a
definition for area elements, half of each lateral bond em-
anating from a particle P, plus all the out-of-plane angles
having it as the vertex, are included in one area element
around particle P. But without performing the simula-
tion, we don’t have a priori knowledge of the in-plane
angle, ψ, that this star-shaped construct around each
particle makes with the principal directions of the curva-
ture of the mid-surface. Thus, in general, the calculated
effective energy density depends on this in-plane angle.
To compensate for this ambiguity, and avoid directional
bias, the effective energy density is numerically averaged
out over possible values of ψ. This way, the effective
potential energy density is defined as:

feff =

〈 1
2

∑

Ustretch +
∑

Ubending

∆A

〉

ψ

(10)

where the summations are carried out for all interactions
corresponding to one particle and ∆A denotes the area
element. The same procedure applies to the pair particle,
P′, which lies on the bottom leaflet, and the correspond-
ing energy density is simply added to feff .
The chosen interaction potentials given in eq. 9 con-

tain a set of parameters, De, α, and Kb. In order to
obtain optimal values for these parameters, a dimension-
less error measure is defined as

e =

∫

dc1
∫

dc2 (feff − fH)
2

∫

dc1
∫

dc2 f2
H

(11)
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in which the integration is carried out in the mid-surface
curvature space spanned by its principal curvatures, c1
and c2. The integration range is arbitrary, and corre-
sponds to the range of curvatures that have practical rel-
evance. Minimizing this error measure with respect to
potential parameters yields their optimal values.

D. Additional interactions

The bond-stretching and angle-bending interactions
described in Sec. II C only serve to reproduce the de-
sired curvature elasticity of the membrane. In addition
to these interactions, other potentials can be added to
the model for different geometrical or mechanical con-
siderations, as long as they do not perturb the effective
energy density described by eq. 10.
Most importantly, a harmonic potential is added be-

tween particles in each dimer. This potential is described
by the expression Uthickness (t) = Kt (t− t0)

2
where t is

the center-to-center distance of the particles, and t0 is
the prescribed equilibrium thickness of the membrane.
Addition of this potential is necessary to hold the two
leaflets together. The potential strength, Kt, should be
chosen high enough to preserve the thickness variations
within a reasonable range, and to prevent the thermal
motion of the particles to cause them to flip between the
leaflets. Note that this potential may also be calibrated
with respect to the actual stiffness of bilayer membranes
across their thickness.
Also, with the set of interactions described so far, vol-

ume exclusion is only present between neighboring mem-
brane particles, and in principle, non-neighboring parti-
cles can interpenetrate. In simulations where this issue
arises, a non-bonded interaction, such as harmonic repul-
sion, can additionally be included.

E. Bond-flipping moves

The membrane model developed so far is based on a
fixed topology of bonded interactions, and thus, pertains
to a two-dimensional solid. In contrast, lipid bilayer
membranes are two-dimensional fluids in which lipid
molecules can freely diffuse laterally, and this fluidity is
essential for membrane remodeling84. Following a scheme
commonly used in triangulated membrane models70,71,
the in-plane fluidity is introduced to the model via bond-
flipping Monte Carlo moves. In a quadrilateral formed by
four neighboring particles (e.g. PRQS in Fig. 1b), swap-
ping of one diagonal bond (PQ) with the other (RS) is
proposed with a frequency φ during the simulation. This
proposed move is accepted with the Metropolis-Hastings
probability of exp [−β (Enew − Eold)] where Eold and
Enew are the corresponding potential energies of the sys-
tem in the old and new topologies, and β = 1/kT with
k being the Boltzmann constant and T the temperature.
Whenever a proposed bond-flipping move is accepted, the

c 2
(n
m

−
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n
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Figure 2: Comparison between the Helfrich (fH) and
the effective energy density of the proposed model (feff)
with the optimal parameters for a hexagonal membrane

model with the lattice parameter of 10 nm.

topology of the model is updated to remove the currently
existing PQ bond (and its accompanying angles), and
substitute them with a newly formed RS bond (and cor-
responding angles). Introduction of these Monte Carlo
moves, which favor flipping bonds under tension to lower
energy ones, results in a net energy loss. In a simula-
tion in the canonical ensemble, this lost energy will be
compensated by the thermostat, which is the same as
extracting work and adding equal amount of heat to the
system. Thus, in effect, this is an entropy production
mechanism comparable to viscous loss.
The frequency, φ, with which the bond-flipping moves

are proposed, acts as a control parameter for the model.
The in-plane dynamics of model particles, which deter-
mines kinetic properties such as the effective in-plane dif-
fusion and surface viscosity of the membrane, can be ma-
nipulated via the frequency of bond-flipping moves. We
expect the membrane to assume more fluidity and faster
in-plane dynamics with increasing values of φ. This as-
sumption will be put to quantitative test in Sec. IVC.

III. SIMULATION DETAILS

A. Parametrization

In order to implement the parameter-space optimiza-
tion procedure explained in Sec. II C, it is necessary to
have elastic constants of a bilayer membrane, namely
κ and κ̄, as input. Experimental determination of the
bending rigidity, κ, is based on the two general ap-
proaches of monitoring fluctuations or by pulling out
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tethers and measuring the forces involved85,86. As ex-
pected, the value of the bending rigidity depends on tem-
perature, as well as the composition of the bilayer mem-
brane. The range 10 kT to 40 kT is usually quoted85,86.
Since we are presently not focusing on simulating a mem-
brane with a specific composition, the value of 20 kT is
chosen for the bending rigidity87. On the other hand,
the saddle-splay or Gaussian curvature modulus has been
elusive to experimental determination. This is a di-
rect consequence of the Gauss-Bonnet theorem which
limits changes in the integral of the saddle-splay en-
ergy term to cases where the topology of the membrane
changes. Methods based on membrane buckling have
been proposed to calculate Gaussian curvature modulus
in simulations88,89, but they are not experimentally ap-
plicable. In order to obtain a realistic value for our sim-
ulations, the typical ratio κ̄/κ = −0.8 is used to obtain
the Gaussian curvature modulus of −16 kT 87,88.

For a given set of potential parameters, namely De, α,
and Kb in eq. 9, the error measure in eq. 11 is obtained
through numerical integration. The integration range for
both principal curvatures is chosen to be −0.1nm−1 to
0.1 nm−1. In order to calculate the integrand at each in-
tegration point, the expression given in eq. 10 for the
feff is used. The averaging over the angle ψ is also car-
ried out numerically with fine 1◦ divisions. Using the Cz
symmetry of the star-shaped bonded construct around
each particle, where z is the coordination number, this
averaging needs only to be done over one 2π/z interval.
We have used the quasi-Newton BFGS algorithm90 from
the SciPy optimize package for numerical minimization of
the numerically calculated error measure. The iterative
minimization algorithm is repeated several times, with
randomly picked initial guesses in the parameter space,
to help the algorithm converge to a global minimum.

The minimization process is performed in a bounded
domain, with prescribed ranges for potential parameters.
In general, for a given set of membrane elastic constants,
and by manipulating potential parameter bounds, differ-
ent “families” of optimal parameters are obtained. While
these parameter families should theoretically produce the
same curvature elasticity, the following considerations
can be applied to favor some over the rest:

• Imposition of other physical properties on the
model: Having different parameter families pro-
vides the flexibility to calibrate the model based
on other physical properties, while preserving the
curvature elasticity. The area compressibility mod-
ulus will be addressed as an example in Sec. IVB.

• Technical necessities of the simulation: For exam-
ple, a model limited to bond-stretching interactions
with De > 0 and Kb = 0 is a valid result of the
parameter-space optimization. But a double-layer
model built thus would not resist the rotation of
particle-dimers, resulting the two leaflets to inter-
penetrate.

Table I: Optimized potential parameters for models
with different lattice parameters and the same

coordination number of 6. For the 10 nm model, three
families of parameters (designated by a, b, and c

superscripts) are given.

a (nm) De (kJmol−1) α (nm−1) Kb (kJmol−1)

10.0(a) 17.98 0.120 17.34

10.0(b) 64.59 0.120 12.39

10.0(c) 111.2 0.120 7.433
15.0 23.82 0.066 20.19
20.0 24.41 0.050 22.92

Tab. I shows the results of parameter space optimiza-
tions performed for membrane models with different lat-
tice parameters and the same coordination number of 6.
To demonstrate the flexibility to choose different parame-
ter families, for the 10nm model, three sets of parameters
are given. These three families, that balance the energy
differently between bond-stretching and angle-bending
interactions, are produced by putting different bounds
on the angle-bending stiffness, Kb. For each case, the re-
sultant potential parameters can be used to calculate the
effective energy density as a function of mid-surface cur-
vature. Fig. 2 shows a comparison between the Helfrich
energy density and the optimized effective energy density
in the curvature space, for the case of a model with the
lattice parameter of 10 nm, using the parameters given
in the first row of Tab. I. Indeed, the presently param-
eterized potential agrees well with the Helfrich energy
density over a relatively wide curvature range.

It is to be noted that the elastic constants chosen here,
and the resulting potential parameters given in Tab. I,
serve as an example to illustrate the applicability of the
model, where the general procedure of calculating the ef-
fective energy density and parameter-space optimization
can be applied with any choice of κ and κ̄ values. This
offers the flexibility of modeling different membranes via
the same parameterization process.

In addition, for the harmonic potential Uthickness, the
strength ofKt = 7.7 kJmol−1 nm−2, and equilibrium dis-
tance of t = 4.0 nm are respectively chosen.

Finally, the masses of the representative particles in
the model are determined based on the effective surface
density of bilayer membranes in equilibrium. For the
simulations presented here, the case of a DPPC bilayer
membrane is chosen, for which area per lipid is deter-
mined through atomistic simulations91 to be 0.640nm2.
This value results in a surface density of 380.9ng cm−2

and individual particle mass of 0.165 ag. A quick calcula-
tion shows that each of the representative particles in the
model with the lattice parameter of 10 nm thus accounts
for about 140 DPPC molecules.
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B. Time integration

In order to simulate tensionless membranes in thermal
equilibrium, an extended systems dynamics approach
is used to derive equations of motion and devise the
proper numerical integration scheme. The systematic
approach developed by Martyna et al. (the so-called
MTK integrator) based on sequential application of dis-
cretized Liouville operators proved to be a robust way
to achieve proper thermostatting and barostatting92–94.
Thermostatting is achieved through Nosé-Hoover chains,
and isotropic cell fluctuations are used for barostatting
to achieve zero in-plane tension. With the mass chosen
for individual particles and based on the optimized val-
ues calculated for potential parameters, the time step for
the explicit integrator is chosen to be 20 ps.
It is to be noted that while the model developed so

far has a well-defined physical length scale pertaining to
the thickness of the membrane, attributing a singular
time scale to it is not as straightforward. It is reason-
able to assume that the motion of membrane particles is
governed by two decoupled dynamics, respectively in the
in-plane and out-of-plane directions. As was discussed in
Sec. II E, and as the results given in Sec. IVC will show,
the in-plane dynamics of the model can be manipulated
via changing the frequency of bond-flipping moves, and
can thus be calibrated by comparing a resultant kinetic
property, such as surface viscosity, with its respective ex-
perimental value. On the other hand, in the absence of
any solvent effects, and with the deterministic MTK in-
tegrator used here, the out-of-plane dynamics is solely
determined by the particle masses and the stiffness of
the forcefield developed based on the scheme introduced
in Sec. II C. As the forcefield is the outcome of the
parameter-space optimization aiming to reproduce the
desired membrane elasticity, the only remaining param-
eter is the mass of model particles. Choosing the deter-
ministic MTK integrator has the advantage of putting
the robustness of the model to the test where no pre-
scribed damping is present, but has the side-effect of pro-
ducing very fast out-of-plane dynamics with the current
choice of surface density (see Sec. IVA). While the value
of membrane surface density and the resulting particle
mass can in principle be manipulated to control the time
scale, doing so does not correspond to a meaningful phys-
ical setup. Achieving physically relevant out-of-plane dy-
namics pertaining to membrane patches suspended in a
solvent is only possible through either implementing a
suitable stochastic integrator, or including solvent effects
explicitly or implicitly. This will be addressed in future
applications of the model.

C. Simulation code and visualization

Mainly due to the fact that the implementation of
bond-flipping Monte Carlo moves in available molecular
dynamics software packages proved impractical, an in-

house C++ code has been developed to handle the sim-
ulations. Visualization is done via the Visual Molecular
Dynamics (VMD) software package95.

IV. RESULTS AND DISCUSSION

A. Thermal undulations

A lipid bilayer patch in thermal equilibrium undergoes
significant out-of-plane thermal undulations84. These
undulations can be studied from an statistical mechanics
point of view to obtain energy distribution among dif-
ferent vibration modes. Considering a square membrane
patch of side length L, its mid-surface can be parameter-
ized as r = (x, y, h (x, y)), where h is the height function
(the so-called Monge description). Assuming that this
membrane patch has periodic boundary conditions in the
x and y directions, the height function can be expressed
as a discrete Fourier series:

h =
∑

m,n

h̃ (qm,n) exp (iqm,n · r) (12)

in which qm,n = 2π
L
(m,n) is the wave vector. It can be

shown that based on the Helfrich expression (Eq. 1) the
energy corresponding to each vibration mode is given by
1
2κL

2q4 h̃(q) h̃∗(q), and thus, application of the equipar-
tition theorem yields the power spectrum of thermal un-
dulations as:

1

L2

〈

h̃(q) h̃∗(q)
〉

=
kT

κ (qL)
4 (13)

The q−4 power law is used as a test to observe if the
particle-based model reproduces the continuum behavior
dictated by the Helfrich energy density correctly. Also,
fitting eq. 13 to the results yields the value of the bending
rigidity, κ.
As a first experiment, membrane patches of approxi-

mately 1µm in size with the lattice parameter of 10 nm
are simulated at constant temperature of 298K. Poten-
tial parameters given in the first row of Tab. I are used.
To ensure that the membrane patches have indeed been
equilibrated, an estimate of the relaxation time of the
system is required. Following Farago49, two methods are
used for gaining this estimate:

• Measuring the time it takes for the potential energy
of the membrane to settle to fluctuations about an
equilibrium value,

• Measuring the relaxation time of the longest wave-
length in thermal undulations.

Both measures give values in the 1 µs range, which sig-
nifies a rather fast out-of-plane dynamics. Thus, a total
time of 20µs is used for each simulation, out of which the
second half is used for sampling observables. The result-
ing equilibrium trajectories are used to calculate a dis-
crete height function defined on a constant spatial grid,
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Figure 3: Power spectrum of thermal undulations of
membrane patches with the lattice parameter of 10 nm
and different bond-flipping frequencies. All patches

have the same lateral size of ∼1µm and are equilibrated
at 298K. Dashed lines are fits of the function C (qL)

n

to the data, whereas the solid black line is the
prediction of the continuum model with the bending
rigidity of 20 kT , the same value used as an input for

parameterizing the interaction potentials.

and fast Fourier transform is used to extract its aver-
age power spectrum. This process is repeated for models
with different bond-flipping frequencies, which are ex-
pected to have different in-plane fluidities. The results
are depicted in Fig. 3. The solid black line shows the pre-
diction of the continuum model for the bending rigidity
of 20 kT . Our model reproduces the continuum behavior
quite accurately, and also the bending rigidity is recov-
ered very well. To further verify this, two sets of equa-
tions, C (qL)n, and (1/κ) (qL)−4 are fitted to the first

8 values of
〈

h̃(q) h̃∗(q)
〉

/L2. It is to be noted that the

expected continuum behavior only applies to high wave-
length undulations and separation from the q−4 behavior
is to be expected at short wavelengths. The parameters
for these fits are given in Tab. II. It is evident that for
all cases, the n = −4 behavior of a continuum model is
very well reproduced. Also, from the second fit, the mag-
nitude of the effective bending rigidity of the membrane,
κ, is obtained, and can be compared with the input value
of 20 kT with good accuracy.

As the second test, the power spectrum of thermal un-
dulations for models with different lattice parameters of
10, 15 and 20 nm and the same bond-flipping frequency of
φ = 15ns−1 are studied. To do a proper comparison, for
lattice parameters other than 10 nm, two cases are sim-
ulated. First, a square membrane patch with the same

101 102

qL

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

〈

h̃
(q
)
h̃
∗
(q
)〉

/L
2

a = 10 nm, L = 1 µm

a = 15 nm, L = 1 µm

a = 15 nm, L = 1.5 µm

a = 20 nm, L = 1 µm

a = 20 nm, L = 2 µm

Figure 4: Similar to Fig. 3 for thermal undulations of
membrane patches with various lattice parameters and
lateral dimensions. All patches are simulated with the

same bond-flipping frequency of 15 ns−1

.

lateral dimension of 1µm is spanned with fewer particles
at larger separations, and second, the same number of
particles as the 10 nm model are used, which form larger
patches. The results are depicted in Fig. 4. It is ob-
served that increasing the lattice parameter in general
has little effect on the ability of the model to reproduce
continuum behavior. Tab. III gives the results of simi-
lar C (qL)

n
and (1/κ) (qL)

−4
fits to these data. Again,

the expected n = −4 and κ = 20 kT behavior is very
well reproduced by the model. Comparing the results for
membrane patches of different size and the same lattice
parameter also shows no significant finite-size effect.

Table II: Parameters of the least squares fitting of
functions C (qL)

n
and (1/κ) (qL)

−4
to the thermal

undulations power spectrum,
〈

h̃(q) h̃∗(q)
〉

/L2, for

membrane patches with the lattice parameter of 10 nm,
the same lateral size of ∼1µm, and different

bond-flipping frequencies, φ (data points presented in
Fig. 3).

φ (ns−1) n κ (kT )
0.0 -4.00 ± 0.04 17.54 ± 0.10
15.0 -4.04 ± 0.04 16.79 ± 0.10
30.0 -4.04 ± 0.04 17.54 ± 0.10
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Table III: Similar to Tab. II for membrane patches with
the given lattice parameter a and lateral dimension L

(data points presented in Fig. 4).

a (nm) L (µm) n κ (kT )
15.0 1 -4.08 ± 0.13 19.27 ± 0.18
15.0 1.5 -4.1 ± 0.09 19.48 ± 0.13
20.0 1 -4.03 ± 0.19 21.86 ± 0.24
20.0 2 -3.98 ± 0.11 22.69 ± 0.15

5.0 10.0 15.0
Kb (kJmol−1)

0.08
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0.23

K
ar
ea
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−
1 )
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30.0

κ
(k
T
)

Figure 5: Isothermal area compressibility modulus and
bending rigidity as functions of the angle-bending

potential parameter, Kb, for a membrane model with
the lattice parameter of 10 nm, equilibrated at T =

298K. As for the bond-stretching potential parameters,
if the given points are considered from left to right,

respective values of De are 173.9 , 136.4 , 111.2 , 87.89 ,
64.59 , 41.28 , and 17.98kJmol−1. Values of α are

determined to be 0.114nm−1 and 0.119nm−1 for the
first and the second points from the left, and

0.120nm−1 for the rest.

B. Area compressibility

As an example of additional physical properties of the
model that can be taken into account when choosing po-
tential parameters, area compressibility of the membrane
is calculated for a model for which potential parameters
are chosen from different families. The isothermal area
compressibility modulus is given in terms of the projected
area fluctuations of a tensionless membrane patch as36,96,

Karea = Aeq

(

∂γ

∂A

)

T

=
kT Aeq

〈A2〉 − 〈A〉2
(14)

where Karea is the area compressibility modulus, γ is the
surface tension, and Aeq and A are the equilibrium and
instantaneous projected areas of the membrane patch, re-
spectively. The parameter-space optimization procedure

described in Sec. II C is repeated for a 10 nm model,
while different bounds are put on the angle-bending po-
tential stiffness. This yields several families of potential
parameters (including the values given in the first three
rows of Tab. I). For each set of parameters, small mem-
brane patches have been constructed and equilibrated at
T = 298K in a tensionless state. After reaching equi-
librium, fluctuations in the projected area are measured
and are used to calculate area compressibility modules
according to eq. 14. Also, following the procedure de-
scribed in Sec. IVA, the bending rigidity, κ, is also mea-
sured for each model. The results are ordered as func-
tions of the stiffness of the angle-bending potential, Kb,
and are depicted in Fig. 5. It is interesting to observe
that while the bending rigidity produced by various sets
of parameters lie in close vicinity of the input value of 20
kT , the area compressibility modulus varies considerably.
Comparing the values of area compressibility modulus
with the experimental range of 0.180 to 0.330Nm−1 for
POPC membranes, or available simulation results (e.g.
0.272Nm−1 for POPC97, 0.277Nm−1 for DOPC98, and
0.193 to 0.267Nm−1 for DPPC99,100), shows that the
model can indeed be calibrated to reproduce accurate
area compressibility moduli.

C. In-plane fluidity

As explained in Sec. II E, bond-flipping Monte Carlo
moves have been implemented to model the in-plane flu-
idity of the bilayer membrane. It is expected that the
frequency of proposing bond-flipping moves, φ, is corre-
lated with the actual fluidity of the membrane. The flu-
idity of the 2D liquid is described in terms of the surface
viscosity, which arises from the assumed linear relation
between the in-plane shear stress and the corresponding
velocity gradient. This assumption in effect means that
the bond-flipping moves give rise to a Newtonian fluid.
In order to measure the surface viscosity of the mem-
brane, simulation of a 2D Poiseuille flow under the in-
fluence of a gravity-like force f = (mg, 0) with fixed par-
allel boundaries is performed70. The whole membrane
patch is kept in a planar configuration by adding har-
monic penalty for displacement in the normal direction.
In order to use the Nosé-Hoover chains for thermostatting
in this non-equilibrium setup, corresponding corrections
to particle velocities are applied relative to the center of
mass velocity. Reaching steady-state, the velocity com-
ponent in the flow direction develops into the well-known
parabolic profile with vmax = ρgL2/8η, where ρ and η
are the membrane’s surface density and surface viscosity,
respectively. Superimposed frames on Fig. 6 show devel-
opment of the flow in the simulated model for the case
of φ = 5ns−1 at T = 298K. Values of surface viscosity
(in units of surface poise) versus the bond-flipping fre-
quency are also given in Fig. 6. As is expected, surface
viscosity of the membrane decreases rapidly as the fre-
quency of bond-flipping moves increases from 5 ns−1 to
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Figure 6: Surface viscosity of the membrane model as a
function of the frequency of bond-flipping moves at T =
298K. Superimposed simulation snapshots show the

development of Poiseuille flow under a gravity-like force
for the case of φ = 5ns−1. The color gradient

corresponds to the initial position of particles in the
flow direction. The solid red line is the function
η = η∞ exp (Cφ/φ) fitted to the simulation results.

50 ns−1. The red line is a least squares fit of the function
η = η∞ exp (Cφ/φ) to the simulation results with η∞ =
8.65× 10−10 sp and Cφ = 26.53ns−1. Surface viscosity
of different phospholipid bilayers have been measured to
be in the range 10−7 to 10−5 sp101–104. If we employ this
exponential fit, choosing the bond-flipping frequency in
the range φ = 2.8 to 5.6 ns−1 reproduces the experimen-
tal range of surface viscosities. It is to be noted that in
principle, surface viscosity is a kinetic property dictated
by the in-plane dynamics of the model, which in turn de-
pends on the time integration scheme. Thus, the general
procedure described in this section has to be repeated if
another integrator is used.

D. Nanoparticle wrapping

As a final test of the usefulness of our membrane model
to handle substantial deformations and model biologi-
cally relevant membrane remodeling processes, we simu-
late the interaction of spherical nanoparticles with the
membrane, as a well-known benchmark system105–109.
This simple system mimics the endocytosis of nanoparti-
cles or viral capsids by cell membranes. It is a useful test
for the membrane model to show that a) the model offers
enough flexibility to simulate the budding behavior of bi-
layer membranes, and b) if it correctly reproduces the in-

Figure 7: Representative snapshots of a nanoparticle
wrapping simulation for a 100nm spherical nanoparticle
with the dimensionless adhesion energy of u = 3.0 and

interaction range of ρ = 0.1R.

terplay between bending and adhesion energies. For this
computational experiment, a spherical nanoparticle with
the radius of R is put in the simulation box in the vicin-
ity of a square shaped membrane patch. The nanopar-
ticle interacts with the membrane through a Morse-type
surface adhesion energy density of Up exp [− (r −R) /ρ],
where r is the radial distance between the center of the
nanoparticle and the membrane surface. For this type of
nanoparticle-membrane interaction, and with a contin-
uum membrane model, semi-analytical studies105 have
been carried out on the degree to which the surface of
the nanoparticle is covered by the membrane, as a func-
tion of the dimensionless adhesion energy u = UpR

2/κ
as well as the potential range, ρ. The parameter u is
the ratio between the nanoparticle-membrane adhesion
energy and the energy needed to bend the membrane
to a spherical shape. In order to obtain an approxima-
tion of minimum energy configurations of the membrane,
and make a more meaningful comparison of the results
with analytical models, simulated annealing is performed
on the system of nanoparticle interacting with the mem-
brane. The temperature of the system is decreased from
300K to 50K in 25 consecutive steps, and the system
is equilibrated in each step. Fig. 7 shows snapshots of
the simulation performed for a spherical nanoparticle of
100nm radius interacting with a 1µm membrane patch,
with u = 3.0, and ρ = 0.1R = 10nm. Values of nanopar-
ticle surface coverage for different choices of u, and for
the same interaction range of ρ = 0.1R are given in Fig.
8. Added on the figure is the prediction of the contin-



11

0.5 1.0 1.5 2.0 2.5 3.0 3.5
u

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rf
ac
e
co
ve
ra
ge

Figure 8: Fraction of nanoparticle’s surface engulfed by
the membrane as a function of dimensionless adhesion
energy, u, for the same interaction range of ρ = 0.1R.
The continuous red line represents the prediction of the

continuum model105. Superimposed are two slides
showing “heat maps” of particle positions in final stages
of nanoparticle wrapping. The green curves in the slides

are catenary curve fits to the neck regions,
corresponding to zero energy surfaces.

uum model105 (red line). It is observed that the model
follows this prediction with very good accuracy. The fig-
ure includes two slides showing “heat maps” of particle
positions in final stages of nanoparticle wrapping for the
two cases with u = 1.5 and u = 3.0. On the slides, cate-
nary curves are fitted to the neck region (green lines).
A catenoidal membrane segment, which corresponds to
zero bending energy, is expected in the unbound neck re-
gion, when the interaction range ρ approaches zero105.
Yet, for non-zero interaction range, the catenary is still
a good approximation for this region105. The good fit
to the catenary curve is an indication that the particle-
based model very well captures the zero-energy regions
and assumes corresponding minimal surface geometries.

V. CONCLUSION

We have described a strongly coarse-grained model
for simulating lipid bilayer membranes that is similar in
nature with triangulated surface models, but is purely
particle based, and as such is suitable for seamless inte-
gration into interacting-particle reaction-diffusion simu-
lations. The model incorporates particle dimers, repre-
senting each leaflet with particles in a close-packed ar-
rangement, and is thus suitable for distinguishing the

effects corresponding to interior and exterior of cells.
The lattice parameters are in the 10 nm range, leading
to each particle to laterally represent more than a hun-
dred lipid molecules. The model relies on bond-stretching
and angle-bending interactions among nearest-neighbor
particles with parameters optimized to reproduce a pre-
scribed macroscopic curvature elasticity. It is to be noted
that representation of two leaflets with particle dimers
also makes the inclusion of area difference elasticity pos-
sible.

It has been observed that giant plasma membrane vesi-
cles generated from cell membranes are “optically ho-
mogeneous” at physiological temperatures110. This in
essence means that on length scales of a few hundred
nanometers and above, these vesicles, which contain com-
plex lipid and protein composition similar to cell mem-
branes without cytoskeleta, look like and behave like
reconstituted homogeneous vesicles made from a single
species or a few species of lipids. Thus, whereas cell
membranes have a complex composition of a multitude
of lipids and proteins, which would be hard or impossi-
ble to model bottom up via molecular or coarse-grained
approaches, their mechanical behavior and assumed ge-
ometries at sufficiently large length scales can be satis-
factorily modeled using an elastic membrane model, such
as the one proposed in this paper.

We demonstrated that the proposed model reproduces
the mesoscopic physics of bilayer membranes accurately,
by studying thermal undulations, area compressibility,
shear flow, and nanoparticle wrapping in a quantita-
tive manner. These computer experiments have proven
the model to be reliable in different equilibrium and
non-equilibrium simulations, and correctly predict the
expected behavior of lipid bilayer membranes as two-
dimensional fluids obeying curvature elasticity. Further-
more, it was shown that the model is tunable to include
additional physical properties, such as the area compress-
ibility modulus, via the choice of a family of potential
parameters, while keeping its curvature elasticity intact.
Finally, the fact that the in-plane fluidity of the mem-
brane can be adjusted through choosing the frequency of
bond-flipping moves endows the model with the ability
to include regions with different viscosities, and to mimic
phenomena such as lipid rafts.

The proposed model achieves remarkable computa-
tional efficiency by avoiding non-bonded pairwise inter-
actions. With the MTK integrator used here, in the
case of a 1µm membrane patch that constitutes about
23 000 particles, simulations done on a 2.66GHz machine
achieved 1 µs long trajectories in less than one hour of
CPU time. The small time step of 20ps used here is
due to very small particle masses. Though limiting the
time step in molecular dynamics, the small masses lead
to vanishing inertial contributions. Thus, if the Langevin
dynamics is applied, and a stochastic integrator with sig-
nificant damping corresponding to actual biological en-
vironment is used, much larger time steps are expected.
This will pave the way for simulating cellular processes
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in their actual time scale.
Our simulations of the wrapping of spherical nanopar-

ticles demonstrate that the presented model is able to
capture biologically relevant membrane remodeling pro-
cesses such as pit formation and endocytosis, where large
local curvatures are induced as a result of external in-
teractions. In contrast with the nanoparticle wrapping
simulations, protein-membrane interactions can be mod-
eled more naturally by including the induced local curva-
tures into the bonded interactions themselves. In PBRD
or iPRD frameworks, such effects can naturally be mod-
eled using reversible binding-unbinding reactions. Armed
with these capabilities, we ultimately aim to use this
coarse-grained model in the context of iPRD simulations
to study cellular signal transduction at large spatiotem-
poral scales.
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9, 1005 (2017).

15P. Tiwary, J. Mondal, and B. J. Berne,
Sci. Adv. 3, e1700014 (2017).

16J. D. Chodera, W. C. Swope, F. Noé, J. H. Prinz, M. R. Shirts,
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32J. Schöneberg, M. Lehmann, A. Ullrich, Y. Posor, W.-T.
Lo, G. Lichtner, J. Schmoranzer, V. Haucke, and F. Noé,
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