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Abstract. The dynamic state index (DSI) is a scalar field that combines variational

information on the total energy and enstrophy of a flow field with the second law of

thermodynamics. Its magnitude is a combined local measure for non-stationarity, dia-

baticity, and dissipation in the flow, and it has been shown to provide good qualitative

indications for the onset and presence of precipitation and the organization of storms.

The index has been derived thus far for ideal fluid models only, however, so that one

may expect improved and quantitative insights from a revised definition of the quantity

that includes more complex aerothermodynamics. The present paper suggests definitions

of the DSI for flows of moist air with phase changes and precipitation.

Keywords: moist processes, phase changes, Dynamic State Index, entropy, potential

vorticity

1. Introduction

The Dynamic State Index (DSI) is a parameter based on first principles of fluid mechan-

ics that indicates local deviations of the atmospheric flow field from a stationary, adiabatic

and inviscid solution of the primitive equations. This basic state – and thus the DSI –

can be derived for different models for various scales in time and space, where the DSI-

signal indicates different atmospheric processes.On the meso-scale Weber and Névir [2008]

show how the characteristic dipole structure of the Dynamic State Index can be used to

diagnose hurricanes. On the convective scale the DSI based on the primitive equations

is strongly correlated with intensive precipitation processes. Particularly, the DSI indi-

cates strong updrafts within elongated frontal precipitation bands that are characterized

by large precipitation intensities [Claussnitzer et al., 2008, Claussnitzer and Névir, 2009,

Claussnitzer et al., 2011, Gaßmann, 2014, Weijenborg et al., 2015]. These results motivate

us to investigate DSI-like indices for the equations of motion for moisture processes.

In this work we incorporate moisture into the derivation and definition of the Dynamic

State Index (DSI), where we start with considering only water vapor. In a next step we

include liquid water and finally also phase changes and precipitation. A comparison of

these different DSI’s will in particular allow to determine more precisely what causes the

deviations from the stationary wind, i.e. if these are due to phase changes or precipitation,

or if instationarity is the main reason. We only consider water present in the gaseous state

Date: September 14, 2017.

1



2 S. HITTMEIR, R. KLEIN, A. MÜLLER, AND P. NÉVIR

and, if condensation takes place, also in the liquid state as cloud water and rain water,

where the latter has an individual relative vertical velocity with respect to the moist air.

2. The DSI with moisture and phase changes

2.1. Generalized construction of the DSI. To derive the DSI for a given model we

will start with the corresponding set of equations of motion and derive the steady wind

leading to the scalar DSI-field that indicates the deviations of this basic state. Thus,

starting point for the derivation of the DSI as in [Névir, 2004], see also Névir and Sommer

[2009], Seltz [2010], are the equations of motion

∂tv + v · ∇v + 2Ω× v = −1

ρ
∇p−∇φ+ F (1)

where F denotes frictional forces, φ the geopotential height field, p the pressure, ρ the

density and Ω the rotation of the earth. The equation also holds equally for moist and

cloudy air. Denoting here and in the following the vorticity and absolute vorticity as

ξ = ∇× v and ξa = ξ + 2Ω (2)

and making use of the Weber-Transform

v · ∇v = ξ × v +
1

2
∇v2 , (3)

the momentum equation becomes

∂tv + ξa × v +
(1

2
∇v2 +

1

ρ
∇p+ ∇φ

)
︸ ︷︷ ︸

=:∇B+G

= F , (4)

where B denotes the Bernoulli function

B =
1

2
v2 + hgen + φ and G =

1

ρ
∇p−∇hgen . (5)

Here hgen is the enthalpy or an according normalisation of it to be specified for the par-

ticular flow regimes under consideration below. We now let Πψ be the potential vorticity

defined as

Πψ =
ξa · ∇ψ

ρ
, (6)

where typically ψ is a conserved quantity in adiabatic motion without friction and external

forces, i.e.

dψ

dt
= ∂tψ + v · ∇ψ = 0 . (7)

The incorporation of latent heating terms later however requires to keep it more general,

where we assume

dψ

dt
= Sψ , (8)
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which in particular allows to incorporate source terms such as latent heating. We then

build the cross product of (4) with ∇ψ to obtain

(∂tv − F +∇B + G)×∇ψ = −(ξa × v)×∇ψ = ξa v · ∇ψ − v ξa · ∇ψ

= −ξa∂tψ − v ρΠψ + ξa Sψ (9)

In a similar fashion to Schär [1993] for the dry air case we now define the stationary wind

from (9) by assuming stationarity and neglecting friction, leading to

vψst = − 1

ρΠψ

[
(∇B + G)×∇ψ − ξa Sψ

]
. (10)

The definition of the DSI according to Névir [2004], Névir and Sommer [2009] then results

from the continuity equation for the stationary wind with a normalization as follows

DSIψ = −(Πψ)2

ρ
∇ · (ρvψst) =

(Πψ)2

ρ
∇ ·
[ 1

Πψ

(
(∇B + G)×∇ψ − ξa Sψ)

)]
. (11)

Thus for a frictionless, adiabatic and stationary flow field the DSI vanishes, since there

the stationary wind satisfies the continuity equation amounting to ∇ · (ρvψst) = 0 and the

DSI thus measures deviations from this basic state. Such a basic state can be derived for

different models allowing, in general, for a geometric interpretation of the DSI on constant

surfaces. Let e.g. ψ = Θ. Then, on isotropic surfaces, the stationary wind based on

the primitive equations blows along the isolines of the Bernoulli stream function as well

as the PV, and the DSI signal indicates non-alignments of these fields which are related

to atmospheric processes. This concept can be generalized for the equations of motion

including moist air. But the entropy, Bernoulli function, PV and potential temperature

need to be adapted to the given model to derive a corresponding basic state and a DSI.

In the following we will (i) corroborate the classical DSI based on the primitive equations

of motion, derive (ii) a DSI for moist air without phase changes and (iii) integrate phase

changes into the equations of motions.

In general, the vorticity equation and thus the PV can be derived as follows. Starting

with the equation of motion

∂v

∂t
+ ξa × v = −∇µ− s∇T (12)

with

µ =
1

2
v2 + φ+ e+ pv − Ts (13)

and calculating ∇× (12) leads to the following representation of the vorticity equation:

∂ξ

∂t
+∇× [ξa × v] = −∇s×∇T . (14)

Incorporating the conservation of mass via the continuity equation and multiplying by ∇ψ
leads to the potential vorticity equation:

d

dt

(
ξa
ρ
· ∇ψ

)
− ξa

ρ
· ∇ d

dt
ψ =

1

ρ
(∇T ×∇s) · ∇ψ (15)
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Thus, the potential vorticity (6) is conserved if the multiplication of last equation with

∇ψ leads to a vanishing left hand side (substantial conservation) as well as a vanishing

the right hand side (vanishing solenoidal term), i.e.:

dψ

dt
= 0 and ∇ψ · (∇s×∇T ) = 0 . (16)

The potential vorticity equation can also be applied to models including moist processes.

Considering ρ as total density and the entropy s for the atmospheric models with mois-

ture, we can choose ψ = s such that the solenoidal term vanishes in all cases. Schubert

[2004] discusses the potential vorticity in terms of different expressions of the potential

temperature. In our general theoretical context the physical quantity entropy seems to

be more appropriate. Without doubt, the potential temperature is a useful parameter

for interpretation and modeling of thermodynamic processes in the atmosphere. In the

cases s = s(θ), we can come back to the potential temperature. For the dry air case with

s = s(θ) we can choose ψ = θ.

2.2. The DSI for dry air. We will derive the stationary wind and the DSI for the

primitive equations for dry air corroborating the DSI introduced by Névir [2004]. For the

derivations of the DSI for moist air we will follow the same steps, but adapting the entropy,

and thus the Bernoulli function, the potential temperature and the potential vorticity to

the particular models. The entropy for dry air reads (up to integration constants)

s = cpd lnT −Rd lnp . (17)

For the total and spatial derivatives it holds that

ds = cpdd lnT −Rdd ln p = cpdd ln θ , (18)

where θ is the potential temperature

θ = T

(
p0

p

) Rd
cpd

. (19)

We notice that in this case s = cpd ln(θ/θ0) and thus s = s(θ). The potential temperature

is conserved during adiabatic frictionless motion and therefore it makes the natural choice

ψ = θ . (20)

The according Ertel’s potential vorticity

Πθ =
ξa · ∇θ
ρ

, (21)

is also conserved during frictionless motion. To see this we note that the solenoidal term

in the PV-equation cancels since according to the ideal gas law

p = RdρT (22)

we can rewrite

θ = T

(
p0

p

) Rd
cpd

=
p

Rdρ

(
p0

p

) Rd
cpd

(23)
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and thus ∇θ × (∇ρ×∇p) = 0.

For the dry air case the enthalpy h (up to integration constants) is defined by

h = cpdT (24)

and satisfies

dh = Tds+
1

ρ
dp , (25)

where we have again used the ideal gas law (22). Thus setting H = h in the Bernoulli

function we obtain the identity

G = −T∇s , (26)

which satisfies, making use of (18),

G×∇θ = 0 . (27)

For the dry air case the stationary wind is thus given by

vθst =
1

ρΠθ
∇θ ×∇B (28)

and the DSI according to (83) reduces to

DSIθd =
1

ρ
∇Πθ · (∇θ ×∇B) , (29)

where we have used the fact that ∇ · (∇θ × ∇B) = 0. This amounts to the original

definition of the DSI introduced by Névir [2004] and can also be expressed as

DSIθd =
1

ρ

∂(θ,Πθ, B)

∂(x, y, z)
. (30)

Alternatively we could also use as a conserved quantitiy in this case

ψ = s and Πs =
ξa · ∇s
ρ

. (31)

Then, as above, G×∇s = 0 and

DSIsd =
1

ρ
∇Πs · (∇s×∇B) . (32)

Moreover once can compute the following proportionality

DSIsd =
c2
pd

θ2
DSIθd . (33)
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2.3. The DSI for moist air. In the following we well derive the Dynamic State Index

based on the equations of motion for moist air. Thereby, we will first consider no phase

changes and include phase changes in sec. 2.4. As a measure of quantification for the

water vapor we use the mixing ratio

qv =
ρv
ρd

= E
e

pd
, where E =

Rd
Rv

, (34)

and where we have used the fact that from the ideal gas law

pd = ρdRdT and e = pv = ρvRvT. (35)

For the pressure p in case of moist air and no phase changes we thus obtain from the ideal

gas law equivalently the formulations

p = ρd(Rd + qvRv)T =: ρdR
′T (36)

and equivalently also

p = RdρT
1 + qv

E

1 + qv
=: RdρTv (37)

where Tv is referred to as the virtual temperature. We assume here in a first step that qv

is conserved, i.e. in particular we assume no phase changes to take place and no liquid

water to be present,

dqv
dt

= ∂tqv + v · ∇qv = 0 . (38)

Following Emanuel [1994] the entropy is then given by

sTv = (cpd + qvcpv) lnT − (Rd ln pd + qvRv ln e) , (39)

which, making use of (34), can alternatively be rewritten as

sTv = c′p lnT −R′ ln p+R′ ln
(
1 +

qv
E

)
− qvRv ln

qv
E

(40)

where here and in the following we denote

c′p = cpd + qvcpv , R′ = Rd + qvRv . (41)

For the total derivative we have due to the conservation of qv

dsTv
dt

= c′p
d lnT

dt
−R′d ln p

dt
= c′p

d ln θ′

dt
, (42)

where θ′ is the modified potential temperature

θ′ = T

(
p0

p

)R′
c′p
, (43)

see also Emanuel [1994]. Thus, during isentropic motion, θ′ is conserved and we therefore

choose

ψ = θ′ and Πθ′ =
ξa · ∇θ′

ρ
. (44)

The potential vorticity Πθ′ is a conserved quantity during frictionless motion, because we

consider constant mixing ratio leading to the conservation of the potential temperature.
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Moreover, the solenoid term vanishes, because sTv = c′p ln(θ′/θ′0) and thus sTv = sTv (θ′).

Thus, in the case of moist air as well the potential temperature as the entropy can be

used.

To obtain the appropriate definition for the DSI (and the stationary wind) for moist air

with water vapor it now remains to determine the Bernoulli function Bv for moist air to

determine the remainder function Gv. We set

hgen =
h

1 + qv
, (45)

where we note that the normalization of h by (1 + qv) = ρ
ρd

is chosen due to the fact that
1
ρd
∇p arises in the gradient ∇h instead of 1

ρ∇p. For the remainder we thus have

Gv =
1

ρ
∇p−∇hgen =

1

ρ
∇p− hgen∇ lnT −H

cpv − cpd
c′p

∇ ln(1 + qv) . (46)

Inserting further

∇ ln θ′ = ∇ lnT − R′

c′p
∇ ln p+

Rvcpd −Rdcpv
c′2p

ln
p0

p
∇qv (47)

we obtain

Gv = −hgen∇ ln θ′ +Aθ
′
v ∇qv , (48)

where

Aθ
′
v = Aθ

′
v (p, T, qv) = −hgen

( cpv − cpd
(1 + qv)c′p

+
Rvcpd −Rdcpv

c′2p
ln
p0

p

)
. (49)

This gives for the cross product

Gv ×∇θ′ = Aθ
′
v (∇qv ×∇θ′). (50)

And the Bernoulli function for moist air without phase changes reads as

Bv =
1

2
v2 + hgen + φ . (51)

Therefore for the stationary wind results in

vθ
′
st,v = − 1

ρΠθ′

[
(∇Bv ×∇θ′) +Aθ

′
v (∇qv ×∇θ′)

]
. (52)

and accordingly the DSI for moist air and constant phase change can be formulated as:

DSIθ
′
v =

(Πθ′)2

ρ
∇ ·
[ 1

Πθ′

(
(∇Bv ×∇θ′) +Aθ

′
v (∇qv ×∇θ′)

)]
. (53)

We see that for qv = 0 the DSIθ
′
v and the stationary wind vθ

′
st,v reduce to the according

relations for the dry air case.

From (42) follows that the the entropy sTv is conserved. Therefore, we chose the entropy

instead of θ′, i.e.

ψ = sTv and ΠsTv =
ξa · ∇sTv

ρ
. (54)
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We remark that the commonly used notation of s for the entropy is here changed to sTv
such that we can distinguish between the basic states and Dynamic State Indices for the

different models, where v denotes water vapor and T the total entropy. One can compute

Gv ×∇sTv = Asv(∇qv ×∇sTv ) (55)

with

Asv = hgen

(cpv
c′p

(lnT − 1)−Rv ln e− 1

1 + qv

)
. (56)

Similar to above, we then obtain

vsst,v =
1

ρΠsTv

[
(∇sTv ×∇Bv) +Asv(∇sTv ×∇qv)

]
(57)

and

DSIsv =
(ΠsTv )2

ρ
∇ ·
[ 1

ΠsTv

(
(∇Bv ×∇sTv ) +Asv(∇qv ×∇sTv )

)]
. (58)

Compared to the DSI for dry air (29) the DSI for moist air and constant phase change

gains an additional term including the mixing ratio. This term already appears in the

stationary wind representation such that one velocity component of this stead wind is

directed along the isolines of the mixing ratio.

2.4. The DSI for cloudy air. We next take into account liquid water, where we assume

the latter to be present only in form of cloud water having to relative velocity components,

i.e. we have the moisture quantities

qv =
ρv
ρd
, qc =

ρc
ρc
, (59)

such that the liquid and total water amount correspond to

ql = qc , qT = qv + qc . (60)

For the moisture components we have the balance laws

dqv
dt

= −Scd ,
dqc
dt

= Scd , (61)

where Scd denotes the process of condensation and inverse evaporation. Obviously

dqT
dt

= 0 . (62)

The enthalpy in the case of liquid water being present reads (again up to constants)

hTl = (cpd + qT cl)T + Lqv , (63)

see e.g. Emanuel [1994]. Since

dL = (cpv − cl)dT (64)

we have for the gradient

∇hTl = c′p∇T + L∇qv + clT∇qT , (65)
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where we denote similar to above

c′p = cpd + qvcpv + qlcl . (66)

The entropy in the case of cloudy air, respectively liquid water, is given by

sTl = (cpd + qT cl) lnT −Rd ln pd +
Lqv
T
− qvRv lnH (67)

where H = e
e∗ . We remark that the inclusion of the phase change, we do not find a

potential temperature that directly depends on the entropy, because the entropy is not

conserved. For the saturation vapor pressure e∗ we thereby have the Clausius Clapeyron

equation

d ln e∗ =
LdT

RvT 2
. (68)

Using moreover the relation L = TRv lnH we can compute the gradient of the entropy as

∇sTl = c′p∇ lnT −R′∇ ln p+ cl lnT∇qT , (69)

where as before R′ = Rd +Rvqv. We thus further obtain

1

ρ
∇p =

1

1 + qT
(c′p∇T − T∇s+ clT lnT∇qT ) . (70)

We note that the pressure is given by p = pd+pv which the same pressure as for the moist

air model we discussed in 2.3. Setting similar to before

hgen =
hTl

1 + qT
(71)

and using (65) we can rewrite (70) as

1

ρ
∇p = ∇hgen −

T

1 + qT
∇sTl + clT (lnT − 1)∇ ln(1 + qT )− L∇qv

1 + qT
+ hgen∇ ln(1 + qT ) .(72)

The resulting expression for G is then

Gl =
1

ρ
∇p−∇hgen = − T

1 + qT
∇sTl + clT (lnT − 1)∇ ln(1 + qT )− L∇qv

1 + qT
+ hgen∇ ln(1 + qT ) .(73)

It remains to determine the quantity ψ. We therefore note that due to the conservation

of qT we have

dsTl
dt

= c′p
d lnT

dt
−R′d ln ρ

dt
. (74)

Since however the individual moisture components qv and qc are not conserved, the deriv-

ative d
dt

(
R′

c′p

)
does not vanish and hence we cannot express

dsTl
dt solely in terms of d

dt ln θ′.

Thus we use

ψ = sTl and ΠsTl =
ξa · ∇sTl

ρ
. (75)

Here, the potential vorticity is not conserved, because the entropy is not conserved and

the solenoidal term does not vanish. From the thermodynamic equation for cloudy air we

obtain

dsTl
dt

= c′p
d lnT

dt
−R′d ln p

dt
= −L

T

dqv
dt

(76)
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see e.g. Cotton et al. [2010] or Hittmeir and Klein [2017]. We thus have

SsTl
= −L

T

dqv
dt

=
L

T
Scd (77)

and also

Gl ×∇sTl = (Asc,1∇qT +Asc,2∇qv)×∇sTl (78)

where

Asc,1 =
c′pT

1 + qT

( cl
c′p

(lnT − 1) +
hgen

c′pT

)
, Asc,2 = − L

1 + qT
(79)

resembling (56). We notice the Bernoulli function for cloudy air

Bl =
1

2
v2 + hgen + φ (80)

and finally, the stationary wind and the DSI result in

vsst,c =
1

ρΠsTl

[
∇sTl ×∇Bl +∇sTl × (Asc,1∇qT +Asc,2∇qv) + ξa

L

T
Scd

]
. (81)

and

DSIsc =
(ΠsTl )2

ρ
∇ ·
[ 1

ΠsTl

(
∇BsTl ×∇sTl + (Asc,1∇qT +Asc,2∇qv)×∇sTl − ξa

L

T
Scd

)]
. (82)

Thus, compared to the previous derived steady wind and DSI for moist air and constant

phase change the DSI for cloudy air is extended by two further terms containing the total

water content and the latent heat release. Therefore, for this basic state, the adiabatic

condition does not hold anymore, it describes a stationary and inviscid wind field.

3. Conclusion

We have derived Dynamical State Indices for fluid mechanical models that include moist

processes. For the primitive equations without moist processes the DSI indicates non-

stationary, diabatic and dissipative atmospheric processes and the balanced basic state is

given by the stationary wind under adiabatic and inviscid conditions. In an hierarchical

way we discuss three generalizations to include moisture processes into the DSI-concept.

First we included water vapor neglecting phase changes and second, we considered water

vapor together with phase changes. For all models we first derived the associated basic

states, where only the basic state water vapor without phase changes is still characterized

by adiabatic conditions. The second generalization of the basic state incorporates diabatic

but also reversible conditions. In general, the Dynamic State Index reads as:

DSIψ = −(Πψ)2

ρ
∇ · (ρvψst) . (83)



DSI WITH MOISTURE 11

which can be transferred to all models. The different steady wind representations including

the dry case can be summarized as follows:

vsst =
1

ρΠs
∇s×∇B

vsst,v =
1

ρΠsTv

[
(∇sTv ×∇Bv) +Asv(∇sTv ×∇qv)

]
vsst,c =

1

ρΠsTl

[
∇sTl ×∇Bl + sTl × (Asc,1∇qT +Asc,2∇qv) + ξa

L

T
Scd

]
,

(84)

where the density and the pressure denotes the total density, respectively pressure, for the

whole adapted model. We consider isentropic surfaces. Comparing the dry case, where the

steady wind blows parallel to the Bernoulli function, with the moist air case an additional

velocity component appears which is directed along the isolines of the mixing ratio. For

the second case, additionally the total water amount and a term with latent heat release

is included in the basic state. the non vanishing DSI indicates only non-stationary and

viscous processes.

We formulate the DSI for dry air and the DSI for moist air without phase changes in

terms of Jacobi determinant:

DSIsd =
1

ρ
∇Πs · (∇s×∇B) =

1

ρ

∂(s,B,Π)

∂(x, y, z)

DSIsv =
(ΠsTv )2

ρ
∇ ·
[ 1

ΠsTv

(
(∇Bv ×∇sTv ) +Asv(∇qv ×∇sTv )

)]
=

1

ρ

(
∂(sl, Bl,Π

sTl )

(x, y, z)
+Asv

∂(sTl , qv,Π
sTl )

(x, y, z)

) (85)

We find different basic states for the different equations of motions and thus the cor-

responding DSI’s indicate different atmospheric processes. While the DSI for the dry

atmospheric state describes deviations from a stationary, adiabatic, inviscid basic state,

the basic state for moist air already contains diabatic processes and thus it might be a

more precise index to capture non-stationary phase changes, which are more closely related

to precipitation processes.
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