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ABSTRACT

The Dynamic State Index (DSI) is a scalar diagnostic field that quantifies

local deviations from a steady and adiabatic wind solution and thus indicates

non-stationarity as well as diabaticity. The DSI-concept has originally been

developed through the Energy-Vorticity Theory based on the full compressible

flow equations without regard to the characteristic scale-dependence of many

atmospheric processes. Such scale-dependent information is often of impor-

tance, and particularly so in the context of precipitation modeling: Small scale

convective events are often organized in storms, clusters and “Großwetter-

lagen” across a wide range of scales. A concrete example shows that, by

combining the DSI concept with ideas of scale analysis, one can derive new

scale-dependent DSI-like indicators that distinguish the different levels of or-

ganization in precipitation systems.

The example consists of (i) developing a DSI index for the quasi-geostrophic

model using the Energy-Vorticity Theory, (ii) showing that it is asymptotically

consistent with the original index for the primitive equations, and (iii) evalu-

ating both indices for meteorological reanalysis data to demonstrate that they

capture systematically different scale-dependent precipitation information.

A spin-off of the asymptotic analysis is a novel non-equilibrium time scale

combining potential vorticity and the DSI indices. Its possible ramifications

for turbulence modeling across a wide range of atmospheric scales is briefly

mentioned.
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1. Introduction32

Meteorological observations and numerical flow simulations are often interpreted in terms of33

“anomalies” of dynamic variables. Typically, these are obtained as local deviations from large-34

scale space, time, or ensemble mean states, (see, e.g., Martius et al. 2016; Allan and Soden 2008;35

Saji et al. 1999), and their structure is taken to be indicative of ongoing dynamic processes. A36

somewhat unsatisfactory aspect of this approach is that the meteorological interpretation of the37

underlying mean states is generally rather difficult: Neither can the time series of such mean38

states be expected to constitute flow solutions all by themselves, nor does any instantaneous mean39

state have particular meteorologically distinct features that would justify its use as a reference40

for measuring anomalies. Hence, although such analyses of anomalies have undoubtedly proven41

useful in pragmatic terms, a theoretically interesting question remains: What is the proper physical42

interpretation of the distance between an observed or simulated state on the one hand, and such an43

averaged but otherwise not really distinct state on the other?44

The Dynamic State Index (DSI), the definition of which is given in (11) below, is a quantita-45

tive scalar indicator for ongoing nonstationary, diabatic, and dissipative processes that avoids this46

uncertainty of interpretation. It is a parameter based on first principles of fluid mechanics (Névir47

2004; Névir and Sommer 2009) that locally quantifies non-stationarity, diabaticity, and viscous48

dissipation in a solution of the primitive equations without relying on a reference field. While the49

index thus has a mathematically precise definition and physically clear interpretation, it has at least50

two shortcomings in comparison with the, generally multivariate, anomalies: First, it melds three51

process properties into a single scalar, leaving unaddressed the question which of the properties52

is how important in any given situation. Secondly, being a local quantity obtained from point-53

wise evaluated gradients of the primary flow variables, it does not reveal any information on the54
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scale-dependence of the indicated processes. In the present paper we begin to address the second55

issue by demonstrating how scale-dependent versions of the index reveal features of organization56

of precipitation on different spacio-temporal scales.57

So far, the DSI based on the primitive equations (DSIPE) has been applied to data sets with dif-58

ferent resolutions for different scales (Gaßmann 2014; Claussnitzer and Névir 2009; Claussnitzer59

et al. 2011). On synoptic scales, using ECMWF’s ERA-40 Reanalysis data set, it has been shown60

that the DSI indicates waves and vortices caused by baroclinic instability. On the meso-scale, the61

DSI field can be applied to detect hurricanes as discussed in Weber and Névir (2008). On this62

scale cyclones, hurricanes and storms become visible as DSI dipole structures. As an example,63

these authors illustrated the dipole structures of the storm Lothar in December 26, 1999 and of64

hurricane Andrew in August 1992. Finally, on convective scales the DSI indicates cumulonim-65

bus clouds with strong updrafts within the associated elongated frontal precipitation bands. Thus,66

Claussnitzer et al. (2008) and Weijenborg et al. (2015) found that the DSI is strongly correlated67

with intense convective precipitation processes.68

Thus, there is clear evidence that the DSIPE highlights different processes on different scales in69

data that are scale-filtered by limited numerical resolution. Yet, the interesting question of whether70

DSI-like quantities could be used to identify different processes that are simultaneously active on71

different scales in high resolution simulations or observations remains open. The present paper72

documents our first steps towards resolving this issue.73

In section 2 we recall the derivation of the DSI for the primitive equations based on arguments74

of the Energy-Vorticity Theory. In section 3 we apply the same concepts to define a Dynamic75

State Index, DSIQG, for the quasi-geostrophic (QG) model which, by the nature of the QG theory,76

is indicative of non-stationarity, diabaticity, and dissipation in geostrophically balanced synoptic77

scale flows.78
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In section 4 we consider, in contrast, the asymptotics of the DSIPE in the quasi-geostrophic flow79

regime. The reassuring result is that its leading-order approximation is equivalent to the DSIQG80

derived in section 3, so that the DSIPE inherits the clear physical interpretation of the DSIQG when81

applied to geostrophically balanced flows. An interesting additional aspect of the asymptotics is82

the extreme rescaling of the DSIPE amplitude with increasing spacio-temporal scales: If the DSIPE83

evaluated on the meso-gamma scale of ∼ 10 km is taken as a reference, and ε � 1 is the synoptic84

flow Rossby number, then the DSIPE evaluated on synoptic-scale geostrophically balanced data85

scales as ε10! While this can be traced back to straighforward scaling properties as explained86

in section 4, this extreme scaling implies that quite sophisticated data analysis techniques will87

have to be invoked (in future work) to robustly extract scale-dependent DSI-information from88

high-resolution multiscale flow fields. In section 5, in turn, we consider COSMO-DE Reanalyses89

data of precipitating flow fields, compare the output of the DSIPE with that of its quasi-geostrophic90

analogue, the DSIQG, and interpret the results based on the foregoing analytical insights. Section 691

provides conclusions and an outlook to future work.92

2. The Dynamic State Index for the primitive equation93

Hitherto, the Dynamic State Index (DSIPE) has been derived and analyzed only for the most94

comprehensive case, the system of primitive equations. This parameter quantifies how far local95

flow conditions deviate from stationarity, adiabaticity, and inviscid behavior (Névir 2004). A96

physically intuitive interpretation of the index in terms of Schär’s steady wind expression (Schär97

1993) is given here as follows: First, we will follow Weber and Névir (2008) and derive the steady98

wind in terms of the Energy-Vorticity Theory (EVT). The EVT for adiabatic, inviscid fluids treats99

the globally conserved quantities, energy and Ertel’s PV, equally. Second, we will motivate the100

DSI in terms of this steady wind and the conservation of mass. And third, we will relate the101
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DSI, respectively the steady wind, to other meteorological fields commonly used in atmospheric102

dynamics and show that this index provides a tool to measure energy-vorticity imbalances.103

a. Derivation of the DSIPE from the Energy-Vorticity Theory104

The total energy of an ideal fluid H is given by the sum of the kinetic, potential and internal105

part:106

H =
∫

V
dτρ

[
1
2

v2 +φ + e(v,s)
]

(1)

with density ρ , 3D velocity v, potential of the external gravity field φ and specific internal energy107

e(v,s) that depend on the specific volume v and the specific entropy s. Ertel’s potential enstrophy108

E reads:109

E =
1
2

∫
V

dτΠ
2 with Π =

ξa ·∇s
ρ

(2)

where ξa =∇×v+2ω is the absolute 3D vorticity vector with angular velocity of the earth ω. To110

derive the steady wind, we recall from Claussnitzer (2010) that a stationary fluid dynamical state111

can be expressed by minimizing the energy functional under the constraint of a prescribed total112

potential enstrophy. Technically, this may be expressed as113

(ρ,v,s) = argmin
(ρ,v,s)

(H (ρ,v,s)−λE (ρ,v,s)) , (3)

where λ is the Lagrange multiplier corresponding to the constraint. With the functional derivatives114

δH

δv

∣∣∣∣
ρ,s

= ρv,
δH

δρ

∣∣∣∣
v,s

= B,
δE

δv

∣∣∣∣
ρ,s

=∇Π×∇s,
δE

δρ

∣∣∣∣
v,s

=−1
2

Π
2 , (4)

the variational problem from (3) with respect to ρ leads to115

B =
1
2

v2 +φ + e+
p
ρ
=−λ

1
2

Π
2 (5)

and with respect to v we obtain:116

ρv = λ∇Π×∇s (6)
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(Névir 2004). The last equation was also used by Blender (2005). Inserting (5) in (6) for the117

Lagrangian multiplier, λ , and noticing that the entropy is a function of potential temperature,118

leads to the 3D steady wind condition119

vst =
1

ρΠ
∇Θ×∇B. (7)

The steady wind was introduced by Schär (1993). To derive the Dynamic State Index, we recall120

the laws of conservation of Ertel’s potential vorticity Π and of the potential temperature Θ along121

Lagrangian trajectories,122

dΠ

dt
=

∂Π

∂ t
+v ·∇Π = 0 ,

dΘ

dt
=

∂Θ

∂ t
+v ·∇Θ = 0 .

(8)

For steady flows, the local time derivatives ∂/∂ t vanish identically, so that the advection of the po-123

tential vorticity and the potential temperature vanishes under adiabatic, steady, inviscid conditions,124

i.e. vst ·∇Π = vst ·∇Θ = 0. This leads to125

vst = α ∇Θ×∇Π (9)

with some scalar factor of proportionality α . The two stationary velocity representations (7) and126

(9) allow for a geometric interpretation on isotropic surfaces: Both the Bernoulli function and127

Ertel’s PV are stream functions of stationary flows in the sense that the stationary wind blows128

along the isolines of these two scalar fields within isentropic surfaces, Θ = const., see fig. 1.129

Obviously, (7) implies that in a steady flow the Bernoulli function, B, is also constant along130

particle trajectories, i.e., vst ·∇B = 0 as well. Using the second expression for vst from (9) in this131

latter equation, we obtain a non-trivial local condition132

vst ·∇B = α (∇Θ×∇Π) ·∇B = 0 . (10)
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This expression with α = −1/ρ is the Dynamic State Index defined by Névir (2004), where α133

is chosen such that the conservation of mass in Lagrangian coordinates (a,b,c) is included, i.e.134

dm = ρ dxdydz = dadbdc:135

DSIPE :=
1
ρ
(∇Θ×∇B) ·∇Π =

1
ρ

∂ (Θ,B,Π)

∂ (x,y,z)
=

∂ (Θ,B,Π)

∂ (a,b,c)
. (11)

According to (10) and (8) the DSIPE is zero under stationary, adiabatic, and inviscid flow condi-136

tions, and it implies that the advection terms for the potential temperature, for the Bernoulli func-137

tion, and for the potential vorticity all vanish. In contrast, non-zero values of the DSIPE quantify138

deviations from these conditions, albeit without allowing the user to distinguish how much of the139

deviation is due to non-stationarity, diabaticity, or viscous dissipation without further information.140

b. Derivation of the DSIPE from the steady wind field141

Considering adiabatic, inviscid fluids an interesting interpretation of the DSIPE follows by the142

vanishing of the divergence of Schär’s steady wind (7). Regarding the conservation of mass via143

the continuity equation we obtain for the steady state:144

(
∂ρ

∂ t

)
st
=−∇ ·(ρvst) = 0. (12)

Thus, inserting the expression of Schär’s steady wind vst , given in (7), we obtain:145

−∇ ·
(

1
Π
∇Θ×∇B

)
=

1
Π2∇Π · (∇Θ×∇B) =

ρ

Π2 DSIPE = 0 . (13)

This shows that the DSIPE is zero for adiabatic, inviscid and steady flows. Moreover, we note that146

the conservation of mass, now in Eulerian representation, is implicitly integrated in the definition147

of the Dynamic State Index.148
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c. Illustration of the DSIPE from the synoptic point of view149

For illustration, the spatial structure of the DSI on the 330 K isentropic surface of some typical150

reanalysis field is shown in fig. 1, lower panel. It shows that the DSI can diagnose the North151

Atlantic storm track by a band of DSI-dipoles (Weber and Névir 2008). The figure shows how152

the diabatic, non-steady processes associated with the storm tracks lead to non-alignment of the153

PV and the Bernoulli function isolines within the Θ = 330 K surface. In the present case, the154

flow passes through a PV anomaly leading to negative and positive DSI values on the upstream155

and downstream of the flow. In typical frontal zones, the wind crosses the PV isolines leading156

to DSI-signals indicating high correlations of the DSI with precipitation processes (Claussnitzer157

et al. 2008).158

One can ask which additional benefit is provided by the DSI, in particular in comparison to159

the PV. On the one hand, the PV is a constitutive quantity describing only the rotational part of160

the velocity field, whereas the DSI also incorporates energetic information through the Bernoulli161

function. Furthermore, by the incorporation of the kinetic energy via the Bernoulli function, the162

divergent part of the energy is included, which is not integrated in the PV. On the other hand, PV163

analysis generally requires the extraction of PV anomalies as deviations from some climatological164

mean state that is not uniquely defined. In contrast, the DSI is a local quantity that is uniquely165

defined, independently of such a background field, to quantify deviations from the steady wind166

conditions of the primitive equations.167

We notice in passing that the physical dimension of the Dynamic State Index is [DSI] = [Π2/T ]168

(Π: potential vorticity, T : time), so that the combination Π2/DSI of both fields can be interpreted169

as a local intrinsic time scale of a flow field. We leave an exploration of this aspect and a discussion170

of its implications for flow data analysis to future work.171
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3. A Dynamic State Index for the QG-Theory172

a. The DSI-concept for models other than the primitive equations173

The concept of the DSI can be generalized such that a DSI can be designed for arbitrary fluid174

mechanical models that describe the evolution of vortices. Regarding the different scales of at-175

mospheric motion, it is of interest to consider especially the well-known reduced models. In176

general, different models lead to different stationary velocities and to different stream functions177

and vorticity related conserved quantities, so that establishing relations between the respective178

model-specific DSI-type quantities calls for some analytical effort. As a common property, if the179

adapted stream function and vorticity related quantity share their isolines within surfaces of con-180

stant entropy, the DSI for the investigated model should vanish. Moreover, the degree of deviation181

from such alignment of the isolines represents a measure for deviations from a stationary state.182

Any model-specific DSI-type field should be designed to reproduce this property.183

To derive the DSI for some reduced model in terms of the energy-vorticity concept, the following184

steps are required: (i.) Derivation of the stream function, Bred , related to the model’s steady wind185

solution; (ii.) Determination of the adapted potential vorticity, Πred; (iii.) Identification of some186

advected scalar ηred that defines the material surfaces on which the dynamics takes place. Then,187

the DSI is given by the advection of the potential vorticity evaluated with the steady wind field, and188

this is represented as the Jacobi-determinant of the surface ηred , the stream function Bred , and the189

potential vorticity Πred with respect to the Lagrangian, or mass-weighted, coordinates, (a,b,c),190

which imply mass conservation, i.e.,191

DSIred =
∂ (ηred,Bred,Πred)

∂ (a,b,c)
=

1
ρ

∂ (ηred,Bred,Πred)

∂ (x,y,z)
, (14)

where 1
ρ

is the Jacobi determinant that mediates between volume increments of the Lagrangian192

coordinates (a,b,c) and the fixed reference cartesian coordinates (x,y,z).193
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b. Application of the concept to the QG-model194

The benchmark theory for understanding the evolution of baroclinic waves and vortices on the195

synoptic scale leads to the quasi geostrophic model (see, e.g., Pedlosky 1992), which filters all196

acoustic and gravity wave modes from the dynamics. In this section we adapt the DSI-concept to197

this model and label the resulting parameter by DSIQG.198

In developing a DSI-type index for the QG-model, we first replace Ertel’s potential vorticity Π199

by the quasi-geostrophic potential vorticity,200

Πred = ΠQG =
1
f0

[
∇

2
‖φ +

f 2
0

ρ0

∂

∂ z

(
ρ0

N2
z

∂φ

∂ z

)]
+ f . (15)

To derive DSIQG in the framework of the Energy-Vorticity Theory under the general condition that201

Nz(z) and ρ0(z) are non-trivial functions of the height coordinate z, we reformulate the ΠQG and202

use an adapted scalar product and spatial gradient203

ΠQG =
1
f0

[
∇

2
‖φ +

(
N2

z

ρ2
0 f 2

0

)[
ρ0(z) f 2

0
N2

z (z)
∂

∂ z

(
ρ0(z) f 2

0
N2

z (z)
∂φ

∂ z

)]]
+ f , (16)

where f0 denotes the Coriolis parameter, ζa = ζ + f the absolute vorticity, φ the geopotential204

perturbation field, Nz the Brunt Väisälä-frequency as stratification parameter and ∇‖ the hori-205

zontal gradient (see Pedlosky 1992; Klein 2010, and Appendix A2b below). We set α(z) :=206

ρ0(z) f 2
0 N−2

z (z) and γ := N2
z ρ
−2
0 f−2

0 to simplify the expression of the potential vorticity for the207

QG-model:208

ΠQG =
1
f0

[
∇

2
‖φ + γ

[
α(z)

∂

∂ z

(
α(z)

∂

∂ z

)]]
+ f . (17)
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In the next step, we define the scalar product of two vectors a,b ∈ R3 and the gradient ∇̃ as209

follows:210

a ·b := axbx +ayby +
f 2
0

ρ2
0 N4

z
azbz (18)

∇̃ :=
(

∂

∂x
,

∂

∂y
,α(z)

∂

∂ z

)
(19)

Using (17), (18) and (19) the total energy reads as211

HQG =
1
2

∫
V

ρ0
∇̃φ ·∇̃φ

f 2
0

dτ =
1
2

∫
V

ρ0

[(
∇‖φ

f0

)2

+

(
1
Nz

∂φ

∂ z

)2
]

dτ = HQG,kin +HQG,pot .

(20)

This expression was also derived by Pedlosky (1992) and Névir and Sommer (2009). Thus, for212

QG-flows, the total energy is given by the sum of the kinetic and potential energy.213

In the framework of Energy-Vorticity-Theory, we consider the functional derivatives of two214

globally conserved quantities, the energy and a vorticity-related quantity.215

HQG =
1

2 f 2
0

∫
m

(
∇̃φ

)2 dm (21)

with the mass element dm = ρ0dxdydz ≡ ρ0dτ . The second conserved quantity is given by the216

potential enstrophy (Névir 1998):217

EQG =
1
2

∫
m

Π
2
QG dm =

1
2 f 2

0

∫
m

(
∇̃2

φ
)2

dm. (22)

Following Névir (1998) further, the functional derivatives of the energy and the potential enstrophy218

with respect to ΠQG are given by219

δHQG

δΠQG
= BQG =− φ

f0
and

δEQG

δΠQG
= ΠQG. (23)

Finally, we observe that advection in the QG model is defined by the leading order horizontal220

flow, so that z may take the role of the the advected variable ηred in (14). Then, according to (14),221
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the Dynamic State Index for the QG-model can be defined with respect to the advected quantity222

ηred = ηQG = z, the “poor man’s stream function” Bred = BQG =−φ f−1
0 and Πred = ΠQG, and up223

to some scalar factor µ by224

DSIQG,µ = µ
∂ (ηQG,BQG,ΠQG)

∂ (a,b,c)
=− µ

ρ0 f0

∂ (φ ,ΠQG)

∂ (x,y)
. (24)

with dadbdc = ρ0dxdydz. Owing to (16), this representation of the DSI for QG-flows only de-225

pends on the geopotential height field φ and its derivatives, i.e., DSIQG = DSIQG[φ ], which is a226

characteristic property of the QG-model. We observe that it is proportional to the advection of227

the quasi-geostrophic PV with respect to the geostrophic wind, which takes the role of the steady228

wind vst in the QG-model (see also the discussion in section 4d, however). For DSIQG = 0 the229

potential vorticity depends on the stream function ΠQG = ΠQG(φ). This relationship has already230

been discussed in the 80’s, for example in the context of blockings (Butchart et al. 1989).231

4. Asymptotic analysis of the DSI in the QG regime232

Here we demonstrate that the DSIQG as defined on the basis of the energy-vorticity concept in233

the previous section is the leading-order asymptotic approximation of the full DSIPE in the quasi-234

geostrophic flow regime. Following established derivations of the QG model equations, we adopt235

the β -plane approximation and work with Cartesian coordinates to match the definition of the236

DSIPE in (11).237
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a. Characterization of the quasi-geostrophic flow regime238

Following Pedlosky (1992); Klein (2010), the quasi-geostrophic flow regime is defined by a239

coupled limit of the external and internal wave Froude and Rossby numbers such that240

Fr =
uref

cext
∼ ε

3
2 (external wave Froude number)

F̃r =
uref

cint
∼ ε (internal wave Froude number)

Ro =
uref

f0Lsyn
∼ ε (Rossby number)

(25)

where uref is a typical horizontal flow velocity magnitude,241

cext =
√

ghsc , cint = Nrefhsc =

√
∆Θ

Tref
cext ∼

√
ε cext , (26)

are characteristic values of the external and internal wave speeds with Nref a tropospheric reference242

value of the Brunt-Väisälä frequency, and243

hsc =
pref

gρref
, Lsyn =

Nref

f0
hsc =

hsc

ε2 (27)

are the pressure scale height and the horizontal synoptic scale, respectively. The original derivation244

also adopts the “β -plane expansion” for the Coriolis parameter, i.e., f = f0(1+ εβ (y/Lsyn)), and245

this implies Lsyn/Lp ∼ ε , where Lp denotes the planetary scale.246

b. Asymptotic scaling of the DSIPE and comparison with the DSIQG247

Here we utilize existing results of asymptotic analysis to describe which physical processes248

contribute predominantly to the DSIPE in the quasi-geostrophic flow regime.249

In the sequel, dimensional quantities will be tagged by a ∗ superscript while dimensionless250

variables are denoted by plain letters. Following (Pedlosky 1992; Klein 2010), the Exner pressure,251

14



π , potential temperature, Θ, horizontal velocity u, and vertical velocity w obey252

π =

(
p∗

pref

) κ−1
κ

= π0 + επ1 + ε
2
π
(2)+O

(
ε

2)
Θ =

Θ∗

Tref
= Θ0 + εΘ1 + ε

2
Θ
(2)+O

(
ε

2)
u=

u∗

uref
= u(0)+O (1)

w =
w∗

uref
= ε

3w(3)+O
(
ε

3)
(28)

with the isentropic exponent253

κ =
cp

cv
(29)

where cp and cv are the heat capacities at constant pressure and volume, respectively. Considering254

(28), except for Θ0 ≡ 1, the background state variables (π0,π1,Θ1), which we label by subscripts255

in counting their expansion orders, depend on the vertical coordinate z only. The super-scripted256

quantities
(

π(2),Θ(2),u(0),w(3)
)

are functions of the dimensionless independent variables257

τ =
t∗uref

Lsyn
, (ξ1,ξ2) = ξ =

x∗

Lsyn
=

(x∗,y∗)
Lsyn

, z =
z∗

hsc
. (30)

We will use this notation in the sequel to distinguish between purely z-dependent variables Ψi(z)258

and variables that depend on the full set of coordinates Ψ(i)(τ,ξ,z). Below, ∇ξ = (∂ξ1
,∂ξ2

) denotes259

the horizontal gradient with respect to the ξ-coordinates. Since the vertical (z) and horizontal260

(ξ1,ξ2) coordinates are scaled by different reference lengths hsc and Lsyn = hsc/ε2, respectively,261

the dimensional gradient operator used in expressing the DSIPE in section 2 reads262

∇ =
1

hsc

(
ε

2 ∂

∂ξ1
,ε2 ∂

∂ξ2
,

∂

∂ z

)
=

1
hsc

(
ε

2
∇ξ,

∂

∂ z

)
(31)

in terms of the dimensionless coordinates.263

Based on these scalings we assess the asymptotics of the DSIPE. To this end we first identify,264

for each of the contributing fields Θ, B, and Π their leading z-dependencies and the perturbations265
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with full variations. This yields266

Θ = Θ0 + εΘ1 + ε
2
Θ
(2)+O

(
ε

2)
Π = ε

2
Π2 + ε

3
Π

(3)+O
(
ε

3)
B =

κ

κ−1
T0 + z+ ε

κ

κ−1
T1 + ε

2 κ

κ−1
T (2)+O

(
ε

2)
(32)

where the temperature functions Ti,T (i) result from the expansion of the identity T = Θπ . The267

leading two contributions to Ertel’s potential vorticity (PV) are268

Π2 =
f0Θ′1
ρ0

Π
(3) =

f0Θ′1
ρ0

(
Θ
(2)
z

Θ′1
− ρ1

ρ0
+

ζ (0)+βξ2

f0

) (33)

where Θ′1 ≡ dΘ1/dz, ξ2 = ε2y, and where269

ζ
(0) = k ·

(
∇ξ×u(0)

)
(34)

is the leading order vertical vorticity. Note that Π(3) 6= ΠQG is not the potential vorticity known270

from classical QG theory. The difference will become transparent shortly. For further informa-271

tion see the appendix, where we rederive the QG-PV transport equation straight from Ertel’s PV272

conservation law for the full compressible Euler equations in the QG scaling regime.273

Based on the representations in (31), (32), the gradients of Θ,Π,B, decomposed into their lead-274

ing vertical and horizontal components, read275

∇Θ = k
4

∑
j=1

ε
j
Θ
( j)
z + ε

4
∇ξΘ

(2)+O
(
ε

4)
∇Π = k

5

∑
j=2

ε
j
Π

( j)
z + ε

5
∇ξΠ

(3)+O

(
ε

5
)

∇B = k
4

∑
j=1

ε
jB( j)

z + ε
4
κ∇ξT (2)+O

(
ε

4)
(35)

where we have momentarily dropped the lower index notation for purely z-dependent functions for276

convenience of notation. Note the leading contribution to the Bernoulli function, B0 =
κ

κ−1T0+z≡277
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Θ0 = const., such that the expansion of ∇B starts at order O (ε) just as that of ∇Θ. Note also that278

∇Π = O
(
ε2) instead.279

We insert the expressions from (35) in the definition of the DSIPE, observe that any expression280

a ·(b×c) in which two of the three vectors are collinear vanishes, and then find281

DSIPE = ε
10DSI(10)+O

(
ε

10) , (36)

where282

DSI(10) =
k

ρ0
·
(

∇ξΠ
(3)×

[
κT ′1∇ξΘ

(2)−Θ
′
1∇ξκT (2)

]
−
[
∇ξκT (2)×∇ξΘ

(2)
] dΠ2

dz

)
. (37)

Using T (2) = π0Θ(2)+π(2)Θ0+π1Θ1, the expression in (37) can be simplified further to yield the283

leading term of the DSI in the classical QG limit. We recall (37) and collect284

T ′1 = π
′
0Θ1 +π0Θ

′
1 +π

′
1Θ0 =−

Θ1

κΘ0
+π0Θ

′
1 +

Θ1Θ0

κΘ2
0

= π0Θ
′
1

T (2) = (Θπ)(2) = π0Θ(2)+π(2)Θ0 +π1Θ1 .

(38)

This yields285

T ′1∇ξΘ
(2)−Θ

′
1∇ξT (2) =−Θ0Θ

′
1∇ξπ

(2) . (39)

From (38) we find for the second square bracket of (37)286

∇ξΘ
(2)×∇ξT (2) = ∇ξΘ

(2)×Θ0∇ξπ
(2) . (40)

Finally from (37)287

DSI(10) =
κ

κ−1
Θ′21
ρ2

0
k ·
(

Θ0∇ξπ
(2)×∇ξΠQG

)
+O (1) , (41)

where288

ΠQG =
ρ0

Θ′1

(
Π

(3)− Θ(2)

Θ′1

dΠ2

dz

)
= ζ

(0)+βξ2 +
f0

ρ0

(
ρ0Θ(2)

Θ′1

)
z

(42)

is the classical potential vorticity variable from QG theory, i.e., the dimensionless version of (16).289

See the appendix for a detailed derivation. Thus, the asymptotic scale analysis results in a dimen-290

sionless representation of the DSIPE in the quasi-geostrophic regime. We formulate (41) in terms291
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of the Jacobi-determinant, recalling that Θ0 is a constant and that, by hydrostatic balance,292

φ
(2) =

κ

κ−1
Θ0π

(2) (43)

relates the perturbations of the geopotential height and the Exner pressure. Then293

DSI(10) =
Θ′1

2

ρ2
0

∂ (φ (2),ΠQG)

∂ (ξ1,ξ2)
+O (1) . (44)

This is to be compared with the representation of DSIQG in (24) as derived by the energy-vorticity294

concept. To do so, we re-dimensionalize (44) by multiplication with ε10 DSIref, where295

DSIref =
(Tref/hsc)

2

ρ2
ref

(ghsc)(uref/hsc)

h2
sc

=
T 2

ref

ρ2
ref

guref

h4
sc

(45)

is the unit of measure for the DSI that results from the present nondimensionalization, to obtain,296

dropping the superscripts for convenience of notation,297

ε
10DSIrefDSI(10) = DSIQG =

Θ
′2

ρ02
∂ (φ ,ΠQG)

∂ (x,y)
. (46)

The term on the right hand side of the last equation is the final dimensional representation of the298

DSI for the quasi-geostrophic model and the term on the left hand side includes the scaling aspect299

with respect to the meso-gamma scale of ∼ 10 km. Furthermore, the multi-scale asymptotic-300

approach determines the factor µ in the representation of the Dynamic State Index DSIQG,µ from301

(24), derived via energy-vorticity-theory in section 3:302

µ =−Θ
′2 f0

ρ0
(47)

Thus, DSIQG,µ represents precisely the leading-order term in an asymptotic expansion of the303

DSIPE as derived originally from the full compressible flow equations. It seems reassuring that304

the DSI-theory is asymptotically self-consistent in this way.305

A remark is in order as regards the factor of ε10 appearing in (36). According to (41), the306

dominant contributions to the DSI in the QG-regime result from the cross product of the horizontal307
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gradients of the Exner pressure and Ertel’s potential vorticity and from the vertical derivative of the308

potential temperature. According to the asymptotic expansions in (35), these terms are of orders309

ε4,ε5, and ε , respectively, and this explains the very high total power of ε appearing in (36).310

Note also that in SI units, [DSIref] ∼ K2m4/kg2s3 = 1012(PVU)2s−1, the latter being a natural311

unit for the DSI based on the primitive equations and established scalings for the potential vorticity.312

c. Interpretation of DSIQG313

The DSI is meant to quantify imbalances in a flow field. To interpret the index in the quasi-314

geostrophic limit, we recall that the leading-order QG flow velocity u(0) satisfies geostrophic315

balance, i.e., f0k×u(0) + κΘ0∇ξπ(2) = 0, and that the QG potential vorticity is a conserved316

scalar, such that317

∂ΠQG

∂τ
+u(0) ·∇ξΠQG = 0 . (48)

With this information we can replace318

DSI(10) =−
Θ′1

2

f0ρ2
0

∂ΠQG

∂τ
, (49)

and find that, indeed, the DSI naturally captures the advection-induced nonstationarity encoded in319

the QG-dynamics.320

d. The DSIQG derived from zero steady wind mass flux divergence321

Going back to section 2b, we consider here the leading-order asymptotics of the steady wind322

field (7) in the QG-regime. Recalling (32), (33), (35) and (39), keeping only those terms that ulti-323

mately count for the leading-order contributions to the DSIQG, and using the present dimensionless324
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representation we find325

ρvQG
st =

ε−3

ε2Π2 + ε3Π(3)

((
εΘ
′
1k+ ε

4
∇ξΘ

(2)
)
×
(

κ

κ−1

[
εT ′1k+ ε

4
∇ξT (2)

]))
+h.o.t.

=
Θ′1
Π2
k× κΘ0

κ−1
∇ξπ

(2)+h.o.t. = ρ0u
(0)+h.o.t.

(50)

Thus, at leading order the stationary wind matches the geostrophic wind. Note that the scaling326

factor of ε−3 in the first line of (50) results from the product of the units of measure that define the327

stationary wind. Denoting dimensional variables by an asterisk again, we have328

∇
∗
Θ
∗ =

Tref

hsc
∇Θ , ∇

∗B∗ =
RTref

hsc
∇B , Π

∗ =
∇∗Θ∗ ·(∇∗×v∗)

ρ∗
=

Trefuref

ρrefh2
sc

∇Θ ·(∇×v)
ρ

(51)

and, collecting all terms from the definition of the stationary wind,329

(ρvst)
∗ =

RTref

u2
ref

ρrefuref
1
Π

∇Θ×∇B =
1
ε3 ρrefuref

1
Π

∇Θ×∇B . (52)

With (33) and (43), i.e. Π2 =
f0Θ′1
ρ0

and φ (2) = κΘ0
κ−1π(2), last equation results in330

(
ρvQG

st

)(0)
= ρ0

1
f0
k×∇φ . (53)

This may seem puzzling at first, because clearly ∇ ·
(
ρ0vqg

st
)(0) ≡ 0 by construction, and thus the331

corresponding “leading order DSI” would vanish identically. The resolution of the puzzle lies in332

the fact that the two calculational steps involved do not commute. The divergence of the leading333

order field does generally not equal the leading order divergence of the full field. To arrive at the334

DSIQG as derived in (44) along a different path before, we carefully expand the divergence of the335

expression in the first line of (50). This yields336

−∇ ·(ρvst) =
k

κ−1

[
∇ξΠ

(3)×
(

κT ′1∇ξΘ
(2)−Θ

′
1∇ξκT (2)

)
− dΠ2

dz

(
∇ξκT (2)×∇ξΘ

(2)
)]

+ h.o.t.

(54)

after some straightforward manipulations. As expected, this is the same expression we obtained337

for DSI(10) in (37) above, up to the scalar prefactor (κ−1)ρ−1
0 .338
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5. Scale dependent analysis of precipitation in terms of the two DSI parameters339

The DSI for the primitive equations as well as the DSI for the quasi-geostrophic model describe340

deviations from a steady, adiabatic and inviscid basic state. However, the basic states are given341

by different steady wind solutions depending on the model approximation of the atmospheric flow342

field. Especially the strength and spatial structure of diabatic processes related to precipitation343

processes can be compared by the two Dynamic State Indices. Therefore, we will analyze the344

two indices |DSIPE| and |DSIQG| with the focus to evaluate the skill to diagnose precipitation345

processes. For the calculation of the different DSI’s as well as for the precipitation fields hourly346

COMSO-DE data of the German Weather Service in June, July and August 2007 with a horizontal347

resolution of 2.8 km id used (Schättler et al. 2008). Applying central differences, the Dynamic348

State Indices are determined on 11 pressure surfaces (200, 250, 300, 400, 500, 600, 700, 850, 950,349

975 and 1000 hPa) for each grid box.350

a. Comparing the horizontal structures of DSIPE and DSIQG351

In the following we will examine the two parameters |DSIPE| and |DSIQG| based on the COSMO-352

DE data set. Previous works have shown high correlation of the |DSIPE| with precipitation (see353

e.g. Claussnitzer et al. (2008)). In fig. 2 the time series of |DSIPE| (red curve) and precipitation354

(blue curve), hourly averaged over Germany in June, July and August 2007 is illustrated. For355

this time period that is characterized by numerous convective precipitation events with high inten-356

sity a Spearman’s rank coefficient of the DSI with precipitation of 0.82 was found. The spatial357

structure of both DSI parameters for July 20th 2007 and the corresponding radar image provided358

by the German Weather Service (DWD) is shown in fig. 3 and fig. 4. On this day, a frontal pre-359

cipitation band was crossing Germany. The numerical evaluation of both DSI parameters depict360

the elongated structure of the front. The DSIPE-field shows a connected band of smaller scale361
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cellular structures with negative values on the front side and positive values on the back side of362

the front. In contrast, the structure of the DSIQG depict more disconnected, larger areas of pre-363

cipitation. DSIQG provides deviations of the geostrophic wind only based on geopotential hight364

field fluctuations reflecting larger scale diabatic processes. The DSIPE is based on the fluctuations365

of geopotential height field but additionally of the variables of the three wind components and366

the temperature field and thus it can describe the smaller scale structures characterized by higher367

intensity of precipitation.368

A direct comparison of the DSI for the quasi-geostrophic model and the DSI for the primitive369

equations with respect to precipitation is illustrated in the scatter plot in fig. 5. Hereby 6 hourly370

COSMO-DE date for June and July 2007 was used to calculate the two DSI indices that are divided371

by their standard derivation to draw a better comparison. The red dots show the time steps with372

a precipitation threshold of 1 mm/h which is equivalent to the 88th percentile and the blue dots373

mark the DSI-parameters below this threshold. All values are located near the bisecting line. Small374

values of both DSI parameters are related to less precipitation, whereas high DSI values occur on375

time steps with precipitation above the precipitation threshold of 1 mm/h. For strong precipitation376

there are more events above the bisecting line indicating higher DSIPE-values compared to DSIQG377

values. The opposite holds for events characterized by less precipitation. Thus we notice that the378

DSIPE provides the possibility to capture extreme precipitation events.379

b. Comparing the vertical structure of |DSIPE| and |DSIQG| with respect to precipitation380

To evaluate the vertical structure of the Dynamic State Index with respect to precipitation, we381

divide the domain into regions with and without precipitation and compare the two DSI parameters382

for these regions. In fig. 6 the vertical profiles of the the two Dynamic State Indices are investigated383

for July 20th 2007 using 3-hourly COSMO-DE data set. On this day a cold front of the low384
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pressure system Dietmar II passed Germany which lead to high precipitation. The radar image385

and the horizontal structure of the DSI are shown in fig. 3 and fig. 4. This case has also been386

analyzed during the intensive observation period (IOP-9c) of the convective and orographically-387

induced precipitation study (COPS), see Schwitalla et al. (2011). For every time step and every388

pressure level we divide the DSI-values into two classes; one class for absolute DSI values in grid389

boxes with precipitation and the other class contains all absolute DSI values without precipitation.390

Then, we calculate the arithmetic mean on each pressure level for each class. We norm the indices391

by dividing all values in a particular class by the mean of this class. The result is shown in392

fig. 6. The solid lines show the vertical DSI profile for the different models on grid boxes with393

precipitation and the dashed lines show the DSI values for grid boxes without precipitation. First,394

we compare the vertical profile of the indices |DSIPE| and |DSIQG|. The DSI based on the primitive395

equations has larger values compared to DSIQG which is accordance with the result of the multi-396

scale asymptotic (44). These different order of magnitudes can be explained by the different397

sensibilities of the models: The DSIPE based on the primitive equation involves five variables, the398

three dimensional wind, the potential temperature and the geopotential field. Therefore, already399

small changes of one of the variables affect the DSI leading to large variations of DSIPE in the400

vertical profile. On the other hand, DSIQG only involves the geopotential field and the stratification401

leading to small variations. The sensibilities are due to the deviations of two different basic state402

solutions, where the larger fluctuations around the steady wind solution of the primitive equations403

can reflect stronger turbulent processes.404

The DSI values of both indices with precipitation (solid lines) are higher than the DSI values405

without precipitation (dashed lines), where the enclosed area between the curves with and without406

precipitation decreases for the QG-model. Enclosing the largest area between 600 hPa and 400407

hPa the DSIPE has the best skill to diagnose precipitation processes. It has to be noted that we cal-408
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culated the two DSI parameters with the data set of the COSMO-DE model which is based on the409

primitive equations and explicitly resolves deep convection. Even though the order of magnitude410

of DSIQG is small and might be numerical subtle, we obtain a Spearman rank correlation of 0.76411

with precipitation. Thus, the analysis of the vertical structure of the two Dynamic State Indices412

shows the height where the generation of precipitation is predominant.413

6. Conclusions414

In this paper, we have shown that the concept of the Dynamic State Index (DSI) can be trans-415

ferred to different fluid mechanical models starting with the original primitive equations through416

two complementary approaches. For all scales, the DSI describes non-stationary, diabatic, and417

dissipative processes by capturing local deviations from a steady and adiabatic wind solution.418

However, which field is to be considered as a steady adiabatic wind depends on the considered419

flow model. Using two different theoretical approaches we have derived the DSIQG for the quasi-420

geostrophic model which is a benchmark model for the understanding of large scale atmospheric421

dynamics. One derivation is based on ideas provided by the Energy-Vorticity-Theory for ideal422

fluid mechanics, in the second we have analyzed the structure of the original DSIPE based on the423

primitive equations in the quasi-geostrophic limit by asymptotic techniques. While the derivation424

of the DSIQG by the Energy-Vorticity Theory provides the general physical representation of the425

DSIQG, using asymptotic scale analysis corroborates the result and even determines a scalar factor426

providing the same dimension as the DSIPE. Starting with the DSIPE on the meso-gamma scale427

of ∼ 10 km as a reference and using the synoptic flow Rossby number Ro = ε � 1, the DSIPE428

evaluated on synoptic-scale geostrophically balanced data scales as ε10. Thus, through two con-429

ceptually independent procedures, we have established the DSI index for QG-flows that is both430
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the asymptotic leading order approximation to the DSIPE and a proper Dynamic State Index in the431

sense of the Energy-Vorticity-Theory.432

Comparing DSIPE and DSIQG with respect to precipitation, the DSIPE signal reflects small scale433

cellular structures characterized by higher intensity of precipitation on the convective scales. The434

DSIQG shows meso-scale clusters related to extended precipitation structures. With respect to435

future work, we note that the unit measure for the DSI which results from nondimensionalization436

implies a novel, non-equilibrium time scale combining the potential vorticity, PV, and the DSI.437

The statistics of this implied time scale across the spacial scales of the atmosphere may provide438

interesting new guidelines for the interpretation of observational data.439

To summarize, the DSI parameter reflects model dependent deviations of the non-linear solution440

of atmospheric equations. Therefore, the DSI is a skillful dynamical concept that provides a441

scale-dependent diagnosis of irreversible processes and helps for a better understanding of diabatic442

atmospheric phenomena which dominate the non-resolved scales.443
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A1. Derivation of the DSI-QG by the Energy-Vorticity Theory449

To determine the functional derivative of the total energy HQG of the QG-model, first we calcu-450

late its variation:451

δHQG =
1
f 2
0

∫
m

(
∇̃φ ·δ∇̃φ

)
dm

=
1
f 2
0

∫
m

(
−φδ∇̃ ·∇̃φ

)
+

1
f 2
0

∫
m
∇̃ ·
(
φδ∇̃φ

)
dm

=− 1
f0

∫
m
(φδΠQG) dm

(A1)

where we assume suitable boundary conditions and apply Gauss’ divergence theorem such that in452

the second line the second summand vanishes. Then, the functional derivative of the energy reads453

as:454

δHQG

δΠQG
=− φ

f 0
(A2)

We note that the definitions of the scalar product and gradient given in (18) and (19) were used.455

A2. The QG regime456

a. QG scalings for Ertel’s potential vorticity457

According to (32) the dimensionless Bernoulli function is dominated in the QG regime up to458

and including second order by the thermodynamic enthalpy e+ p/ρ = κT and the geopotential z.459

This justifies the representation of the leading order dependencies for ∇B in (35), since460

T = T0(z)+ εT1(z)+ ε
2T (2)(τ,ξ,z)+O

(
ε

2) , (A3)

so that the leading horizontal gradient term is ε4∇ξT (2), while all other gradient contributions up461

to and including order ε4 are vertically oriented, i.e., they are proportional to k.462
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To corroborate the expression for Π(3) in (33) we observe that463

∇×v = (ε2∇ξ+k∂z)×
2
∑

i=0
ε iu(i)+O

(
ε2)

=
2
∑

i=0
ε ik×u(i)

z + ε2∇ξ×u(0)+O
(
ε2) (A4)

and that the first term on the right is horizontal while the second points in the vertical direction. Us-464

ing the decomposition of ∇Θ from (35) we readily verify (33). Consider now the Ertel’s potential465

vorticity,466

Π =
1
ρ
(∇×v+2Ω) ·∇Θ (A5)

Asymptotic expansion of this expression yields, neglecting higher order terms,467

1
ρ

= 1
ρ0
− ε

ρ1
ρ2

0
+ ε2

[
1
2

ρ2
1

ρ3
0
− ρ(2)

ρ2
0

]
∇×v =

2
∑

i=0
ε ik×u(i)

z + ε2∇ξ×u(0)

2Ω = k
(
ε f0 + ε2βξ2

)
∇Θ =

4
∑

i=1
ε ikΘ

(i)
z + ε4∇ξΘ(2)

(A6)

Upon insertion into (A5),468

Π =
ε

ρ0
u
(0)
z ·k Θ

′
1 +

ε2

ρ0

(
f0Θ
′
1 +u

(1)
z ·k Θ

′
1 +u

(0)
z ·k

(
Θ
(2)
z −

ρ1

ρ0
Θ
′
1

))
+

ε3

ρ0

{
f0

[
Θ
(2)
z −

ρ1

ρ0
Θ
′
1

]
+
(

∇ξ×u(0)+βξ2

)
Θ
′
1 +u

(2)
z ·k Θ

′
1

+u
(1)
z ·k

(
Θ
(2)
z −

ρ1

ρ0
Θ
′
1

)
+u

(0)
z ·k

(
Θ
(3)
z −

ρ1

ρ0
Θ
(2)
z +

[
ρ(1)2

2ρ2
0
− ρ(2)

ρ0

]
Θ
′
1

)}
+O

(
ε

3)
(A7)

Noting that u(i)
z ·k ≡ 0, this expansion reduces to469

Π = ε2Π2 + ε3Π(3)+O
(
ε3)

Π2 =
f0Θ′1
ρ0

Π(3) =
f0Θ′1
ρ0

(
Θ
(2)
z

Θ′1
− ρ1

ρ0
+ ζ (0)+βξ2

f0

) (A8)
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where470

ζ
(0) = k ·

(
∇ξ×u(0)

)
(A9)

b. The QG PV transport equation471

With the basic scalings in (28) and this expansion for PV, the leading-order expression for Ertel’s472

PV conservation law yields at order ε5
473 (

∂τ +u
(0) ·∇ξ

)
Π

(3)+w(3)dΠ2

dz
= 0 (A10)

from which we need to eliminate the vertical advection term for Π2 to arrive at a single scalar474

transport equation for some PV variable. To this end we recall from the original QG derivations475

the perturbation potential temperature equation476 (
∂τ +u

(0) ·∇ξ

)
Θ
(2)+w(3)

Θ
′
1 = 0 (A11)

which yields477

w(3) =− 1
Θ′1

(
∂τ +u

(0) ·∇ξ

)
Θ
(2) . (A12)

Going back to (A10) and observing that Π2 depends neither on τ nor on ξ we obtain478 (
∂τ +u

(0) ·∇ξ

)(
Π

(3)− Θ(2)

Θ′1

dΠ2

dz

)
= 0 . (A13)

We wish to further analyze the advected quantity in this equation. Going back to the definitions of479

Π2 and Π(3) in (A8) and collecting only term involving Θ(2), we combine it with the last term in480

(A13) to obtain481

f0Θ
(2)
z

ρ0
− Θ(2)

Θ′1

dΠ2

dz
=

f0Θ
(2)
z

ρ0
− f0Θ(2)

Θ′1

d
dz

Θ′1
ρ0

=
f0Θ′1
ρ0

1
ρ0

(
ρ0Θ(2)

Θ′1

)
z

(A14)

Collecting these results and eliminating the time and horizontal derivatives of the purely z-482

dependent functions Θ′1/ρ0 and ρ1/ρ0, we may rewrite (A13) as483 (
∂τ +u

(0) ·∇ξ

)
ΠQG = 0 (A15)
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where484

ΠQG = ζ
(0)+βξ2 +

f0

ρ0

(
ρ0Θ(2)

Θ′1

)
z

, (A16)

and this is the quasi-geostrophic potential vorticity as obtained in classical derivations (Pedlosky485

1992; Klein et al. 2011).486
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Claussnitzer, A., and P. Névir, 2009: Analysis of quantitative precipitation forecasts using the497

dynamic state index. Atmos. Res., 94 (4), 694–703, doi:10.1016/j.atmosres.2009.08.013.498
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TABLE 1. Universal characteristics of atmospheric motions.

Earth’s radius a = 6·106 m

Earth’s rotation rate Ω ∼ 10−4 s−1

Acceleration of gravity g = 9.81 ms−2

Sea level pressure pref = 105 kgm−1s−2

Temperature Tref ∼ 273 K

Pot. temp. variation ∆Θ ∼ 40 K

Dry gas constant R = 287 m2s−2K−1

Dry isentropic exponent γ = 1.4
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TABLE 2. Auxiliary reference quantities derived from those in table 1.

density ρref = pref/(RTref) ∼ 1.25 kgm−3

scale height hsc = pref/(gρref) ∼ 8 km

sound speed cac =
√

γ pref/ρref ∼ 330 ms−1

ext. wave speed cext =
√

ghsc ∼ 280 ms−1

int. wave speed cint =

√
ghsc

∆Θ

Tref
∼ 110 ms−1

thermal wind uth =
2
π

ghsc

Ωa
∆Θ

Tref
∼ 12 ms−1
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FIG. 1. The wind field and the Bernoulli function (upper left), the wind field and Ertel’s PV (upper right)

and the DSI-dipole structure (lower panel) are shown. In regions where the wind crosses the Bernoulli function,

respectively Ertel’s PV, DSI-dipole structures can be observed.
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FIG. 2. The time series of the mean |DSIPE| in 600 hPa and mean precipitation divided by their standard

deviations, JJA 2007, Germany, COSMO-DE showing a high correlation.
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FIG. 3. Radar image for July 20th 2007, 15 UTC, Germany, adapted with courtesy of the German Weather

Service (DWD)
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FIG. 4. The spatial horizontal structure of DSIPE and DSIQG are shown for July 20th 2007, 15 UTC, 600 hPa,

indicating the frontal structure shown in fig. 3.
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FIG. 5. The dots show the values of DSIQG and DSIPE for each time step calculated for the 6-hourly data set

of COSMO-DE for July and August 2007. The red dots show the DSI values for high precipitation, where a

threshold of the 88th percentile was taken.
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FIG. 6. The vertical profile of DSIQG and DSIPE are shown. The solid lines show the vertical DSI profiles for

the different models on grid boxes with precipitation and the dashed lines show the DSI values for grid boxes

without precipitation. The COSMO-DE data set for July 20th 2007, 3 hourly, was used.
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