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Pischke et al. [12] studied the nonlinear dynamics of strongly tilted vortices subject to asymmetric
diabatic heating by asymptotic methods. They found, i.a., that an azimuthal Fourier mode 1
heating pattern can intensify or attenuate such a vortex depending on the relative orientation
of tilt and heating asymmetries. The theory originally addressed the gradient wind regime which,
asymptotically speaking, corresponds to vortex Rossby numbers of order O (1) in the limit. Formally,
this restricts the appicability of the theory to rather weak vortices in the near equatorial region. It
is shown below that said theory is, in contrast, uniformly valid for vanishing Coriolis parameter and
thus applicable to vortices up to hurricane strength. The paper’s main contribution is a series of
three-dimensional numerical simulations which fully support the analytical predictions.

I. INTRODUCTION

Atmospheric vortex intensification and the associated evolution of vortex structure remain a topic of intense inves-
tigations. As Smith and Montgomery [14] point out in their review article, intricate interactions of boundary layer
processes, moist thermodynamics, multiscale stochastic deep convection, and the vortex-scale fluid dynamics produce
the observed, sometimes extremely rapid intensification of incipient hurricanes. They also emphasize that, despite
the valuable insights that have been gained in many studies of idealized axisymmetric flow models, asymmetries of
vortex structure, convection patterns, and boundary layer structure have been observed to be important for vortex
intensification in real-life situations.

This study focuses on the question of how asymmetric heating in the bulk vortex above the boundary layer can
induce sizeable vortex amplification. Following, e.g., Nolan and Grasso [8], Nolan and Montgomery [9], Nolan et al.
[10] we adopt the point of view that latent heat release from condensation can be modelled, with limitations, by
external diabatic heat sources in dry air. In the cited studies, non-axisymmetric heating patterns were shown to
have at most a small effect on vortex strength within the framework of linearizations about an axisymmetric upright
vortex. These results of linear theory were corroborated in Nolan and Grasso [8], Nolan et al. [10] by comparison with
fully nonlinear three-dimensional simulations.

Investigating incipient hurricanes that develop from easterly waves in the tropical atlantic Dunkerton et al. [1]
revealed, however, that such vortices can exhibit very strong tilt. Thus, for instance, the locations of the vortex
center at heights equivalent to the 925 hPa and 200 hPa pressure levels are located about 200 km apart in their their
figure 21. This amounts to an overall vortex tilt at a scale comparable to the vortex diameter, i.e., to a situation that
clearly does not allow for linearizations about an upright vortex.

Our study revisits the work of Péschke et al. [12] who analyzed the dynamics of strongly tilted atmospheric vortices
in the gradient wind regime by matched asymptotic expansions. They obtained a closed coupled set of evolution
equations for the primary circulation structure and the vortex centerline, and demonstrated that in a strongly tilted
vortex symmetric and asymmetric heating patterns can have a comparable impact on vortex intensity. As by its very
definition the gradient wind regime is restricted to vortex Rossby numbers of order unity, this theory has thus far
been considered applicable only to rather weak vortices with intensities far from the interesting stage of the tropical
storm/hurricane transition [7].

To allow for vortices in this transition regime, we consider here the dynamics of meso-scale atmospheric vortices
Lpes ~ 100 km that extend vertically across the depth of the troposphere hy. ~ 10 km but feature large vortex Rossby
number Ropes > 1. We use the asymptotic techniques introduced by Péaschke et al. [12] and recycle many of their
technical steps. As indicated in fig. 1, we assume vortices with nearly axisymmetric core structure at each horizontal
level, and we allow for strong vortex tilt such that the vortex centers observed at different heights may be displaced
horizontally relative to each other by distances comparable to the vortex core size Lyes-

One of the main findings of Paschke et al. [12] was the following evolution equation for the primary circulation
described by the axisymmetric leading-order circumferential velocity, ug, valid for time scales large compared to the
vortex turnover time scale,
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FIG. 1. Sketch of the spacial scaling regime for vortices in this work. In each horizontal plane the vortex is axisymmetric
to leading order while the vortex center line position X (¢, z) covers horizontal distances comparable to the vortex core size
(adapted from Péschke et al. [12]).

Here (t,r,z) are the appropriately rescaled time, radial, and vertical coordinates, fy is the Coriolis parameter, and
wo and u, oo are the axisymmetric components of the vertical and radial velocities induced by the azisymmetric mean
heating patterns, also properly rescaled. The apparent radial velocity u, . results from an interaction of the vortex
tilt with the asymmetric first circumferential Fourier mode of the vertical velocity. In particular,
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where X (¢, z) is the time dependent vortex centerline position at height z (see fig. 1), w is the full vertical velocity,
and e, = ¢ cos(f) + j sin(f) is the radial unit vector of a horizontal polar coordinate system attached to the centerline.
The main findings of the present work are:

1. The evolution equation from (1) is uniformly valid as fo — 0 so that it holds, in particular, also for Ropyes > 1,
i.e., for vortices of hurricane strength.

2. The mechanism of vortex spin-up by asymmetric heating of a tilted vortex is traced back analytically to an
effective circumferential mean vertical mass flux divergence that arises when the first Fourier mode diabatic
heating and the vortex tilt correlate positively.

2
3. Equation (1) can be recast into a balance equation for kinetic energy, ex = po=,

(rex), + (ruvao lex +71), + (run lex +71). = —25 [80Qe0 + 81+ Qo (3)

in line with the theory by Lorenz [5] for available potential energy (APE) generation.

Here p is the relevant pressure perturbation, éo, Qo,0 are the axisymmetric means of potential temperature
perturbations and of the diabatic heating, respectively, ®1,Qg  are dipole vectors whose components are

the cosine and sine coefficients of their first circumferential Fourier modes, and N and © are the Brunt-Viisila
frequency and the background potential temperature stratification, respectively. Equation (3) states that, except
for a conservative redistribution of kinetic energy due to advection and the work of the pressure perturbation, p’,
positive correlations of diabatic sources and potential temperature perturbations generate the potential energy
available for increasing the kinetic energy of the vortex.

Nolan et al. [10] study the effects of asymmetric diabatic heating on vortex strength in a linearized model.
One of their conclusions is that “... purely asymmetric heating generally leads to vortex weakening, usually in
terms of the symmetric energy, and always in terms of the low-level wind.” The present theory shows that this



Gravitational acceleration g = 9.81 ms™2
Coriolis parameter (¢ = 30° N) frer = 7.3.-107% ¢!

(df /dy)o (¢ = 30° N) Bret = 2.0-107* m~ts!
Pressure Pref = 10° Pa
Temperature Tret = 300 K
Brunt-Viisila frequency Niet = 1072 g7t

Dry air gas constant R = 287 ms 2K™!
Isentropic exponent ¥ = 1.4

TABLE I. Characteristic atmospheric flow parameters

conclusion does not hold up in case of a strongly tilted vortex, but that in this case symmetric and suitably
arranged asymmetric heating have vortex intensification efficiencies of the same order of magnitude.

4. The theory compares favorably with three-dimensional numerical simulations based on the compressible Euler
equations.

To arrive at these results, we first recount the governing equations and the principles of our analytical approach in
section IT, and then revisit the derivations by Péschke et al. [12]. A discussion of the scaling regime is given in section ITI
to investigate the influence of the Coriolis effect (item (1)), and the asymptotic vortex core expansion is carried out
in section IV analytically supporting the physical interpretation of the asymmetric intensification mechanism given in
item (2). In section V we establish the kinetic energy balance of item (3). Section VI presents results of the theory in
comparison with three-dimensional computational simulations to corroborate item (4). Conclusions and an outlook
are provided in section VII.

II. DIMENSIONLESS GOVERNING EQUATIONS AND DISTINGUISHED LIMITS
A. Governing equations

The dimensionless inviscid rotating compressible flow equations for an ideal gas with constant specific heat capacities
in the beta plane approximation used as the basis for the subsequent asymptotic analysis for € — 0 read [4]

g—?+u~V.‘u+wg—Z+E%%V.p+€(f+€35y)kXU ~0, (4a)
%+U~V‘w+wg—f+$%% :*Eig, (4b)
%jtu-V”p +w% + oV, u +p%) =0, (4¢)
%—?+U-V‘@+w%—(3 =Qeo, (4d)
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Here p, p, ©, u,w are pressure, density, potential temperature, and the horizontal and vertical velocities, and -y is the
specific heat ratio. The Coriolis parameters f and f are constants of order unity. The three-dimensional gradient is
V =V, + k0/0z with the horizontal gradient V, = ¢9/0x + j 9/0y, the zonal, meridional, and vertical coordinates
(x,y,2), and the related unit vectors (¢, j, k). Finally, ¢ is the time variable and Qg is a diabatic source term. The
meaning of the small parameter € will be explained shortly.

Table I lists general characteristics of the near-tropical atmosphere combined in Table II to form reference values
for non-dimensionalization. Let an asterisc denote dimensional quantities, then the unknowns and coordinates in (4)
are

p* p* (u”,w") (x*,2") _ et

b= ’ = ’ U,W)=——", Ty2) = —F t= . 5
Pref r Pref ( ) Uyef ( ) hsc hsc ( )

Note that u.es is an estimate of the large-scale thermal wind shear, and = iz + jy.



. Dref _3
Density Pref = —— ~ 1.16 kgm
RT..
. hse N, 2:
Potential temperature AO = Tret——= ~ 40 K
t N2
Velocity Uref = an ¢ ;ef Bh2, ~ 10 ms~!
71'/2 ref Drof
Length hse = .~ 88 km
gpPref
Time tref = =0~ 108 s
Uref

TABLE II. Derived reference values for non-dimensionalization

In deriving the dimensionless equations (4) using the quantities from tables I, IT the Mach, internal wave Froude,
and Rossby numbers, and the S-parameter

Uyef _9 o Uref -
M = ~ 3.4-10 Ro = ~ 13.3
vV ’I]jTref frefhsc (6)
ref 1 ~ ref s
Fr = ~ 1.1-1071 = — = ~ 27-107°
Nrefhsc ﬁ fref

emerge naturally. These are replaced with functions of a single small expansion parameter ¢ < 1 through the
distinguished limits

M:€3/2’ Frzi Rozi B:gsﬁ, (7)

in line with the multiscale asymptotic modelling framework of Klein [4]. Here (N, f, 8) = O(1) as € — 0, with concrete
values

N=091, f=075, B=27 (8)

derived from (6) for ¢ = M?/3 = 0.1. Whereas f and 3 appear explicitly in (4), N characterizes the background
stratification of potential temperature and will be invoked below where we define the initial conditions for the vortex
flow.

Equations (4) will form the basis for the subsequent asymptotic analysis for e < 1, although much of the expansions
will proceed in terms of the small parameter

5=z, (%)

III. SCALING REGIME FOR LARGE VORTEX ROSSBY NUMBER AND STRONG TILT
A. Vortex core size, intensity, and evolution time scale

Vortex core sizes of 50 km to 200 km are typical for tropical storms and hurricanes, and the storm/hurricane
threshold lies at wind speeds of 30 m/s [2]. With 62 = € ~ 1/10, hse ~ 10km, and wuyes ~ 10 m/s, these data
correspond well with

Ly ~ hee/02 = 100 K,  Umax ~ Uret /0 ~ 33 m/s,  6py ~ 6 Pret , (10)

for a characteristic vortex core size L., a typical wind speed, and the associated depression in the vortex core,
respectively. Note that these scalings deviate from those adopted by Péschke et al. [12], who considered systematically
larger radii of the order L, ~ hs./6% needed for direct matching to a quasi-geostrophic large scale outer flow. From
their work we recall, however, that the vortex core structure and tilt develop on a time scale t, that is by 1/62 longer
than the vortex core turnover time scale ¢y, = Ly /tmax. Thus, in view of (10), we will follow the vortex core evolution
on the time scale

_ tto 1 hsc 5 tre

= = == 10n. (11)
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The scalings in (10) and (11) include the regime of “rapid intensification”, defined by NOAA’s National Hurricane
Center (http://www.nhc.noaa.gov/aboutgloss.shtml) to denote maximum wind accelerations of 30kt ~ 15 m/s
in 24h.
Also, the adopted scalings describe a vortex in the cyclostrophic regime since
hse ug h 1 u

@z =0(1) whereas u%frefue = Ro s =0 (%), (12)

ref

i.e., the Coriolis term is subordinate to the centripetal acceleration in the horizontal momentum balance in this
regime. Accordingly, the vortex Rossby number is large,

Umax Umax Psc —2-142 1
ROV fOLv Ro Uyef Lv © (5 ) o 1) ( 3)

B. Co-moving coordinates for a strongly tilted vortex

Following Péschke et al. [12], we resolve the flow dynamics on the vortex precession and core evolution time scale
t, from (11). The appropriate time coordinate is

t=06%. (14)
For the core structure analysis we introduce vortex centered horizontal coordinates

1

33267

(X (t2) + ) (15)
where X (£, z) is the horizontal position of the vortex centerline at height z and Z is the relative horizontal offset.
With this scaling T resolves the core scale L, from (10) and the centerline covers comparable distances. This justifies
the notion of “strong tilt”.

In the sequel we use polar coordinates in horizontal planes, i.e.,

T=r7cosf; i=e,cos0 —egsinb

y=7sind; j=e.sinfh + egcosb (16)

T=T1 +7J where {

with e, and ey the radial and circumferential unit vectors, respectively. The transformation rules for derivatives in
these coordinates read

0 10 ~
V., = ¢ (6T8?+69?89> = 6°V, (17a)
X -
I am
0z by 0z ) 0z
X -
9 = i - 8—A-V : (17c)
Oty Ot 7., ot

The horizontal velocity is decomposed into the vortex’ motion plus the relative velocity,
0X
uzéﬁ—i—(ur e +upep). (18)

For later reference, here are the representation of the centerline in the (e, eqy) basis,
X = (Xcosf+Ysinb) e, + (—Xsinf + Y cosb) eg, (19)

and our notation for the Fourier expansion of functions of the circumferential angle, 6,

F9)=Fy+ Z (Fyn1 cos(nf) + Fposin(nd)) . (20)

Note that we have exchanged the roles of F),; and F» relative to their use in [12] as this will streamline some of the
physical interpretations given below.



C. Vortex core expansion scheme

The circumferential velocity is expanded as
ug(t, @, z;6) = 6°° (O (t,7. z)—l—uf9 )(t T, z) —|—(5u (t 7,0,2) +0(0), (21a)
up(t, @, z;6) = Su®(t,7,0,z) + 0(9) . (21b)

i.e., non-axisymmetry relative to the centerline is allowed for from O(du,ef) upwards. Across the core size length scale,
L., such asymmetries induce horizontal divergences of order u,. /Ly ~ Stret/(hse/62) = 83Uret /hsc, see (10). Since the
flow field is anelastic to leading order as derived below, this implies the vertical velocity scaling,

w(t,, ze) = w0 (t,7,0,2) + o(1). (22)
Expansions for the thermodynamic variables are anticipated as follows,
p=m+ﬁm+ﬁﬁw+m)+ﬁ( +m)+owy (23a)
p=po +8% +6" (W +51) +8° (57 +755) +0(5%), (23b)
6 =09 +026; + 8¢ (8@ +8,) +° (87 + 8;) +o(¢”), (23¢)

[for plausibility arguments see 12, section 4.1.3]. In (23), the variables (po, p2, po, p2, ©0, O2)(z) describe the stationary
background, (p;, pi, (:)z)(tA7 z), are higher-order horizontal means, and (A(Z pt) 9( ) (2\, 7,0, z) are the quantities of

prime interest.

Note that, owing to the Fourier representation defined in (20) this notational convention “overloads” the subscript
(+)o with a double-meaning, but the distinction should always be clear from the context.

The vortex centerline position is expanded as

X=X 4+6x"+0(s) . (24)
IV. ASYMPTOTIC ANALYSIS OF THE CORE STRUCTURE EVOLUTION

This section revisits the analysis of Péschke et al. [12] for large vortex Rossby numbers focusing on the evolution
equation for the primary circulation.

A. Asymptotic equation hierarchy for the vortex core

The governing equations transformed to the co-moving coordinates are provided in appendix A. Inserting the
expansion scheme from the previous section we obtain

(0)y2 ~(4) 5(4)
10 0
S0 ) s (252)
r po OT 00
(0), (1) ~(5) ~(5)
2uy uy 1 0p op
— — =0 25b
e o a6 (25b)

from the horizontal momentum balance at leading and first order, respectively. Each line in (25) displays the respective
radial balance first and the circumferential balance as the second equation. We observe from the radial component
in (25a) that the vortex is in cyclostrophic balance to leading order which implies large vortex Rossby number. The
Coriolis effect enters as a first-order perturbation only in the present regime as seen in the radial component of (25b).
The pressure perturbations p®), p® inherit the assumed axisymmetry of uéo),u((,l) thanks to the leading and first
order circumferential momentum balances in (25a) and (25b), respectively.

The full second order horizontal momentum equations are listed in appendix B, equations (B1), but for the rest of the
paper we only need the circumferential average of the circumferential component (B1b). Letting 1o = 5- f P(0

denote the circumferential average of some 6-dependent variable ¢ in line with (20) we have

p) (0) p) (0) b (0) (0) a
Do 00 @ (D Do) ) ty. :0, (26)

ot 0z or T 8?



where
X
u,ﬁz = (w(o)er- % . (27)
0
The flow is hydrostatic up to third order, i.e., %”; =—p; (i=1,...,4), whereas

op ax @ gp

_ . _ 5
92 9. ¢ or P (28)

The leading and first order velocities are horizontal and axisymmetric according to (21), (22) and thus divergence
free. The second order velocity is subject to an anelastic divergence constraint obtained from the mass balance,

o /. ou ) 0x© o
@(mim9)+32>+a(mw% o) =0, (29

r

Similarly, the first non-trivial potential temperature transport equation reads

(0) 55(4)
ul) 96 d@1 B
g T = Q8 (30)

and the equation of state relates the thermodynamic perturbation variables through

54 M@
~4) _ -2 1
P Po (7]90 O, > . (31)

B. Temporal evolution of the vortex structure

Pischke et al. [12] observed that with the aid of (25) and (27)—(31), and given the vortex tilt, 90X /8z, as
well as the diabatic source term, Q(@O), one may interpret (26) as a closed evolution equation for the leading order
circumferential velocity, uéo).

To corroborate this, we use the Fourier decomposition, (20), for w(©® and the representation of the centerline
representation in polar coordinates from (19) to obtain

2 ax© 1[ (0dx© 0) Y (©)
Uprx = (w(o)eT : Oz . = 5 w%l) 9z + w§2) 9z . (32)

Expressions for w(()o) and wgz) for k = 1,2 follow from the ©—transport equation in (30),

wl® d®1 oL ul? -

—Qem h Uy _Q@lk (—1)* @1[3 K] " (33)

Since p* is axisymmetric (see (25a)), 13(112 = 0 and the equation of state, (31), yields (:)ﬁ)/@o = —ﬁ(ﬂ?/Po- With this

information, the vertical momentum balance (28) yields

o Y rexmep 8 FY _ 1av®ep (34)
O Po po 0z OF O Po po Oz O

Using the gradient wind balance in (25a) to eliminate 9p(*) /97, and going back to (33) we obtain explicit expressions
for the wﬁk) in terms of u(o) 90X /92, and Q(O)

(O)d@1 (0) 4(-1 )k@OaX:’a K] (u (O)) (k

Wy, dz 0,1k = 172> ) (35)
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where Xl(o) = X© and X2(O) = Y. Upon insertion of this result in (32), the second term on the right cancels, so
that

@) 1 0 0X© g av©@1 1 0X

T 2d0;/dz | “ON 0z 01279, | 2d®1/ale®’1 0z

(7

(36)

Here we have interpreted the cosine and sine Fourier components of Qg) ) as the components of a heating dipole vector,
Qg, in the horizontal plane.

To find a corresponding expression for u% (see the third term in (26)), consider the circumferential average of mass
continuity, (29). A brief calculation yields

~ (2 ~ (0
0 (Foou?) N 0 (Foowt”) 1 [ax a(Fpu®) YD 0G|, (37)
or, equivalently,
0 (?po {u% - uﬂ]) 0 <?P0 w(()O))
I -0 (38)

or 0z

(2

with uﬁz defined in (32). Exploiting (35) in that definition and integrating in 7" requiring that ur’) be finite at 7 =0

we find

) = oo + s (39)
where
7 (0)
@ __1[r9 _¥0.0 4 40
ur,OO ?/() 00 9z <p0d61/dz> . ( )
With (33) (first equation), (36), (39), and (40) we have now indeed expressed w(()o),uffg, and uﬁz in terms of

u((,o)ﬁX /0z, and Qg) as announced. In the sequel, we may thus derive from (26) how vortex tilt and diabatic
heating affect the evolution of the primary circulation.

The results in this section match the corresponding result by Péaschke et al. [12] with the Coriolis parameter f; set
to zero. This corroborates our statement (1) in the introduction that the vortex amplification/attenuation mechanism
described in their work does not depend on the vortex Rossby number being at most of order unity.

V. DISCUSSION OF THE INTENSIFICATION/ATTENUATION MECHANISM
A. The influence of asymmetric heating on the primary circulation

As elaborated in the previous section, (26) describes the evolution of the primary circulation in response to external
diabatic heating in the present vortex flow regime. Aiming to separate the influence of heating asymmetries from
those of axisymmetric effects, we recall from (39) that the net circumferentially averaged radial velocity is entirely a

response to diabatic effects, and that it consists of one part, uggo, which, according to (40) is induced by axisymmetric

heating, and a second part, uﬂ, which, according to (36), arises from first Fourier mode asymmetric heating patterns.

Using this decomposition in (26), we rewrite the equation as

O (0) © 0 (0)
Oup” g @) [(Oup  Up ) _ )l (41)
a0 Tar o\ TR TR T

which is the version of the equation announced in (1) in the introduction. In this equation, the left hand side captures
the influence of the axisymmetric dynamics and diabatic heating, whereas the right hand side covers all effects due
to the interaction of asymmetric heating and vortex tilt.



B. Mechanics of vortex intensification by asymmetric heating of a tilted vortex

In a preliminary step we analyze the two versions of the leading-order mass balance in (37) and (38). The term in
square brackets in (37) results from application of the transformation rule for the vertical derivative in (17) to the
vertical mass flux divergence, wp, + pw, = (pw),, in the continuity equation (4c). Figure 2 reveals the origin of the

’wlki
wlk €,

FIG. 2. Origin of the effective vertical mass flux divergence induced by Fourier mode 1 vertical velocity perturbations with
amplitude w; in a tilted vortex when the wi-dipole and vortex tilt are suitably correlated.

term: Consider the toroidal control volume defined by radial and vertical intervals (r,r + Ar) and (z, z + Az), in the
centerline-attached coordinate system as shown in the figure. A Fourier mode 1 vertical velocity mode, when suitably
arranged relative to the vortex tilt, will produce a net outflow from the control volume across the tilted cylindrical
outer interface as indicated by the up and downward pointing arrows in the graph. As this consideration concerns
the r = const.-part of the control volume interface, this flux contributes the apparent radial flux associated with u£2,2
in the mass balance from (38).

Note, however, that the true mass motion associated with this term is vertical as explained above. As a consequence,
considering the effect of mass motions on the angular momentum budget in the form of (26), this apparent radial
flux does not come with the usual spin-up / spin-down that is otherwise associated with radial motions due to the

conservation of angular momentum as encoded in the term u, Ou((,o) /7.
This should settle the announcement of (item 2) in the introduction.

C. Energy budget for the externally heated vortex

Here we elaborate on how the asymmetric diabatic heating is transferred to kinetic energy of the primary circulation

in a tilted vortex. To this end, we multiply (41) by por u( ), use the f-averaged leading-order mass balance from (38)
and recast the advective terms in conservation form to obtain,

0 (. Uy 0 (2) u2 0 UG - (@ ap(4)
2 il e Yo ) — _ . 42
at (mo ) T o (rpo ooy )+ g5 TPt "o T or (42)

Here we have dropped the (9) superscript on u(go) and w(® to simplify the notation, and we have used the cyclostrophic

radial momentum balance from (25) to introduce the pressure gradient on the right.

This reveals the change of kinetic energy (left hand side) to result from the work of the pressure force due to the
mean radial motion (right hand side). Some straightforward but lengthy calculations, the details of which are given
in appendix C, yield a direct relation of the kinetic energy balance in (42) to the Lorenz’ theory of generation of
available potential energy (APE) by diabatic heating,

~ ~ (2 ) __Tpo Q) @) O
(e + (Furfome) + (Feih) = 7577 s [o0el, e -qi] (43)

where hy = e +p?, and (O, Qo) = (0,Q0),51+(0,Qe),; 7 are the dipole vectors spanned by the first circumfer-
ential Fourier components of the fourth order potential temperature perturbation, ©®), and of the diabatic heating



10

function, Q(@O ), respectively. This result shows, in line with Lorenz [5, 6] and as announced in the introduction in (3),
how positively correlated heat addition and temperature perturbations generate available potential energy (APE),
which is then redistributed by the advective and pressure-velocity fluxes as seen on the right of (43). The precise
form of the right hand side of (3) as announced in the introduction (item 3) is obtained from (43) by realizing that
(1/©¢)dO; /dz is the dimensionless representation of N2, the square of the Brunt-Viisili frequency, and that the
constant Oy is the leading-order dimensionless background potential temperature © = Tyet(Qg + 0 (1)).

Nolan et al. [10], extending prior similar studies, investigate the influence of asymmetric diabatic heating on vortex
intensification on the basis of a linearized anelastic model that includes a radially varying base state and baroclinic
primary circulation. Their central conclusions are that (i) asymmetric heating patterns quite generally tend to
attenuate a vortex, that (ii) there are situations in which they can induce amplification, but in these cases, their
influence is (iii) generally rather weak. In fact, they state in their section e: “... purely asymmetric heating generally
leads to vortex weakening, usually in terms of the symmetric energy, and always in terms of the low-level wind.”.
Equation (43) shows that purely asymmetric heating in a tilted vortex can intensify or attenuate a vortex depending
on the arrangement of the heating pattern relative to the tilt, and that the efficiencies of symmetric and asymmetric
heating in generating kinetic energy are of the same order in the asymptotics as claimed in item 3 of the introduction.

VI. COMPARISON WITH 3D NUMERICAL SIMULATIONS

The following section presents the setup and results of 3D numerical simulations. We want to corroborate the
outlined theory, especially the relation of tilt, asymmetric heating and the evolution of the circumferential velocity by
numerical solutions of the Euler equations. For this kind of atmospherical problem, the use of a numerical framework
is necessary suitable for the forward-in-time integration of the equations of fluid dynamics constrained to a (nearly)
steady background state. Conveniently, EULAG [see, e.g., 13, 15] offers the necessary features and its compressible
model was used during all the simulations outlined in the following section.

Subsection VI A gives an outline of the numerical setup, especially of the initial data and subsection VI B presents
the different numerical tests corroborating our theory and discusses the results.

A. Numerical settings and initial data

Along the lines of Papke [11], the simulation domain extends 4000 km in the horizontal direction and 10 km in the
vertical. Time integration length is of the order of days for all simulations and the CFL number is initially chosen
to be approximately 0.15, but changes due to a constant time step size and varying velocity. Boundary conditions
are set to solid-wall conditions and a damping layer surrounds the domain near the horizontal boundaries to suppress
unwanted gravity waves due to imbalances of the initial data. The background stratification is set with respect to the
constant Brunt-Vaisild frequency and reference values (corresponding to z = 0) of pressure, temperature, and density
given in tables I and II. In particular, the background stratification of potential temperature is given by

2
O(z) = Tyet exp <Nr6f z) . (44)
g

Emphasizing the cyclostrophic regime the asymptotic scale analysis carried out in section IV, the Coriolis parameter
for our simulations is set to zero.

Péschke et al. [12] worked out in subsection 6.2. that a cosine-shaped centerline is an eigenmode of the centerline
equations of motion for exponential background density distribution, constant Brunt-Vaisila frequency, and under
the Boussinesq approximation. For this reason the initial centerline is set to

X (z) =ncos(mz/ztop) s where n = (80,80)” km, 2, = 10 km (45)

for all simulations.
Based on recent studies [11, and references therein] the initial velocity distribution follows a Gaussian profile of the
z-component of the vorticity:

—0'27'2
q(r) = gme (46)
This results in a radial profile of circumferential velocity of the form

1 . 6_0_21,2

4o = dm o2y

(47)
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FIG. 3. Radial circumferential velocity profile corresponding to a Gaussian profile of vertical vorticity. The solid line corresponds
to the unmodified profile (47) and the dashed line to the actual profile after applying the mollifier, see eq. (49).

Such a profile features typical characteristics of the circumferential velocity of a tropical cyclone, i.e., a linear increase
in the inner regions, a ring of maximum wind, and a decay for large radii of order O (r’l). A qualitative depiction
is given in fig. 3.

From the constraints [“)Tue|7,:me =0 and u9|r:me = U9 max WE get

UH max 42R2
= Lomax o*Ry,, 48
m me ( )

with 0 Rmw ~ 1.12. Rpyw and %p max denote the radius of maximum wind and the maximum wind speed and are
canoncially chosen to Ry = 100 km and ug max = 10 m/s.
For compliance with the boundary conditions a mollifier is applied, reducing the velocity to zero at large radii:

—o2p2
Up = Qm%m(r) (49)
with
1 , r<rg
m(r) = { cos? (%pg::l) , 1o <T < Too (50)
0 , T > T

ro = 1 250 km and 7o, = 1 750 km are the radii where the mollifier starts and where it reaches full-suppression.

The asymptotic theory of section IV raises several constraints of leading and next-to-leading-order horizontal struc-
ture for pressure, potential temperature and vertical velocity. The pressure is determined by the vertical hydrostatic
background distribution at leading order and corrected by the cyclostrophic balance at O (54). With a prescribed
radial profile of circumferential velocity we can solve (25a) by using QUADPACK’s gag routine [3] with boundary
values Opl,_g = (p = D)l,p =0

Due to tilt and hydrostatic balance the cyclostrophic pressure perturbation imprints a perturbation on the potential
temperature, see (34). Having the pressure perturbation and its derivative with the hydrostatic balance P we can
compute the density correction and with the equation of state (31) the perturbation oW, However, using (34) to set
the horizontally non-homogeneous part of © leads to significantly better initial balancing.

To be in initial balance with the diabatic heating we have to compute the vertical velocity from equations (33) and
(35). The next subsection will give more details for the different types of heating.

B. Results and discussion

Different aspects of the theory developed by Péschke et al. [12] and extended in this paper are tested via numerical
simulations.
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FIG. 4. Time series of tagential velocity for different resolutions and without diabaitc heating. The lines correspond to 96 x 20
(solid), 192% x 20 (dashed), and 384% x 40 (dash-dotted) grid points.

A starting point is the initially tilted vortex without diabatic heating. In this setting w?, u® and w® vanish

Tk Uy 009 0
(see (40), (32), and (33)), reducing (41) to
9 ©
&ug ) =0. (51)
Additionally, (35) implies that without external heating only the tilt imprints a dipol pattern on w(©):
S ox M aY WY (43
© = 20 (gng — cosf 0 (k=12 52
YT 46, /dx (Sm 9. o ) 72 ’ (52)

We performed this test for different resolutions and checked for several error estimates. Figure 4 presents the
time evolution of the maximum value of the angle-averaged circumferential velocity. This result is in line with (51)
showing reasonably constant wind speed, although resolution dependent-damping occurs. We conclude that the
highest presented resolution gives sufficient results for this test and thus, we use it for the following benchmarks.

Figure 5 shows the comparison of theoretically predicted vertical velocity (shaded) and the actual results from the
simulations (contours). Qualitatively there is a good congruence of theoretical and numerical values. In terms of
absolute values both quantities deviate with an order of O (§). w(®) ranges from ~ —0.6 m/s to ~ 0.6 m/s while the
numerical values are in ~ —0.45 m/s to ~ 0.45 m/s. This might be due to the exitation of an additional asymptotic
expansion mode due to slight imbalances of the initial data and calls for more detailed investigation in the near future.

Taking again equation (35) into consideration and restricting to asymmetric (dipol) heating patterns we find an
arrangement for which w(®) must be suppressed. This can be accomplished by

oxW (043
)% _ k1 3=k (ug’) _
S = (Ve B (k=1,2) (53)

i.e., a heating dipol rotated by /2 relative to the tilt. This setup also leads to uﬂ = 0 and therefore no impact on
the circumferential velocity is expected.

The numerical experiments have shown that the application of (53) leads to strong numerical instabilities on a very
fast timescale and, as being imposed on purely mathematical consideration, it might be too strong anyway. For the
actual numerical simulation we found that it is convenient to use a time-dependent blending function. It is constructed
from three freely specifiable points (¢;, f;), ¢ = 0,1, 2, and linear interpolation in between:

0 , t<tig
fot Pl —t) , to<t<t
A+LEhi—t) |, 6 <t<t

to—t1
t > to

ft) = (54)

)
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FIG. 5. Typical pattern of vertical velocity for a horizontal slice. Contours depict the numerical results at 5000 m hight and
t = 36 h with absolute values ranging from 0.02 m/s to 0.05 m/s in step of 0.005 m/s with positive (solid lines) and negative
(dashed lines) sign. Underlaying shades represent the theoretical prediction.
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FIG. 6. Residual vertical velocity the the heating pattern (53). Contours represent 0.01 m/s and 0.02 m/s with positive (solid

lines) and negative (dashed lines) sign.

A second justification for this approach is the fact that, although analytically balanced, the initial data might not
be balanced from a numerical point of view. Indeed, we initially observe fast equilibrations, which decay within a
few hours. We now have the possibilty to let the system equilibrate before applying the diabatic heating. For this
experiment we chose (¢;, f;) € {(12 h,0), (24 h,1), (36 h,0)}.

As predicted fig. 6 shows that the resulting vertical velocity can be suppressed by a factor of §, effectively canceling
w(© . The remaining contributions to w might be due to exited higher-order modes of the asymptotic expansion.
Furthermore the impact on the angle-averaged circumferential velocity in negligable, see fig. 7.
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FIG. 7. Time series of maximum wind for the heating pattern (53). As predicted by the theory no significant impact on the
horizontal velocity occurs.

In general, we find that the resulting vertical velocity is composed of a tilt-induced part and another one induced
by the diabatic heating. We recall from (35) that

0
© Ea,)1 SN ox (uéo))3

YT g0, jd: T e e e

(55)

where Ry, is the conventional two-dimensional rotation matrix for the angle 6.

The goal of this paper is to show that the proposed mechanism can be used to trigger vortex amplification by
asymmetric diabatic heating. (41) and (36) let us conclude that the maximum intensification can be achieved by a
heating pattern antiparallel to the tilt and maximum attenuation by parallel alignment.

Taking the heating pattern (53) we can generalize

XV (ug”)?

(2 _
Q@,l - RGO 60 82’ ?2 i (56)
and we find maximum amplification for fy = —=. In addition the vertical velocity results in

0y XY (uf)?
d®,/dz 0z 72

wgo) = \/§R_57‘-/4 (57)

The first intensification test was performed using the heating pattern (56) without any modifications. We see a
strong increase in horizontal average wind speed in fig. 8 and a good correlation between theory and simulation for
w in fig. 9. Nonetheless, it has shown that this “prototypical” heating pattern leads to very strong distortions of all
physical fields and finally to a non-physical behaviour of the solution.

Therefore, the next test was performed in a slightly different fashion to weaken the effect of diabatic heating. As the
evolution equation for uéo) and the default heating would exhibit a singularity for u((,o) at finite time (&gu((,o) x (uéo))‘l)
we decided to calculate Qg using the initial distribution ug(t = 0) instead of ug(¢). The application of the blending
function also appeared to be useful. Parameters are set to (¢;, f;) € {(12 h,0), (24 h, 1), (36h,0)}.

We are now not able to directly compare numerical and analytical values of w anymore. This is for three reasons:
(i) As previously shown imbalances of the initial data are causing the exitation of higher-order modes of w(®. (ii) In
calculating the heating pattern uy is replaced by its initial distribution. (iii) The blending of Qy via (54) continuously

alters the rotation angle between 'w(lo) and 8, X" from —m/2 to —5m/4 and back. This is due to the varying ratio
between tilt-induced and diabatically induced vertical velocity. Nonetheless, fig. 10 depicting the vertical velocity at
maxmimum heating still shows good congruence between theory and simulation.

Moreover, we are able to intensify the maximum wind speed from 10.5 m/s to ~ 17.5m/s by applying the bespoken
heating pattern, see fig. 11. After ¢ = 36 h the vortex runs freely to show that the intensification sustaines without
heating after horizontal redistribution of angular momentum. Interestingly, although the heating begins at ¢t = 12 h
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FIG. 8. Time series of increased maximum wind due to diabatic heating (56).
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FIG. 9. Contours depict the numerical results for vertical velocity at 5000 m hight and ¢ = 5 h with absolute values ranging
from 0.02 m/s to 0.04 m/s in step of 0.004 m/s with positive (solid lines) and negative (dashed lines) sign. Underlaying shades
represent the theoretical prediction.

a sudden increase starts to happen at ¢ =~ 24 h. On the one hand, this reflects the nonlinear character of the
intensification mechanism. On the other hand, this complies very well with observations, where sudden strong
intensifications are observed.

VII. CONCLUSIONS AND OUTLOOK

With the present work we have extended the results of Péschke et al. [12] to large vortex Rossby numbers, and
we have corroborated their theoretical prediction of rather strong intensification efficiencies of asymmetric diabatic
heating in a strongly tilted vortex through numerical simulations.

Ongoing work concerns the self-consistent modelling of heating patterns in the form of latent heat release from
multiscale moist processes, and a consistent coupling to the dynamics of the near-surface boundary layer.
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FIG. 10. Vertical velocity resulting from diabatic heating (56) with applied blending function. For details see fig. 9.
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FIG. 11. Time series of increased maximum wind due to diabatic heating (56) with applied blending function. The heating
acts between t = 12 h and ¢t = 36 h with its peak at ¢t = 24 h. The strong increase sustaines after the heating was switched off.
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Appendix A: Governing equations in the co-moving coordinates

Transforming (4) to the vortex-centered coordinates from section ITI B using (17) and defining U = § X /0t and
Upel = Uy €, + Ug €9 We find

o(U re 0 0X =
W tua) | L, S + 5 V| (U + ure))
ot o 8z 0z
1 (Ala)
577Vp+ 2ka(U+urel)=0,
1 ~ X -~
alﬁvauml-Vw—kE Q—a—-v
o ) 03 |0z 0z (A1b)
L (1[0 0X o
510 \p |0z Oz -
dp 1o 1[0 090X o
—+ = re = |= - =" =0, Al
L 59 ) + 5 |5 = 9| () =0 (Alo)
00 1 ~ w | 0 0X =
a,\ + gurel -VO + 53 I:az g . V:| O = Q@ . (Ald)
Appendix B: Full second order horizontal momentum balances
i)au?) B 2ué0)u((,2) B (uél))2 ‘e .BX(O) w(o)uéo) (Bla)
L 7 2 e T
1 67 74
7(‘9?% - %8?% *foUél) =0
po OF Py O
— —_— — — B1b
o Y e T\ Tar TTF )T Toe (B1b)

oxX©ou)) 1 9p®
— w(o)e7 [— ue + p =

0z Or por 00

Appendix C: Derivation of the kinetic energy budget (43)

We start from (41), which is equivalent to (4.21) in [12] for fo = 0. This is verified straightforwardly by using

98 = ug 30 + ug ). The equation is multiplied by ?pouéo), and we use the mass conservation law in the form of eq.

(Froutto)_+ (Frowt”) =0, (c1)
to generate the advective transport terms of kinetic energy in conservation form. We let
€k = pOug /2 (02)
and obtain
R N R op@
(Tex), + (ru%oek)? + (rwéo)ek>z = ( 5280 + Uy *) g? . (C3)

Focusing on the left hand side of this equation, we rewrite the first term as
N G =R p)
e 2 = (fon ), + ()= rl? (2
T T z £o 2

o [t (o) ]

(C4)
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The square bracket vanishes according to (C1), while we observe that by combining the axisymmetric part of the

hydrostatic balance in (28) with the equation of state in (31) to replace (p*)/pp)., and (33) to replace w((JO) one finds

(4) Q(O) oW
~ o) (P _= 0,0 0 5
el (22 =it o ()

Next we rewrite the second term on the right of (C3) using the definition of uﬂ in (32), and the first Fourier modes
of the vertical momentum balance in (34) to find

(4) ow QY oW
= Q0P o s 61 i C6
T U o Tpo Wi 0 TPo d0,/dz  ©y (C6)

To obtain the second equality we have used the asymmetric WT'G-law from (35) and the fact that the second term

in that equation contributes a component to w; that is orthogonal 90X © /0z, and thus also orthogonal to (954).
Insertion of (C4)—(C6) generates the desired equation (43).

Appendix D: The centerline equation of motion

For the present situation of vanishing background velocity and weak Coriolis effect, the leading order centerline
equation of motion reads, dropping the (%) superscripts for simplicity of notation,

0X
kX, (D1)
where
Y=L, H+IT+T]|, (D2)
and for I € {#,Z, T}
o " T 1 r / / / 7z 0o
L, K] 7?151010 ?/mﬂ(r) /1" K(')dr'dr| = F/TIC(T) dr (D3)
0 0 0

for a primary circulation u(r) of total circulation I'(z). The IC are dipole vectors representing first circumferential
Fourier modes as introduced above, i.e.,

K= Kll’l: + K12j (D4)
and their respective definitions are
) ouy)
— | 0 %0 D
M=% (“" 9z )" (D5a)
¢ 9(pow')
— a5 D5b
' Po 0z ’ ( )
a¢(2) _o¢O D5
I="5 (T or ) ’ (Dc)

Here we have introduced the leading-order vorticity

Bu(go) u(go)

0 — 20
¢ or T

(D6)
the second order horizontal perturbation velocity potential ¢(2) responsible for compliance of the solution with mass
conservation for purely asymmetric heating,

> 1 "r2 9

¢,<2>:¢/A r?’[/o %a(pow@)) dr| dr, (D7)
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See also [12].

To reveal more clearly the structure of the centerline evolution equation, we recall the formula (35) for the vertical
velocity Fourier modes, which separates diabatic from adiabatic effects. Rewriting this formula in the dipole vector
notation we have

1 ax*t (uf”)?
0 _ ..Q ad _ 0 : 0) _ 0
w® = w® + w _’1<Q+U()8z> with U =0, = (D8)
For the purposes of some idealized tests we decompose the diabatic heating into two separate terms,
~ ~ I 0X
Q(T’, Z) = Q(T7 Z) + Q(Ta Z)RSD 82 (Z) ’ (Dg)

where R, denotes the matrix of two-dimensional rotation by an angle .
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