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The applicability of many computational approaches is dwelling
on the identification of reduced models defined on a small set
of collective variables (colvars). A methodology for scalable prob-
ability-preserving identification of reduced models and colvars
directly from the data is derived—not relying on the availability of
the full relation matrices at any stage of the resulting algorithm,
allowing for a robust quantification of reduced model uncertainty
and allowing us to impose a priori available physical information.
We show two applications of the methodology: (/) to obtain a
reduced dynamical model for a polypeptide dynamics in water
and (ii) to identify diagnostic rules from a standard breast cancer
dataset. For the first example, we show that the obtained reduced
dynamical model can reproduce the full statistics of spatial molec-
ular configurations—opening possibilities for a robust dimension
and model reduction in molecular dynamics. For the breast cancer
data, this methodology identifies a very simple diagnostics rule—
free of any tuning parameters and exhibiting the same perfor-
mance quality as the state of the art machine-learning applica-
tions with multiple tuning parameters reported for this problem.

dimension reduction | Markov state models | clustering |
computer-aided diagnostics | Bayesian modeling

odel reduction and identification of a most appropriate

(small) set of collective variables are essential prerequi-
sites for many computational methods and modeling techniques
in a number of applied disciplines ranging from biophysics and
bioinformatics to computational medicine and image processing.
A variety of methods for the identification of collective variables
can be roughly subdivided into two major groups: (i) methods
that are based on some user-defined agglomeration of the orig-
inal degrees of freedom into collective variables (e.g., based on
the physical intuition) (1) and (i7) methods that produce/derive
these agglomerations of original system’s variables based on a
reduced approximation of some system-specific relation matri-
ces. These matrices can be defined, for example, as covariance or
kernel covariance matrices (2, 3), partial autocorrelation matri-
ces of autoregressive processes (4), Gaussian distance kernel
matrices (5, 6), Laplacian matrices [as in the case of spectral clus-
tering methods for graphs (7, 8)], adjacency matrices [in commu-
nity identification methods for networks (9)], or Markov tran-
sition matrices [as in spectral reduction methods for Markov
processes (10, 11)]. In most of these reduction methods, the rela-
tion matrices are assumed a priori available—and this assump-
tion is true, for example, in social sciences, network science, and
many areas of biology. However, in many particular applications
(e.g., in biophysics and many medical applications; examples 1
and 2 below), one first needs to estimate these matrices from
available data. For systems with a large number of dimensions
(for continuous data) or categories (for categorical data) and
short available statistics, these matrix estimates will be subject
to uncertainty and may lead to biasedness of the derived colvars.
Some other reduction approaches that allow for computing the
reduced representation from the data directly [e.g., the Prob-
abilistic Latent Semantic Analysis (PLSA; used in mathemati-
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cal linguistics and information retrieval for analysis and reduc-
tion of texts and documents)] (12-14) impose strong assumptions
on the data and exhibit issues related to the computational cost
scaling (Fig. 1 and SI Appendix, section S5 have detailed discus-
sion), making them practically not applicable to nonsparse data
in such areas as, for example, the model and data reduction in
biophysics and bioinformatics. Another problem arises when try-
ing to identify the colvars for dynamical systems while simulta-
neously trying to preserve some essential conservation properties
(e.g., conservation of energy or probability) in the reduced rep-
resentation. For example, deploying spectral methods based on
Euclidean eigenvector projections [such as principal component
analysis (PCA) and spectral clustering methods] to reduction of
probability measures would not guarantee that the components
of the projected/reduced representation will also add up to one
and all be bigger than or equal to zero (i.e., the resulting reduced
models may not be probability preserving).

In this paper, we present an algorithmic framework that is scal-
able for realistic dynamical systems and is designed for the infer-
ence and analytically computable uncertainty quantification of
reduced probability-preserving Bayesian relation models directly
from the data.

Methodology

Below, we will give a brief description of the methodology—
detailed derivation can be found in SI Appendix, section S1.
Our aim is to come out with a reduction method intending to
preserve causality relations—measured in terms of the matrix
of conditional probabilities between two categorical processes
Y and X. Process Y will serve as a reference process, mean-
ing that it will not change when process X is reduced. The
terms “categorical process” and “categorical variables” mean
that—in every particular case s (e.g., at any given time s or for

Significance

We derive a computational framework that allows highly scal-
able identification of reduced Bayesian and Markov relation
models, their uncertainty quantification, and inclusion of a pri-
ori physical information. It does not rely on the prior knowl-
edge or a necessity of estimation of the full matrix of system’s
relations in any step. Application to a molecular dynamics
(MD) example showed that this methodology opens possibili-
ties for a robust construction of reduced Markov state mod-
els directly from the MD data—providing ways of bridging
the gap toward longer simulation times and larger systems
in computational MD.
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Fig. 1. Numerical comparison of the PLSA Expectation Maximization reduc-
tion (13, 14) and the DBRM reduction algorithms: (A) for the average number
of iterations required until reaching the same convergence tolerance, (B) for
the average central processing unit time until algorithms reach the same con-
vergence tolerance, and (C) for the average relative log-likelihood difference
between the optima achieved with the DBRM and the optima obtained with
the exact iterative maximization of Eq. 3. For every combination of problem
dimensions n and m, averaging was performed over the ensemble of 1,000
randomly generated datasets that were subject to reduction with K =2
for both of the algorithms. Convergence tolerance was measured in terms
of the same normalized log-likelihood measure 1/mnL. Average relative
log-likelihood difference was computed as E[|Lexaces — Lpgrm |/ |Lexace* |].
where [ is defined in Eq. 3. MATLAB code generating this comparison is
available at https:/github.com/SusanneGerber. The code implementing PLSA
Expectation Maximization methods (13, 14) is openly available at the Math-
Works webpage (https://ch.mathworks.com/matlabcentral/fileexchange/
56302-probabilistic-latent-sematic-analysis-tempered-em-and-em-). EM, Ex-
pectation Maximization.

any given instance s in the dataset)—Y'(s) is taking one and
only one of the possible values from m categories {y(1),
y(2),...,y(m)} and X(s) is taking values from one and only
one of the n categories {z(1),z(2),...,z(n)}. For example,
in biomolecular dynamics simulations of polypeptides with N
amino acid residues, every peptide residue 7 at any time s can
be assigned to one and only one of three Ramachandran states
dependent on its current combination of torsion angle values
¢i(s) and ;(s) (SI Appendix, Fig. S1). Also, every global con-
figuration/conformation X of the entire polypeptide molecule
at any time can then be assigned to one of the n <3" cat-
egories {z(1),z(2),...,z(n)}—where every particular z(k) is
defined by a vector of Ramachandran state combinations [e.g.,
z(k) is a category when junction 1 is being in state 1, junc-
tion 2 is being in state 2, and so on]. Efficient approaches
based on the Markov state modeling (MSM) framework have
been recently introduced, allowing for automated transforma-
tion of continuous-valued processes [e.g., molecular dynamics
(MD) coordinates time series] into categorical time series (15,
16). Because the system cannot be in two different categories
simultaneously, these categories are disjointed, and a relation
between the probability for Y (s) to attain a category y(i) in
its instance/realization s and the probabilities for X (s) can be
formulated exactly via the conditional probabilities and the law
of the total probability (17). Defining the column vectors of
probabilities Iy (s)= {P[Y (s) = y(1)],...,P[Y(s)=y(m)]},
IIx(s) = {P[X(s) = z(1),..., and P[X(s) =z(n)]}, we can
write the exact relation between the variables X and Y in a
matrix vector form:

My (s) = Allx(s), (1]
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where matrix elements {A}, =P[Y(s) = y(¢)| X (s) = z(j)] are
conditional probabilities. If known, they can be used as indicators
for existence of causality relations between the variables Y and
X in the randomized studies: if {A}, =P[Y(s) = y(i)] for all j
and s, the processes are then independent—meaning that infor-
mation about the variable X provides no additional advantage
in computing the probability of the outcomes of Y. If {A},; #
P[Y (s) = y(2)] for some j, consequently, there exists some rela-
tion between X and Y (18). To be able to interpret these con-
ditional probabilities as a measure of the true causality relations
in practical studies when {A},; are estimated from the available
observations of X and Y, one needs to guarantee that the data
are appropriately randomized.

In a particular case, where m = n, with s being the time index
and X (s)~ Y (s — 7) (where 7 is a time step), the above for-
mulation (Eq. 1) is equivalent to a so-called master equation of a
Markov process [and thereby, is a particular time-discrete case of
the well-known time-continuous Fokker—Planck equation (17)].
The n x n matrix A in this case will be a transpose of the Markov
transition operator (19). If matrix A is known, it provides full
information about the relations between processes Y and X—
and can be used to predict Y if X is available.

In many applications, the relation matrix A is not known and
needs to be first estimated from the available observational data
{X(1),X(2),...,X(5)} and {Y(1), Y(2),..., Y(5)} [eg. by
means of the maximum log-likelihood approach that allows us to
provide the analytical estimates of the most likely parameter val-
ues A* and their uncertainties (lemma 1 in SI Appendix)]. How-
ever, in realistic applications (e.g., in the MD example below),
the number of categories n can grow exponentially with the phys-
ical dimension of the problem (“curse of dimension”)—leading
to the exponential growth of overall uncertainty for the A™ esti-
mates when the available statistics size S and a number m of
Y -categories are fixed (lemma 2 in SI Appendix). This prob-
lem also means that the uncertainty of all additional physical
observables obtained from A* (e.g., the uncertainty of eigenval-
ues, eigenvectors, metastable sets, etc.) will be growing with the
growing n, making practical deployment of Eq. 1 problematic
for realistic systems with a “large” n and “small” S. Therefore,
if we want to reduce the dimensionality n—for example, through
identification of a small number K of collective categorical vari-
ables that agglomerate the original n categories of process X
into K groups/boxes—then this methodology should not rely on
a direct estimation of the full Bayesian causality matrix A in these
situations.

To circumvent this problem, one can try to identify a latent
reduced categorical process {X (1), X(2),..., X(S)} (being a
reduced representation of the full categorical process X) that is
defined on a reduced statistically disjoint complete set of (the
yet unknown) categories {Z(1),Z(2),...,2(K)} with K <n.
Deploying a law of a total probability, we can establish the
Bayesian relations between X and X on one side (by means of
the conditional probabilities I'y; = P[X (s) = (k)| X (s) = z(5)])
and between X and Y on the other side (by means of the con-
ditional probabilities Az =P[Y (s) = y(i)| X (s) = Z(k)]). Then,
it is straightforward to validate (a detailed derivation is in S/
Appendix, section S2) that an optimal probability-preserving
reduced approximation of the full relation model (Eq. 1) for K
colvars takes a form

Iy (s) = Al'TLx (s), [2]

where {ITy(s)}, =P[Y(s)=y(i)] and i=1,..., m. For every
particular combination of k and j, I',; defines a probability
for the colvar to be in a reduced collective categorical variable
k when the observed original process X is in a category z(j),
and therefore, it can be understood as a discrete analog of the
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continuous projection and reduction operators deployed in

methods like PCA; ) is a reduced version of the matrix A from
the full relation model (Eq. 1). Please note that, being basically
a reformulation of the exact law of the total probability, reduced
model (Eq. 2) is exact in the Bayesian sense, and no additional
approximations have been involved.

A similar approach to latent variable dependency modeling
is used in the PLSA (13, 14) (that is, used in mathematical
linguistics and information retrieval for identification of latent
dependency structures in texts and documents). Deploying the
definition of a conditional probability, PLSA allows one to param-
eterize a joint probability distribution P[X and Y| with the help
of the latent process X as P[X(s)=z(j)and Y (s)=y(i)] =
P[X(s)=1z(j)] ZkK:1 Ak To estimate the parameters, one
deploys an Expectation Maximization algorithm having the
computational iteration complexity of O (K - min{mn, S}) and
requiring O ((K + 1) - min{mn, S}) memory in a general non-
sparse situation (i.e., when the underlying matrix A is not assumed
to be sparse a priori). However, as shown in SI Appendix, sec-
tion S5, this problem requires imposing additional strong inde-
pendence and stationarity assumptions on the latent variable X .
Moreover, as shown in Fig. 14, the total average number of Expec-
tation Maximization iterations for this problem grows rapidly
with problem dimensions m and n—resulting in the overall algo-
rithm complexity that grows polynomially in » and m (Fig. 1B).
Applying standard statistical methods of polynomial regression
fitting and discrimination (20, 21), one obtains that the statisti-
cally optimal fit of the red surface (corresponding to the PLSA)
from Fig. 1B is given by a polynomial of the third degree in
n and m. Extrapolation to the typical physical problem sizes
(e.g., m=n=10°, K = 2) that, for example, emerge in biophys-
ical applications like the protein molecules indicates that such
an inference procedure based on the Expectation Maximization
algorithm and PLSA would require approximately 1,450 years of
computations on a single laptop personal computer. Detailed
methodological description of the PLSA methodology and its
relation to the reduced Bayesian model reduction methods is pro-
vided in SI Appendix, section S5.

In the following section, we will suggest several computational
procedures for the scalable inference of reduced Bayesian rela-
tion model parameters (Eq. 2) directly from the observed data
{X(1), X(2),..., X(5)} and { Y (1), Y(2),..., Y(S)}. The op-
timal parameter estimates I and A\* that maximize the observa-
tion probability (called likelihood) of the given data in Eq. 2 can
be obtained by solving the following log-likelihood maximization
problem subject to equality and inequality constraints:

m n

L=3"3" Nylog ({)\F} ) ~ max, 3]

i=1 j=1

m

X >0, > A =1, foralli,k, [4]
i=1
K

[y >0, > Tw =1, forallk,j, [5]
k=1

where Ny = 3°%  x(Y(s)=y;)x(X(s) =1;) (with x being an
indicator function). It is straightforward to observe that, for
any fixed ), the original exact log-likelihood maximization
problem (Eqgs. 3-5) can be decomposed into n optimization
problems for the n columns of I'—and each of the column
problems with (K — 1) optimization arguments is concave and
can be solved independently from the other column problems.
This observation can help in designing a convergent algo-
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rithm requiring much less memory than the Expectation Maxi-
mization [O (K (m + n) + min{mn, S}) instead of O ((K + 1)-
min{mn, S}) for Expectation Maximization] and with compu-
tational iteration complexity of O ((m — 1)*K® + n(K —1)*). 1t
can be used for identification of the reduced Bayesian relation
model parameters in the situations when m and K are relatively
small and n is large (e.g., as in the medical example 2 below).
Detailed derivation of this algorithm is given in ST Appendix, sec-
tion S4. However, when m or K is lar §e (asin a case of the MSM
inference in MD, where m = n ~ 10° — 10°), this scaling would
not allow us to apply this method to large realistic systems.

It turns out that substituting the function L with its lower-
bound approximation L > = > | > SR Ny log(Aik)
(which directly results from applying the Jensen’s inequality to
Eq. 3) allows for providing a computational method that can
solve this approximate model reduction problem with a much
better scaling and allows analytically computable uncertainty
estimates for the obtained reduced models.

Properties of this approximate model reduction procedure are
summarized in the following theorem.

Theorem. Given the two sets of categorical data {X (1), X (2), ...,

X(S)yand {Y(1),Y(2),...,Y(S)} (Where for any s, X(s) €
{2(1),2(2),...,z(n)} and Y (s) € {y(1),y(2),...,y(n)}), the
approximate maximum log-likelihood parameter estimates for A
and T in the reduced model (Eq. 2) can be obtained via a maxi-
mization of the lower bound | of the above log-likelihood function
L from Eq. 3:

n K

= Z ZZ IJ1";67 log ( zk) — max, [6]

j=1 k=1 AL

subject to the constraints (Eqs. 4 and 5). Solutions of this prob-
lem exist and are characterized by the discrete/deterministic opti-
mal matrices T that have only elements zero and one. Solutions of
Eqgs. 4-6 can be found in a linear time by means of the monotoni-
cally convergent Direct Bayesian Model Reduction (DBMR) Algo-
rithm shown below, with a computational complexity of a single-
iteration scaling as O(K -min{mn, S}) and requiring no more than
O(K(m—1)+n+min{mn, S}) of memory. Asymptotic posterior
uncertainty of the obtained parameters \* (characterized in terms
of the posterior parameter variance) can be computed analytically
as Var{P[Ax| A", I X, Y]} = Ny (L= AL) /2000 220, Nyl
The least biased estimate of the ratio p for the expectations of poste-
rior parameter variances from the resulting full and reduced models
equals

EyVar {P[A4A", X, Y]} n
Ei Var {P [S\z‘k\;\*,f‘*){, Y]} K

[7]

DBMR Algorithm.

Choose a random XV (e.g., from the least biased uniform prior),
set I = 0.
Set F,({(;) tolif k= argmax > N log(A k,) and else to 0 for all

jand k.
Do until (TP, XDy — (Y=Y X\=DY|| becomes less than a
tolerance threshold.

U]

QU+ X Ny
Sl‘ep 1: set A m
i1 iy

Step 2: set I‘g“) = 1if k = argmax 37" | Ny log(A\4)
k/

for all i, k.

and else FgH) = 0forallj,k.
I=1+1.
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A proof is provided in SI Appendix, section S2.

As can be seen from Fig. 14, the average number of DBMR
iterations (green surface in Fig. 14) (computed from a large
ensemble of randomly generated Bayesian model reduction
problems for K =2) does not change with the dimensions m
and n. It implies that also the overall computational complexity
of the DBMR is scaling as O (K - min{mn, S}). DBMR estima-
tion of the reduced MSM for a medium-sized protein MD with
m=n=10° and K =2 takes 33 min (as mentioned above, the
extrapolated estimate of the Expectation Maximization compu-
tational time was 1,450 years under the same optimization and
hardware/software settings).

Fig. 1C represents the average relative log-likelihood differ-
ences between the results of exact iterative log-likelihood opti-
mization of Eqgs. 3-5 and the DBMR results (obtained under
the same conditions). It reveals that the empirical average rela-
tive log-likelihood differences between the exact and the DBMR-
approximated results converge to zero exponentially in m. This
property implies that, for realistic high-dimensional applica-
tions, the log-likelihood difference between the reduced mod-
els obtained with the DBRM algorithm and those obtained with
the optimization of the exact log-likelihood can be expected to
become negligible—meaning that the reduced models obtained
with the DBRM algorithm will have essentially the same poste-
rior probability for explaining the observed full data as the exact
reduced models.

The main feature of the two algorithms presented above is
that they allow for obtaining the reduced model (Eq. 2) directly
from the available observational data {X (1), X(2),...,X(9)}
and {Y (1), Y(2),..., Y(S)}—completely omitting a need for
computation/estimation of the full relation matrix A in Eq. 1.
The only tunable parameter in both of the algorithmic proce-
dures introduced above (in the direct sequential optimization of
the exact log-likelihood (Egs. 4-6) and the DBMR algorithm) is
the reduced process dimension K. The optimal integer value of
K can be obtained by performing the algorithms with different
numbers of K (i.e., K =1,2,3,...) and then selecting the best
reduced model (Eq. 2) according to one of the standard model
selection criteria [e.g., cross-validation criterion, information cri-
teria like Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC), or approaches like L curve] (22,
23). To select an optimal K for the examples below, we have
used the standard L-curve method (23) that identifies the opti-
mal K as the edge point of the curve that describes a depen-
dence of the optimal value of the maximized function (Eq. 3 or
6 in our case) from K (a practical example is in SI Appendir,
Fig. S2).

When dealing with real-life applications, it is also important to
have an option for adjusting a set of collective variables accord-
ing to a physical intuition or some prior knowledge (1). For
example, one could have some prior physical information that
certain dimensions of the original problem have a higher rele-
vance for the dynamics than some other physically less relevant
dimensions. In SI Appendix, section S3, we present a compu-
tationally scalable way [with computational iteration complex-
ity of O (mK + n(K — 1)log[n(k — 1)])] to impose such a pri-
ori information—cast into a form of the weighted graph—on
the DBMR algorithm. The resulting DBMR graph algorithm is
presented in SI Appendix, section S4, and a practical applica-
tion of this information-imposing clustering method to reduced
Bayesian model inference is given in the breast cancer diagnos-
tics example 2 below.

A MATLAB library of algorithms implementing the meth-
ods introduced in this manuscript—as well as different variants
of the constrained Nonnegative Matrix Factorization (12, 24)
and PLSA methods (13, 14)—can be found in SI Appendix and
is available as open access via a general public license from
https://github.com/SusanneGerber.
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Results

Example 1: Reduced Model of the 10-Alanine Dynamics in Water.
First, we consider a colvar identification for a polypeptide
molecule [deca-alanine (10-ALA)] from results of the MD sim-
ulation. This dataset represents an output of the 0.5-us simula-
tion (with a 2-fs time step) of a 10-ALA polypeptide in explicit
water at the room temperature performed with the Amber99sb-
ildn force field (25). These MD data were produced and provided
by Frank Noe and Antonia Mey, Free University (FU) Berlin,
Berlin. For additional analysis, the values of torsion angles ¢;
and ¢; (i=1,...,8) inside of the molecular backbone (i.e.,
ignoring the two end groups and the w; angles) are grouped into
the Ramachandran states 1-3 for every i (SI Appendix, Fig. S1,
Left) with a time step resolution of 100 ps, resulting in eight cat-
egorical Ramachandran time series with 5,000 time points each.
Based on these eight local junction time series, we create a series
of global molecular states X (s) (s=1,...,5,000), where every
particular combination of eight Ramachandran states is assigned
to a particular category; in our case, it is a categorical series with
n=>531 of such eight-component combinations with S = 5,000
time instances. As a 531D X (s) variable to be reduced, we use
this set of global states; as reference variables Y;, we choose
the individual Ramachandran series of junctions (i.e., with m = 3
each) at time s + 1. Thereby, we are casting the reduction prob-
lem to a setting of discrete Markov processes in time.

We start with setting K =2 and comparing the practical per-
formance of algorithms introduced in this paper with the PLSA
method (13, 14). Results of this comparison are summarized in
SI Appendix, Fig. S5. As can be seen from SI Appendix, Fig. SS,
methods based on optimization of Eqs. 3 and 6 provide colvars
that are better in terms of the log-likelihood measure as well as
in terms of the information theoretical measures, like the robust
AIC and BIC (22). AIC and BIC take into account the model
quality and penalize model uncertainty—for the same quality
(log-likelihood), these measures would provide smaller values
for the models that are less uncertain (22).

Second, we do the identification of reduced models (Eq. 2) for
each of the peptide junctions (i =1, ..., 8). Values of the result-
ing optimal solutions for reduced log-likelihoods 1; (i=1,....,8)
as functions of K are shown in SI Appendix, Fig. S2. These results
reveal that the reduced log-likelihood does not exhibit any non-
negligible increase for all ¢+ when the number of colvars K is
becoming larger than three to seven, meaning that the maximal
number of the nonredundant colvars is not greater than seven
for this system. Next, we inspect the identified colvars for all of
the Y;. As can be seen from SI Appendix, Fig. S3 (as an exam-
ple, representing a case of Y; being the Ramachandran time
series of the junction 4 for K = 3), the three identified colvars
almost perfectly—to 97%—coincide with the discretization that
is solely based on this junction and disregard all other junctions
in the peptide chain. In only 3% of the cases, the nonlocal infor-
mation about the Ramachandran states of the peptide residues
from other junctions is important. Therefore, relations in terms
of temporal causality between the peptides MD dynamics can
be almost (in 97% of the cases) described by a sequence of
spatially independent Markov processes in each of the peptide
junctions—for example, collected together in a form of the Ising
model (26). To verify the validity of the obtained colvars as well
as test the performance of the resulting reduced model (Eq. 2),
we use these colvars to produce a long Monte Carlo time series
of the reduced molecular simulation (Eq. 2) and compute statis-
tics of the geometrical configurations for the entire molecule. As
shown in Fig. 2, reduced dynamics based on just a few colvars can
reliably represent the overall spatial statistics of molecular con-
figurations in 3D—obtained from the full MD trajectory. These
3% of nonlocal dependence cases identified in SI Appendix, Fig.
S3 seem to be crucial: without them, the corresponding box plot
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Fig. 2. Probabilities for different proportions of the chain in the same local

Ramachandran state; 100% means that all of the residues in the chain are in
this Ramachandran state, and 0% means that there is not a single residuum
in this state. The blue lines indicate the values of this distribution obtained
from the full MD simulation data, and the box plots show the probabil-
ity distribution and its 95% confidence intervals obtained from the optimal
reduced model run with seven colvars (K =7) and nonlocal causality boxes.
Red points denote the statistical outliers of the reduced model (meaning
that they are outside of the 99% confidence interval). Respective distribu-
tions for a completely independent model (i.e., for a model where 100% of
causality boxes are local) are shown in S/ Appendix.

of the reduced Monte Carlo run is not capable of reproducing
the true statistics of geometrical configurations from MD (S
Appendix, Fig. S4).

Example 2: Reduced Model for the Breast Cancer Diagnostics Based
on the Standard BI-RADS Data. For the second example, we con-
sider analysis and reduction of the standard Breast Imaging
Reporting and Data System (BI-RADS) dataset for breast can-
cer diagnostics—available as an open access data file at the Uni-
versity of California Irvine (UCI) Machine-Learning Reposi-
tory: mlr.cs.umass.edu/ml/datasets/Mammographic+Mass. This
dataset contains information about 403 healthy (benign) and
427 malignant breast cancer patients. For each of the patient
entries, the age and three categorical variables obtained from
the mammography images are provided together with the basic
result (“cancer”/“no cancer”) obtained from the invasive anal-
ysis of the tissue—as well as assessments based on the stan-
dard noninvasive mammography diagnostics procedure called
BI-RADS. The three categorical variables provide qualitative
characteristics of the mammographic image features used in BI-
RADS—such as the shape of the intrusion (with four categories),
characteristics of the intrusion margins (with five categories),
and intrusion density (with four categories). This standard cat-
egorical dataset is widely used to access the quality of various
computer-aided diagnostic (CAD) tools, with the general aim
of identifying such a CAD tool that would use the noninvasive
information of age and mammographic image features for the
precise diagnostics of breast cancer and providing lower rates
of false positive and false negative diagnoses than the standard
BI-RADS procedure currently used by medical doctors (27).
The widely used measure of CAD performance adopted in the
medical literature is called area under curve (AUC) (28). The
closer the AUC value is to 1.0, the better the performance of
the respective CAD tool and the lower the probability of false
positive and false negative diagnoses. To compute the AUC val-
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ues of different CAD tools together with the 99% confidence
intervals of AUC, we use a methodology described in ref. 28
and available in the open source software library that can be
downloaded at https://github.com/brian-lau/MatlabAUC. CAD
tools based on the pattern recognition artificial neuronal net-
works (ANNs) have been reported to have the highest AUC for
the breast cancer diagnostics issue (27). Training such ANNs
on these data from 830 patients results in AUC of 0.85 with
the 99% confidence interval of [0.82,0.91], whereas we obtain
AUC of 0.82 with the 99% confidence interval of [0.78, 0.87] for
a standard BI-RADS diagnostics (on the same data and com-
puted deploying the same methodology from ref. 28). There-
fore, despite the fact that the AUC value of ANNs is somewhat
larger than the AUC of BI-RADS, their confidence intervals are
largely overlapping—meaning that, from the view point of statis-
tics, this standard dataset does not reveal an advantage of the
ANNSs compared with BI-RADS. In addition, ANN has many
free adjustable parameters (e.g., weights and biases of neurons,
transfer functions, etc.), which increase the danger of overfit-
ting for such relatively small data. The application of the cate-
gorical reduction procedure described in this paper results in an
optimal set of just two collective variables that are both com-
pletely defined by information from a single categorical vari-
able “margin.” Very unexpectedly, obtained optimal decompo-
sition into two colvars turns out to be completely independent
from all other variables and can be summarized in a very sim-
ple diagnostic rule: if the intrusion margin on the mammogra-
phy image is circumscribed, then the risk of breast cancer is
low (12%), and if not, the risk of breast cancer is high (72%).
Applying the same open source methodology for AUC confi-
dence intervals on the same standard data as above, we find
that this very simple rule (with no free tunable parameters at
all) has the AUC value of 0.835 with the 99% confidence inter-
val of [0.79,0.88] (i.e., in terms of the AUC performance, it is
not worse than the ANN with approximately 20 free adjustable
parameters).

Discussion

The most important features distinguishing the methodology
presented in this paper from other approaches described in the
literature are that it allows highly scalable (Fig. 1) identification
of reduced Bayesian relation models, their uncertainty quantifi-
cation, and inclusion of a priori physical information and does
not rely on the prior knowledge or a necessity of estimation of
the full matrix A (Eq. 1) of system’s relations in any step. It
allows an identification of the colvars and the reduced relation
models (Eq. 2)—as well as the MSMs—directly from the obser-
vational data.

According to the above theorem, the least biased estimate of
the ratio p for the expectations of posterior parameter variances
from the resulting full and reduced models equals n/ K—where
n is the number of the original dimensions, and K is the reduced
dimensionality. In application examples 1 and 2 shown above, p
is of the order of 100—meaning that the reduced models (Eq.
2) can be estimated from much shorter data series than those
required for the full model without reduction. In the context
of MD and other multiscale applications, this feature can be
a used to bridge the gap toward longer time scales in simula-
tions. In particular, in both examples, we have shown how the
interpretation of the obtained colvars can provide clues about
the locality or nonlocality of relations in the system. Applica-
tion of this methodology in both examples revealed essentially
local models (i.e., models where colvars mostly coincide with
only one of the original systems dimensions). In example 1, we
have shown that the relation between the local geometry changes
of single peptide units in time is local to 97% and that, only
in 3% of the original system’s states assembled to colvar, they
are nonlocal (and distinctively defined by the peptide junction
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configuration farther away in the chain). In example 2, the two
identified colvars were completely defined through only one of
the original data dimensions and are entirely independent from
all other information on the system. This seemingly oversimplifi-
cation of the obtained reduced models could, however, be under-
mined by the comparison of results and predictions obtained for
these very simple reduced models (Fig. 2 or the results of AUC
comparison in example 2). The proposed methodology is very
simple to implement and to use—we also provide a MATLAB
toolbox with all of the methods from this manuscript as open
access via the https://github.com/SusanneGerber. As was shown
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as well as situations when the system’s dimension n is large (e.g.,
n = 531 for the example 1) and standard approaches may be
subject to the overfitting issues.
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1 Derivation of the full Bayesian relation model and its proper-
ties (maximum log-likelihood estimates, their uncertainty)

Here, we will present a derivation of a full model of Bayesian relations between the categorical
processes and investigate some of it’s properties. Process Y below will serve as a reference process
- meaning that it will not change when process X is reduced. The terms ’categorical process’ and
"categorical variables’ mean that - in every particular case - s (e.g., at any given time s or for any
given instance s in the data set) Y'(s) is taking only one of the possible values from m categories
{y(1),y(2),...,y(m)} and X (s) from only one of the n categories {x(1), z(2),...,2z(n)}. Since the
system can not be in two different global categories simultaneously, these categories are disjoint and
relation between the probability for Y'(s) to attain a category y(4) in its instance/realisation s and the
probabilities for X (s) can be formulated exactly (i.e., without the model error [8]) via the conditional

probabilities and the law of the total probability [6]:
PY(s)=y(@)] = > AyP[X(s)=2(j)], (1)
j=1

where matrix elements {A},; = P[Y(s) = y(i)|X(s) = z(j)] are conditional probabilities. They
can be used as indicators for existence of causality relations between the processes Y and X in the
randomised studies: if {A};; = P[Y(s) = y(4)] for all j and s the processes are then independent -
meaning that information about process X provides no additional advantage in computing the proba-
bility of the outcomes of Y. If {A},;; # P[Y(s) = y(i)] for some j, consequently, there exists some
relation between X and Y [12]. To be able to interpret these conditional probabilities as some mea-
sure of the true causality relations in practical studies when {A};; are estimated from the available
observations of X and Y, one needs to guarantee that the data is appropriately randomised, meaning
that the resulting A-estimates are unbiased by the presence of hidden/latent variables [12, 9]
Defining the column vectors of probabilities [Ty (s) = {P[Y(s) = y(1),..., P[Y(s) =y(m)]},

Ix(s) = {P[X(s) = z(1),..., P[X(s) = x(n)]}, we can re-write the above equation in a matrix-
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vector form:
Hy(S) = AHX(S) (2)

In a particular case, when m = n, when s is the time index and X(s) = Y (s — 7) (where 7 is
a time-step), the above formulation (2) is equivalent to a so-called master equation of a Markov
process (and - thereby - is a particular time-discrete case of the well-known time-continuous Fokker-
Planck equation [6]). The n x n-matrix A in this case will be a transpose of the Markov transition
operator [14]. If matrix A is known it provides full information about the relations between processes
Y and X - and can be used to simulate Y, if X is available. However, in many application areas
(e.g., in molecular dynamics, computer-aided disease diagnostics, in genome-wide association studies
(GWAS) in genomics) this matrix is not directly available and can only be estimated from data.

If observational data {X (1), X(2),...,X(S5)} and {Y(1),Y(2), ...,Y(S)} are available, an
estimate A* of the rectangular m x n matrix A can be obtained by applying the well-known maxi-
mum likelihood principle. Hereby one seeks for a set of such parameters A* that would maximise
the total probability (or likelihood) of simultaneously observing these two particular sequences of ob-
servations. In this procedure the observational data is assumed to be fixed, resulting in the following

expression for the log-likelihood function (i.e., a logarithm of the observational probability):

LogL (A) = log (P [{X(1), X(2),...,X(S)}and {Y (1), Y(2),....Y(S)}|A]) =

Z > X(Y(s) = ya)x(X(s) = 2;)logP[Y (s) = il X (s) = 2] =

n m

=3 D ) x(Y(s) = yi)x(X(s) = ;) log Ay = > > " Nyjlog Ay, ()

s=1 i=1 j=1 i=1 j=1

with

A* = argmax {LogL (A)} = argmax Niilog Ay ¢, 4
gA {LogL (A)} gA {ZZ]%J} 4)

i=1 j=1



where N;; = Zle XY (s) = yi)x(X(s) = z;) (with x being an indicator function) is the total
number of instances in the data when X (s) was in category x(j) and - simultaneously - Y'(s) was
in category y(7). To guarantee that the elements of the obtained A* preserve the basic properties
of conditional probability, maximisation of the log-likelihood function must be subject to the
following linear equality and inequality constraints

Aij > 0, Y Ay =1, foralli,j. (5)

=1

It turns out that analogously to how it is done for the standard estimation of Markov transition ma-
trices [6]], the optimal solution of this constrained minimisation problem (@H5) and further properties
of the resulting estimates can be retrieved analytically. These results and properties are summarised

in the following two Lemma.

Lemma 1: for the given observational data { X (1), X (2),...,X(S)} and {Y (1),Y(2),...,Y(S)}
the maximum log-likelihood problem has a unique solution Aj; = Ni;/ > " Nij (where i =
L...omandj=1,....,n)if Y " N;; # 0. Asymptotic posterior uncertainty

= Var {P [A” |A} } } of this maximum-likelihood parameter estimate A} (characterised in

Z]7

. . . A¥ (1—-AZ*.
terms of the posterior parameter variance) can be computed analytically as O'Z-Qj = %
1=1""2]

Proof: First of all, it is straightforward to see that obtaining the solution for the above problem (4H5])

is equivalent to obtaining the solutions for the following n independent maximisation problems (with

j=1...,n):
AL = argmax Z log Ay (6)
Zz 1
Ay > 0, Y Ay=1, foralli. (7)
i=1
Since ", m = 1, for any j = 1,...,n these problems are convex combinations of the

concave optimisation problems defined on the convex and bounded domains - therefore solutions to
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all of these problems will exist and be unique if the respective > " | N;; # 0. Therefore, also a
solution of the original problem (@H5) will exist and be unique. Deploying a method of Lagrange
multipliers and taking into account only the equality constraints from (5)) first, for )" | N;; # 0 we

obtain that

Ny,
Doy Nij

Alternatively, one can obtain the same result without the Lagrange multipliers methods, by observing

A:j = (8)

that the above expression (6] represents a negative of the cross entropy distance between the unknown

distribution A.; and a distribution g ~— that is given by the observational data. Thereby, maximi-
1=1-"2]

sation of is equivalent to the minimisation of the cross entropy between the two distributions -
attaining the minimum if the two distributions are equal, i.e., when (8) is fulfilled.

Next, we consider a problem of estimating a variance of the maximum log-likelihood estimator for
A* (8). For this purpose we can first deploy the Bayes theorem that will allows us to express the poste-
rior distribution of the parameter A* (conditioned on fixed observed sequences { X (1), X (2),..., X(S)}
and {Y'(1),Y(2), ...,Y(5)}) in terms of the log-likelihood function (3) and the prior probabilities
Pprior [{X (1), X(2),..., X(9)},{Y(1),Y(2),...,Y(S)}] and Py, [A]. Applying the logarithm to

both sides of the obtained expression we gain:
log (Ppost [A| {X (1), X(2),..., X(5)}, {Y (1), Y(2),...,Y(S)}]) =
= LogL (A) + log (Pprior [A]) — 10g (Pprior { X (1), X(2), ..., X(9)},{Y(1),Y(2),...,Y(9)}]) =

= LogL (A) + constl, (9)

where in the second equality we used the fact that the least-biased prior for the bounded categorical

variables and discrete stochastic matrices (bounded on the intervals [0, 1]) are the uniform priorﬂ In

IPlease note that the essential issue here is the boundedness of the domain of realisations for categorical processes:
if the X and Y where the unbounded random processes in R™, then according to the maximum-entropy principle the
least-biased prior with the fixed variance would be a Gaussian prior [6].
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the following we will estimate the marginal variance of this posterior distribution

Poost [A|{X (1), X(2),...,X(9)},{Y(1),Y(2),...,Y(5)}] with respect to a single matrix element
Ayj - when all of the other matrix elements Aj;, (for all i#i" and j#£5') are kept fixed for a given series
of the observed data X and Y. In such a case we can formulate the maximum log-likelihood problem

(}5) as an unconstrained optimisation problem:
LOgL (AU) = Nij IOg(AZ]> + (NJ — NZ]) 10g(1 — AZ]) + const, (10)

where N; = Y| N;; and const is a factor that is independent of A;;.

Again, multiplying with N% (by assuming that N;#0), we get an equivalent optimisation
problem that is concave (being a convex combination of concave problems). Being defined on a
bounded concave domain, this problem has a unique solution that can be obtained by setting the first
derivative of to zero and solving the resulting equation with respect to A;;. It is instructive to see
that it results in the same maximum log-likelihood estimate ().

Considering the log(A;;) as random realisations of the i.i.d. random variable we can observe that
the right-hand side of (4) is the expectation of this variable and deploying the central limit theore
we get that asymptotically (for S — oo ) the posterior distribution of the parameter Aj; is a Gaussian

distribution of the form
P[A;j|A] = exp [LogL (A};) + 0.5(A;; — Aj;)*0°LogL (A})] (11)

where we essentially have deployed the quadratic Taylor-approximation of the function

log (Ppost [A] {X (1), X (2),...,X(5)},{Y(1),Y(2),...,Y(S5)}]) around the maximum log-likelihood

’The line of the argument that is deployed here is exactly the same as the one used in the proofs of the asymptotic
Akaike Information Criterium, we refer to [1]] for further details.
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estimate Aj;. Then, the variance of this Gaussian distribution can be expressed analytically as

1
2 — Var{P[Ay|A" X, Y]} = —— =
1 N;(N; — Nij)  Aj(1—A)
p— p— = - D 12
N M N? N; (12)

Lemma 2: if the categorical process X is obtained from the box-discretisation of a d-dimensional

2

process with N discretisation boxes per dimension, then the supremum of a least-biased estimate o7

for the uncertainty of the maximum log-likelihood parameter estimates \j; is given by the expression

sup 0-1‘2]‘ = Ndézz_l)
Proof: since the categories z(1),...,z(n) of the full process X should be statistically-disjoint (to

allow for applying the law of the total probability (]I[)), every category z(j) should correspond to
a one of the N original dimension box-combinations - i.e., n<N9. According to the maximum-
entropy principle [6], the least-biased prior distribution for the data matrix elements V;; is provided
by the uniform prior, i.e., by N;; = S/(nm). It is easy to verify that this results in the maximum

log-likelihood estimate
A, = 1/m, (13)

and substituting (14) and n<N? into (11)) we get

— dlm —
o2 =Ml ey N 1)

O 14
K Sm2 ij Sm2 ( )

Interpretation: In realistic applications the number of categories n can grow exponentially with
the physical dimension of the problem (“curse of dimension”) - leading to the exponential growth
of uncertainty for the A* estimation problem, when the available statistics size S and number m of
Y -categories are fixed. Obtained formula also means that the uncertainty of all further physical

observables obtained from A* will be also growing with the growing n, making practical deployment

13



of eq. problematic for realistic systems with “large” n and “small” S. This also means that
if we want to reduce the dimensionality n - for example, through identification of a small number
K of collective categorical variables that agglomerate the original n categories of process X into K
groups/boxes - then this methodology should rather not rely on a direct estimation of the full Bayesian
causality matrix A* in these situations when ”n” is large and ”S” is small. In the following we shall
present a simple idea circumventing the need of direct estimation/computation of A* and allowing for

a direct computation of the reduced/agglomerated collective variables.

2 Derivation of the reduced Bayesian model formulation and its
properties, proof of the theorem from the main manuscript.

To achieve this aim, we shall be looking for a categorical process {X (1), X(2),...,X(S)} (being
a reduced representation of the full categorical process X) that is defined on a reduced set of cate-
gories {z(1),2(2),...,2(K)} with K < n. Deploying again the law of the total probability we can
establish a relation between the probability density 7 ¢ (s) of this - still unknown - process and the full

probability density of the observed process I1x (s):
fg(s) = Tlx(s), (15)

where I';; = P [X (s) = (k)| X (s) = z(j)| is the matrix of Bayesian conditional probabilities re-
lating the two processes X and X. This matrix can also be understood as a discrete probabilistic
projection operator, playing in the following a similar role as the linear projection operators built of
the dominant eigenvectors of the relation matrices in standard reduction methods (e.g., projection
matrices built from the dominant eigenvectors of the data covariance matrix deployed in the Princi-
pal Component Analysis method or the Frobenius-eigenvectors of propagator and generator matrices
used in the spectral reduction theory of Markov chains). The main conceptual difference of the r

matrix from the projection operators obtained in the standard reduction methods is that it is preserv-
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ing the [;-norm - thereby guaranteeing that the reduced process density 7 will always preserve the
probability (i.e., S5 | {m¢(s)}, = 1and {74 (s)}, > 0 for all i). In contrast, the projection matri-
ces in standard approaches like Markov spectral reduction theory and PCA are /5 objects and do not
automatically preserve a probability of the reduced density in this sense.

Next, we deploy a law of the total probability to establish a Bayesian relation between the reduced

(and unobserved) process X and the observed process Y':
Iy (s) = Amg(s), (16)

where \;j, = PP [Y(s) = y(i)| X (s) = i(k)} is the matrix of conditional probabilities connecting the
two processes. Substituting (15)) into (I6) we obtain a reduced representation of the original model

@):
[Iy(s) = M'mx(s), 17)

that now connects the observed processes not directly (as was the case for the full model (2))) but
rather indirectly - through a latent reduced process X that is defined on a categorical space of a
smaller dimension K.

If the two sets of categorical data { X (1), X(2),...,X(S)}and {Y(1),Y(2),...,Y(S)} (where
for any s, X(s) € {z(1),z(2),...,2(n)} and Y (s) € {y(1),y(2),...,y(n)}) are given, the maxi-
mum log-likelihood parameter estimates for A and I in the reduced model can be obtained with
one of the two following computational approaches.

Analogously to the procedure deployed in the Lemma 1 above, one can try to estimate the matri-
ces I and A directly from the observed data {X (1), X(2),...,X(S)} and {Y(1),Y(2), ...,Y(S)}.

The optimal parameter estimates can be obtained by solving the exact log-likelihood maximisation
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problem subject to equality and inequality constraints:

L = Ni; o {Xf} s max, st 18
Mk > 0, > Ay =1, forallik, (19)
=1
K
Ty > 0, Y Tyy=1, forallk,j, (20)

i

1

Structure of this problem motivates deployment of the iterative methods (e.g., of the sequential
quadratic programming procedures [[13]]) - since the parameters Aand D naturally separate the problem
into two concave maximisation problems with linear equality and inequality constraints. However,
following the standard procedure for this particular problem (i.e., substitution of the linear equality
constraints into - followed by taking the partial derivatives of the resulting function with respect
to the arguments Mand I and setting the obtained derivatives to zero) - results in the nonlinear sys-
tem of equations that can not be solved analytically. Moreover, resulting system of equations does
not include the inequality constraints, providing no guarantee that the obtained solutions will be non-
negative. And - as it is straightforward to verify - the full numerical solution of the problem (T8|[I9]20)
by means of gradient-based optimisation methods would require (O ((2K — 1)° (n + m)g) +0(9))
of operations. It means that the numerical cost of this reduced model identification procedure will
scale polynomially with the dimension n - prohibiting an application of this method to realistic prob-
lems with large n. Computer code implementing this seqential quadratic optimisation algorithm is
provided for open access as a part of the BMR-toolbox (in Matlab) that can be found in the supple-
mental information to this manuscript and over the GitHub-portal www . github.com.
It turns out that substituting the function L with its lower-bound approximation L>[=

= D12 Zle N;;Ty; log (M) (which directly results from applying the Jensen’s inequality
to (I8)) allows providing a computational method that can solve this approximate model reduction

problem with a linear scaling of the computational cost in n. Moreover, as will be demonstrated
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below, it provides those solutions that are more simple and “regular” - meaning that the obtained
model matrices (e.g., the projector matrix D) require much less parameters to encode the As
shown on the application example, this results in two further practical advantages: (i) the reduced
approximate models allow a better physical interpretation (since the original systems dimensions
are thereby sharply and “deterministically” assigned to the reduced systems dimensions); and (ii)
obtained models are less subject to the overfitting issues and are more advantageous in terms of the
model quality measures (like information criteria) - measures that take into account both the model
quality and the model complexity [3].

Properties of this approximate model reduction procedure are summarised in the following theo-

rem.

Theorem: Given two sets of categorical data { X (1), X (2),...,X(S)}and{Y(1),Y(2),...,Y(9)}
(where for any s, X (s) € {z(1),2(2),...,2(n)} and Y (s) € {y(1),y(2),...,y(n)}), the approx-
imate maximum log-likelihood parameter estimates for X and U in the reduced model can be
obtained via a maximisation of the lower bound l of the above log-likelihood function L from :

m n K

L > [ = Z Z ZNijfkj log <5\1k> — max, 21
i=1 j=1 k=1 AL

subject to the constraints (I920). Solutions of this problem exist and are characterised by the dis-
crete/deterministic optimal matrices I that have only elements zero and one. Solutions of @)
can be found in a linear time, by means of the monotonically-convergent DBMR-Algorithm shown
below, with a computational complexity of a single iteration scaling as O (K - min{mn, S}) and
requiring no more then O (K(m — 1) + n + min{mn, S}) of memory. Asymptotic posterior uncer-

tainty of the obtained parameters \* (characterised in terms of the posterior parameter variance) can

3The optimal assignment of projector elements f‘ij resulting from the DBMR-algorithm introduced below appears to
be either zero or one - which requires much less basis functions (e.g., wavelet basis functions) to represent the rows of the
obtained matrices as compared to I" with elements being everywhere between zero and one.
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be computed analytically as Var {[P’ [;\,k|5\*, X , Y] } = m)‘f’“(iﬂ\:"’) —. The least-biased estimate
Zi:l Zj:l NiJ'ij

of the ratio p for the expectations of posterior parameter variances from the resulting full and reduced
models equals to

By Var {P[Ay[A", X, Y]}
" B var {B i P Y]}

(22)

I

Direct Bayesian Model Reduction Algorithm (DBMR-Algorithm)

Choose random \©), set I = 0.

Set F,(f;.) to 1if k = argmax 32" N;; log(A\Y)) and else to 0 - for all j and k.
k/

Do until LT, A(D) — |(DU-1_ A\U-1)|| becomes less then a tolerance threshold:
e NI S ND) .
Step 1:set ;" ' = ZI”:lJZl?zleZJFQ? forall i,k

Step 2: set F%H) = 1if k = argmax > ;" | N;; log(ﬁg,ﬁfl))
kl

and else F,%H) =0-forall j,k.

I=T1+1.

Proof: Step I (existence of solution) Since 0 > L > f, function [ is bounded with zero from above.

Existence of a solution for the respective optimisation problem then follows straightforwardly from
the boundedness of the function and boundedness of a convex [0, 1]-simplex domain defined by
the linear constraints (19]20) [13]]. Please note that this solution might not be unique.

Step 2 (uniqueness of the analytical solution wrt. A for a fixed parameter I') For any fixed [ that

satisfies |i the problem l,i becomes a concave maximisation problem wrt. ) that is subject

to linear equality and inequality constraints. Deploying a standard method of Lagrange multipliers

for equality constraints only, if > ;" =7 {f} N;;#0 (forall k = 1,. .., K) one obtains a unique
kj
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optimal solution:

A} = Zgl{f}’?’Ni‘j , 23)
o 221 Z?:l {F}kj Nij

that apparently also satisfies the inequality constraints in (I9). Therefore, it will be also a unique

solution of the full problem 1,,) when I is fixed.

Step 3 (discrete analytical solution wrt. r for a fixed parameter A ) For any fixed ) that satisfies

(19), the problem (21]20) is a linear maximisation problem (LP) with block-diagonal matrices of lin-
ear equality and inequality constraints. Due to this block-diagonal structure of constraints, solution of
this LP-problem is equivalent to an independent solution of the n following LP-problems - separately

for every j:

K .
> ke Ok Lk — _max
Pijy iy

S.t. ZkK:I fkj = 1, szj > O,
24)

where ay; = Z:L N;jlog 5\,k are fixed non-positive constants when )\ is fixed. Then, as it is very

easy to check, substituting the following expression for ['*

. { 1, if k =argmax{ay;}
PR k/

*

kj

)

0, else
(25)

into (when argglax{ak/j} is unique for all j) provides a maximum value to the LP-functions that
also satisfies the constraints. When the argglax {aus;} is not unique (i.e., when there are some j for
which there exists some set k = {k1, ko, ..., k,} suchthat oy j = -+ = oy = mkz}x{akj}) then the
solution of 1| is not unique and every combination of fkj that satisfies T'y, jEot r kpj = L I, ;>0

- including a deterministic one (where one arbitrarily-selected I';; (k'€k) is set to one and all other

Iy ; (K"#£K') are set to zero) - would provide an optimum of the problem 1,! for a fixed \.
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Step 4 (monotonic convergence of the DBMR-algorithm, computational iteration cost) According

to the above Step 2 and Step 3 of this Proof, in every step (/) the problem can be solved via the iter-

ative optimisation procedure switching between the optimisations for fixed iterated parameter values
'@ (in Step 3) and AD (in Step 2). Iterative repetition of these two steps - starting at some arbitrarily
chosen value I'® or A in the first algorithm iteration - will result in a monotonic increase of the
respective function value [(!) when I increases (i.e., [1) < [+%) where k>1). Since the overall prob-
lem (2119120)) is bounded from above with zero and is defined on a bounded domain, this iterations
will monotonically converge to some local maximum of the function (2I]) - dependent on the initial
choice of the iteration parameters I'™ or A(1.

Computational cost of this algorithm consists of the cost O (S) (for creating a matrix N with
N;; = 25521 XY (s) = y;)x(X(s) = x;) from the observational data) and the computational iteration
complexity of O (K - min{mn, S}) for analytical computation of the optima and in every

iteration of the DBMR-algorithm, as derived in the Step 2 and the Step 3 above.

Step 5 (asymptotic uncertainty estimator for the reduced model) Following the same line of argu-

ment as introduced in the proof of the Lemma 1 (i.e., deploying the Bayes theorem to express the
logarithm of the posterior reduced parameter log-likelihood through the reduced log-likelihood [ and
expanding the obtained logarithm with Taylor series up to the second order), we obtain the expression
for the asymptotic marginal variance of the A

N1 = A5)
Z;‘il Z?:l Nijij

when all other parameters and the observation data are fixed.

Var {IP [wﬂ*, X Y} } - , (26)

Step 6 (optimal reduced model in the least-biased situation)

As shown in the proof of the Lemma 2 above, the least biased prior for the data matrix N is the

uniform prior of the form

S
N;; = ——, forallq,jy, 27)
nm
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that leads to a maximum log-likelihood estimator Aj; = 1/m. Then, substituting this estimator into
(21)) one can see that maximisation of the reduced log-likelihood function (21)) becomes equivalent to
a minimisation of the cross entropy between the two unknown discrete distributions [ and \. Since
the absolute minimum of the cross entropy is attained for the uniformly-distributed A (for any fixed
distribution I'), it means that the optimal solution of the reduced problem l,,b for the least-

biased prior is given by
<, 1 »
{)\ } — = forallik. (28)
ik m

Step 7 (expected ratio of parameter uncertainties in the least-biased situation) Substituting |i and

(28) into (26]) we obtain

C el A K(m—-1
E;, Var {IP [Aikw, X, Y} } _ Km-1) (29)
Tm?
Dividing the expectation of the left side of (I4) with (29) we obtain (22). O

3 Imposing a priori information on DBMR

When dealing with real-life applications, it is also important to have an option for adjusting a set of
collective variables according to a physical intuition or some prior knowledge [S]. For example, one
could have some prior physical information that certain dimensions of the original problem have a
higher relevance for the dynamics then some other physically less-relevant dimensions. This is es-
pecially relevant for very short data series with small .S’ (as in the medical Example 2 below) - due
to an imminent danger of “overfitting” the data through a model with a large number of free ad-
justable parameters. One straightforward way of resolving this problem would be in deploying some
ad hoc smoothing or sparsifying strategies (e.g., Ridge- or LASSO-regularizations) that would add
additional convex constraints to (I9]20) or some concave penalty terms to (21). However, because

of the particular analytical structure of the obtained non-concave optimisation problems it is more
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appropriate to use the non-concave regularization strategies that were systematically derived for this
type of clustering problems, e.g., the regularization methodologies that allow to impose a priori avail-
able expert information cast into a form of a network/graph on clustering algorithms in optimisational
formulation [[7]].

Defining the original categories x = {x(1),z(2),...,2z(n) as the edges E of a graph G, in many
situations we will be able to formulate the a priori available physical information as an n X n matrix
of weights W for the vertices V' connecting the edges of this graph (please see [7]] for particular
examples). Then, since the DBMR optimisation problem (21I)) has a form of the clustering problem,
we can deploy a graph-based regularisation methodology introduced in [/] in order to impose this a
priori information on the problem of finding an optimal reduced Bayesian model. This will result in

the following maximisation problem:

n

L > ZZ [P = ZZZ ij log ( ) — € Z ZDG ]1,]2)Fk]1ij2 — max,(30)

i=1 j=1 k=1 J1,je=1 k=1

where Do = P—2W+() (with diagonal matrices P,, = ZU‘(M) cpWonand Quy = ZUKW) e Wauw)
is kernel distance matrix of the graph. Computationally, this results in adding an additional penalty
term to the right-hand side of (3), which practically means that the analytically-computable explicit
formulas from Steps 1 and 2 in the original DBRM algorithm need to be substituted by solutions of
sparse quadratic programming problems and resulting in the overall iteration cost of

O (mK + n(K — 1)log[n(k —1)]) (pseudocode description of the DBMR-graph algorithm can be
found in the Section 5 below). More details on imposing available information on clustering methods
can be found in [7], a practical application of this information-imposing clustering method to the
analysis of relatively short data series with a small n is given in the breast cancer diagnostics Example

2 from the main manuscript.
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4 Description of the Bayesian Model Reduction algorithms intro-
duced in the main manuscript.

Exact iterative log-likelihood maximisation First of all, we observe that for any fixed A, the orig-
inal exact log-likelihood maximisation problem (18|1920) can be decomposed into n independent

optimisation problems of the form

m K
= Yo (3ot ) o s a
K
I'y; > 0, kajzl, for all £, j, (32)

and L = Z?Zl ﬁj. Forevery 7 = 1,...,n the problem is a concave maximisation problem on
a simplex domain - and can be approached with standard methods of constrained convex optimisation
[13] with the iteration cost of O ((K — 1)?).

For a fixed I' the original exact log-likelihood maximisation problem is also a con-
cave maximisation problem on a simplex domain - and can be solved with the iteration cost of
O ((m —1)3K3). Then, it is straightforward to validate that in order to achieve a monotonic max-
imisation of the exact log-likelihood L, it would be enough to iterate the procedure where only one
iteration step is performed for each of these concave maximisations problems. Then, the overall iter-
ation cost for a full iterative optimisation of the original exact log-likelihood maximisation problem
will be O ((m — 1)3K3 + n(K — 1)3). This algorithmic procedure was deployed in order to obtain
the exact log-likelihood optima that were used to create the Figure 1.c) from the main manuscript.

Pseudocode description of this algorithmic procedure is provided below:

Algorithm 1 (direct iterative maximisation of the exact log-likelihood L)
Choose a random f(o),

compute AD from one iteration of the problem [91) for a fixed Lo
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set [ = 1.
Do until || L(T'D, D) — LTU=1 XU-D)|| becomes less then a tolerance threshold:
Step 1:
for j=1,...,n
for a given j, compute fﬁ), ceey f% from one iteration of the problem
with a fixed \U=Y
end
Step 2: compute A0 from one iteration of the problem @l) for a fixed o
I'=T+1.

Algorithm 2 (DBMR)

Direct Bayesian Model Reduction Algorithm (DBMR-Algorithm)

Choose random 5\(0), set I = 0.

Set F,Eg.) tolifk = arglglax > Ny log(S\E,S?) and else to 0 - for all j and k.

Do until |[1(TD, A1) — [(TU=D, \U-1)|| becomes less then a tolerance threshold:
5\1(.,?1) _ S, Ny T

==& forall i, k
Zi:l Zj:l Nijrkj

Step 2: set Fgﬂ) — 1ifk = argmax 3.7, N;; log(AlLT)
k/

Step 1: set

and else Fi(é‘ﬂ) =0-forall j,k.
I=T1+1.
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Algorithm 3 (DBMR-graph)

Algorithm 3 (DBMR-graph, with the imposed a priori informotation in the graph form)
Choose a random f(o),
compute AD from one iteration of the problem [9[) for a fixed o
set [ = 1.
Do until ||[Pe<(TD, \1D)) — [Pee(DU-D) XI-D)|| pecomes less then a tolerance threshold:
Step 1: compute N by solving the sparse quadratic problem subject to for a fixed pYC)

Z?:l Nijpg) -
s s NorD forall ¢, k
i=1 Jj=1-"%" kj

Step 2: set 5\1(,? =
I=1+1.

S Methodological comparison of the Bayesian Model Reduction
methods introduced in the manuscript to the Probabilistic La-
tent Semantic Analysis (PLSA)

In the following we present a list of methodological issues that arise from comparison of the model
reduction framework proposed in this manuscript to the Probabilistic Latent State Analysis (PLSA)
approaches that were developed in the area of information retrieval for analysis and reduction of

documents and texts [10, (11} 4]].

PLSA: formulation, EM optimisation, limitations in a context of large-scale dynamical systems
PLSA is a methodology developed in the areas of information retrieval and mathematical linguistics in
order to perform a semantic analysis and to identify the latent semantic spaces of texts and documents

[10L [11]. Adopting the notation used so far, we can write the PLSA model (e.g., equations 1 and 2
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from [10] and the equation 3 from [11]) as:

= PX(s) = 2(j)] Y P |V () = y()IX(s) = #(k)| P | X(s) = 2R X(s) = ()] . G33)

k=1
An equivalent symmetric form of this model (equation 4 from [10] and equation 5 from [11]) has

the form:

P[X(s) = x(j) and Y'(s) = y(i)] =

- ZK:IP’ [X(s) — 2(j)|X(s) = ;f:(k)] P [Y(s) — y()|X(s) = i(k;)} P [X(s) - i:(k)] . (4

with x = {z(1),...,z(n)} being some fixed set of n documents and y {y(1),...,y(m)} being a
predefined collection of m different words (a vocabulary).

Please note that by this construction used in [[10} [11]], both sets = and y are not assumed to build
complete coverages of the respective realisation spaces - i.e., {x(1),...,z(n)} should not necessary
build a full set of all documents and {y(1),...,y(m)} should not be a full vocabulary of all words.
This fact implies that in general, for any s it is true that 0 < >°7 | P[X(s) = 2(j)] < 1 and 0 <
Yo PY(s) =y(i)] < 1. Another implication of this fact is that if we would cast this model into
the particular context of discrete Markov processes in time - by setting x = y, Y (s) = X (s+ 1) (with
s being a discrete time index) - and shall be using the PLSA model as an iterative dynamic model to
propagate the probability density from some initial value X (0) for s = 1,2, ..., S (as in the molecular
dynamics application Example 1 from the main manuscript), then it is straightforward to validate that
the obtained vectors will not remain the probability densities - i.e., the resulting propagation of the
Markov chain in time will not be probability-preserving.

Representing the available data X and Y in the form of the term frequency matrix N;; = Zle x(Y(s) =
yi)x (X (s) = x;) (with y being an indicator function), in PLSA framework one would like to seek for

the values of conditional probabilities P |V (s) = y(i)| X (s) = i(k)} and P [X(s) =z(k)|X(s) = z(j)
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that would maximise the following log-likelihood function (equation 4 from [11]):

> ]]\éj log (Z]P’ X (s) = 2(k) X (s) = 2(5)| P [V () = y(0)| X (5) = i(k:)]) . (35)
where N; = Z:il N;; and
P[X(s) =xz(j)] =7nx(j), foralls=1,...,5;7=1,...,n, (36)

i.e., in addition it is implicitly assumed that X (s) isi.i.d. (i.e., independent/memoryless and identically-
distributed process) in s. As demonstrated in [4], this maximum log-likelihod formulation of the
PLSA inference problem is equivalent to the Nonnegative Matrix Factorisation method (NMF) in the
Kulback-Leibler norm [2]ﬂ

However, a direct maximisation of the log-likelihood function (35]) is hampered by the fact that due
to a specific form of the non-linearity in the right-hand side of the expression (being a logarithm of the
sum over k of the nonlinear expressions P [X(s) =z(k)|X(s) = ZE(])] P [Y(s) = y(i)| X (s) = i(k;)})
one can not find the analytical expressions for the arguments [P [X (s) = z(k)|X(s) = «( ])} and
P|Y(s) = y(i)|X(s) = fc(k)} that would simultaneously maximise and remain probabilities
(i.e., would satisfy 0 < P [qu) = 3 (k)| X(s) = x(j)} <land0 <P [Y(s) = y(i)|X(s) = @(k;)} <
1). Application of the standard numerical optimisation methods for this problem would result in the

prohibitively-large computational complexity of the iterations in the optimisation procedureﬂ scaling

as O ((m+n)’ K?).

“Equivalence of the two optimisational formulation does not imply the equivalence of the algorithmic procedures: e.g.,
in context of the large-scale dynamical systems discussed above, the NMF algorithm implementation would rely on the
availability of the empirical frequency estimator of the full relation matrix A. As shown in the Lemma 1 and 2, these
estimates will be subject to the uncertainty that may grow exponentially with the physical problem dimension.

SThis is explained by the fact that this optimisation problem has (m + n) K arguments and the limiting step in the
computations based on gradient-ascent methods would be the inversion of the respective Jacobian (having a dimension of
(m 4+ n) K times (m + n) K). The cost of this operation scales cubically for general unstructured matrices [13].
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So, in order to obtain the optimisers, PLSA deploys the Expectation Maximization (EM) algo-
rithm, that - instead of a direct maximisation of (35)) - maximises (35]) over its approximate lower
bound that is obtained by deploying the Jensen’s inequality to the expectation of the log-likelihood

function ll taken with respect to the latent process X (s).

Ex (L) =D DNy Y wlki. )log (B[ X(s) = #(R)|X () = 2(5) | B [V () =y X (5) = #(b)] ).
where
P [qu) — #(k)|X(s) = 2(j) and Y (s) = y(z’)] = re(k,i,j), foralls,j,i, (38)

1.e., it is also implicitly assumed that X (s) is i.i.d. (i.e., independent/memoryless and identically-
distributed process) in s for any fixed combination of X (s) and Y (s). The fact that the numerical
inference procedures in PLSA are not based on the direct maximisation - but are actually maximising
the lower bound approximation (obtained with the help of the Jensen’s inequality) is a standard part
of the EM and is not mentioned explicitly in the PLSA literature. However, it becomes clear when
for example comparing the formula 4 and 7 in [[11].

In contrast to the original log-likelihood function (35)), its lower bound approximation allows
a direct analytical computation of the extrema arguments (by taking the function derivatives, setting
them to zero and solving the obtained equations analytically). This is performed in the E-step (for the
hidden process probabilities 7 . (k, 7, 7)) and in the M-step (for the probability vector 7x () and for the
conditional probability matrices P [X(s) — 3 (k)| X (s) = a:(j)] and P [Y(s) — y()|X(s) = 2(k)]).
Again, the reason allowing this was given by the fact that deploying the Jensen’s inequality al-
lowed approximating the analytically-intractable nonlinearity (logarithm of the sum) through the
analytically-tractable one (sum of the logarithms).

Compared with the direct numerical optimisation of that has a computational iteration com-

plexity of O ((m + n)3 K 3), the main advantage of this iterative EM procedure is its linear complex-
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ity scaling - with iteration cost scaling as O (K min{mn, S}). However, as discussed above, this
advantage was coming at a price. The following list summarises the “cost items” that were needed
to achieve this advantage - and that might hamper the applicability of the PLSA in context of the

large-scale dynamical systems:

(i) introduction of the new optimisation arguments 7 (j) and 7 (k, 7, j) (that come in addition to
the original quantities of interest P | X (s) = (k)| X (s) = x(y)} and P [Y(s) = y(1)| X (s) = i(k)})
means increasing the overall number of free parameters - and the required program memory -

from O (K (m + n) + min{mn, S}) to O (K(m + n) + Kmn + n + min{mn, S});

(ii) construction of the EM for PLSA requires imposing additional i.i.d. assumptions and -

and introduces a bias if these assumptions are not fulfilled for the underlying dynamical system;

(iii) as was shown in the Lemma 1 and 2 above, in context of the large-scale dynamical systems
the number of categorical problem dimensions may grow exponentially with the physical di-
mension of the underlying system. Following the same line of argument as deployed in the
Lemma 1 and 2 on can demonstrate that this will be resulting in the exponential growth of
uncertainty for the respective EM-estimators of the additional variables 7x(j) and 7 (k, 1, j).
Since all of the variables are iteratively coupled in the estimation procedure, this will also

result in the additional growth of estimation uncertainty for the original values of interest

P |X(s) = (R () = 2()] and P |Y(s) = y(0) X (s) = (k)

(iv) as explained above, EM algorithm is optimising the lower bound approximation (37/)) of the
original log-likelihood function (35), meaning that thereby obtained quantities of interest
i [qu) — 3 (k)| X (s) = x(jﬂ and P [Y@) — y()|X(s) = :z(k;)} might not necessary also be
the global optimisers of the original log-likelihood. And quantifying the deviations between the
optima of and the solutions obtained by the EM algorithm is not straightforward due to the

nonlinearity and nonconvexity of both functions.
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v)

(vi)

In context of application to the large-scale dynamical systems, matrices obtained with EM may
be difficult to interpret and to understand since they provide only *fuzzy’ and probabilistic - and
not deterministic - relations between the original and the reduced dimensions of the underlying

problem.

EM algorithm for PLSA does not allow a direct possibility to impose an a priori available
“physical” information on the problem (e.g., an information that certain dimensions of the
original problem have a higher relevance for the dynamics then some other physically less-

relevant dimensions).

Comparison of the PLSA methodology with the three algorithms introduced in this manuscript

Below we provide a list of items that arise when comparing the PLSA with the Bayesian Model

Reduction (BMR) algorithms introduced in the manuscript:

a)

b)

BMR algorithm 1 introduced above allows a direct explicit optimisation of the exact log-
likelihood I:, whereas the DBMR, DBMR+graph and PLSA-EM all maximise different lower
bound approximations of the exact log-likelihood (please see the Figure S6 for a graphic repre-

sentation).

BMR algorithms do not require introduction and iterative estimation of the additional model
parameters 7mx(j) and 7 (k,4, ) (that are crucial for the PLSA). It means that BMR algo-
rithms do not rely on - and are not biased by - the additional strong i.i.d. assumptions and
(38) that are imposed in the PLSA. Another implication of the much smaller number of opti-
misation parameters in the case of the DBMR are much more favourable memory requirements
(scaling as O (K (m + n) + min{mn, S})) and a more favourable computational scaling for
single iterations (see the Figure S6). It also allows to avoid an additional estimation uncertainty

and reduces the risk of overfitting - that can, for example, be reflected in a more favourable
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d)

(i.e., smaller) values of information-theoretical measures like AIC and BIC measured for BMR

results (please see the Figure S5).

Numerical tests performed on large ensembles of randomly generated data sets revealed that
the average number of iterations required until reaching the same tolerance (measured in terms
of the normalized log-likelihood #[2) for different combinations of dimensions m and n
for the PLSA model with the EM algorithm grows rapidly with problem dimensions (please
see the Figure 1 from the main manuscript). In contrast, application of the DBMR to the
same problems with the same tolerance of the normalized log-likelihood results in the av-
erage number of iterations that practically does not change with problem dimensions. This
strong dimension-dependence of the number of EM iterations is then further reflected in the
dimension-dependence of the overall computational time until convergence: deploying stan-
dard statistical tools of polynomial regression fitting and discrimination [15]] one obtains that
the statistically-optimal fit of the red surface (corresponding to the PLSA) from the Figure 1.b)
in the main manuscript is given by a polynomial of the third degree - whereas the green surface
from the same Figure 1.b) (corresponding to the DBMR results) is optimally fitted by a function
that is linear in m and n. Extrapolation to the typical physical problem sizes (e.g., m = n = 10°,
K = 2) that, e.g., emerge in biophysical applications like the Markov State Model inference
based on Molecular Dynamics simulations of medium-size protein molecules, indicates that it
would require approximately 1450 years of computations with the PLSA method on a single

PC. In contrast, application of the DBMR algorithm to the same data under the same conditions

and settings requires 33 minutes on a single LapTop-PC.

As can be seen from the Figure 1.c) in the main manuscript, the average relative log-likelihood
difference between the results of exact iterative log-likelihood optimisation (Algorithm 1) and

the DBRM results (obtained under the same conditions) converges to zero exponentially in
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m. This implies that for realistic high-dimensional applications the log-likelihood difference
between the reduced models obtained with the DBRM algorithm and with the optimisation of
the exact log-likelihood will become negligible - meaning that the reduced models obtained
with the DBRM algorithm will have essentially the same posterior probability for explaining

the observed full data as the exact reduced models.

e) Theorem 1 above provides very straightforward analytical formula for quantification of un-
certainty of the reduced Bayesian models - and provides an understanding of how does the
uncertainty change when changing the ratio of the reduced and the original problem’s dimen-
sions. Because of the additional parameters 7y (j) and ¢ (k, ¢, j), uncertainty quantification

for the PLSA and related approaches is much less straightforward.

f) DBMR provides deterministic ({0}/{1}) relations between the original and the reduced di-
mensions of the analyzed problem - making understanding and interpretation of the obtained

reduced relation models much easier.

g) DBMR-graph algorithm allows a robust and numerically-scalable (please see Figure S6) incor-
poration of a priori available physical information - if this information can be cast into a form

of a weighted graph with the kernel weights matrix Dg.

6 Additional figures

e Figure S1 Left: Ramachandran plot for the MD simulation of 10-alanine peptide in water and
its decomposition into three categorical states. Right: representation with n categories for the

whole polypeptide molecule with N residues.

e Figure S2 Values of L- in the optimal solution of the reduced problem (8,6-7) obtained for

different numbers of colvars (or collective causality boxes) K (on z-axis) when process Y; are
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the Ramachandran dynamics of residues number one (i=1) to eight (i=8).

e Figure S3 Three optimal colvars (or collective causality boxes) obtained for K = 3 with pro-

cess Y, being the Ramachandran dynamics of residuum number four.

e Figure S4 Probabilities for different proportions of the chain in the same local Ramachandran
state 1 to 3 from Fig.1 in the main manuscript. 100% means that all of the residues in the chain
are in this Ramachandran state, 0% means that there is not a single residuum in this state. The
blue line indicates the values of this distribution obtained from the full MD simulation data
and the boxplot shows the probability distribution and its 95% confidence intervals obtained
from the completely local reduced model (i.e. with 100% of local causality boxes). Red points
denote the statistical outliers of the reduced model (meaning that they are outside of the 99%
confidence interval). This plot should be compared to the Fig. 4 - implying that the 3% of non-
local causality boxes used in the Fig. 4 are essential to match the statistics of reduced model

with the full MD-data.

e Figure S5 Practical comparison of PLSA methods and the approaches introduced in this manuscript
- the direct f/—optimisation algorithm and the [—optimisation with the DBMR-algorithm. Com-
parison of the optimal colvars obtained by different algorithms with K = 2 for the MD data in

Example 1 from the main manuscript.

e Figure S6 Graphic representation of the three algorithms introduced in the manuscript in com-

parison with the PLSA methodology from [10} [11]].
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Figure 1: Left: Ramachandran plot for the MD simulation of 10-alanine peptide in water and its
decomposition into three categorical states. Right: representation with n categories for the whole
polypeptide molecule with NV residues.
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Figure 4: Probabilities for different proportions of the chain in the same local Ramachandran state 1
to 3 from Fig.1 in the main manuscript. 100% means that all of the residues in the chain are in this
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the values of this distribution obtained from the full MD simulation data and the boxplot shows the
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reduced model (meaning that they are outside of the 99% confidence interval). This plot should be
compared to the Fig. 4 - implying that the 3% of non-local causality boxes used in the Fig. 4 are
essential to match the statistics of reduced model with the full MD-data.
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Figure 5: Practical comparison of PLSA methods and the approaches introduced in this manuscript
- the direct L- -optimisation algorithm and the - -optimisation with the DBMR-algorithm. Comparison
of the optimal colvars obtained by different algorithms with KX = 2 for the MD data in Example 1
from the main manuscript.
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