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ABSTRACT: We present a numerical framework to integrate first-principles kinetic
Monte Carlo (1p-kMC) based microkinetic models into the powerful computational
fluid dynamics (CFD) package CatalyticFoam. This allows for the simultaneous
account of a predictive-quality surface reaction kinetics inside an explicitly described
catalytic reactor geometry. Crucial means toward an efficient and stable
implementation are the exploitation of the disparate time scales of surface chemistry
and gas-phase transport, as well as the reliable interpolation of irregularly gridded
1p-kMC data by means of an error-based modified Shepard approach. We illustrate
the capabilities of the framework using the CO oxidation at Pd(100) and
RuO2(110) model catalysts in different reactor configurations and fluid dynamic conditions as showcases. These showcases
underscore both the necessity and value of having reliable treatments of the surface chemistry and flow inside integrated
multiscale catalysis simulations when aiming at an atomic-scale understanding of the catalytic function in near-ambient
environments. Our examples highlight how intricately this function is affected by specifics of the reactor geometry and heat
dissipation channels on the one end, and on the other end by characteristics of the intrinsic catalytic activity that are only
captured by treatments beyond prevalent mean-field rate equations.

KEYWORDS: first-principles kinetic Monte Carlo, computational fluid dynamics, multiscale modeling, heterogeneous catalysis,
CO oxidation

1. INTRODUCTION

The observable (and exploitable) functionality of heteroge-
neous catalysts results from the interplay of two quite distinct
aspects.1 On the one hand, there are the intrinsic catalytic
properties of the active catalyst material when interacting with
molecules of the surrounding gas phase. They derive from the
material’s property to make and break chemical bonds at its
surface(s) and are ultimately determined at the electronic
structure level. On the other hand, there is the macroscopic
heat and mass flow in the actual reactor geometry and at the
actually employed operation conditions, which determines the
local gas-phase concentrations and temperature at the catalyst
surface. Both aspects are generally intricately coupled. The
surface structure and composition of the catalyst (and therewith
its intrinsic catalytic properties) depend sensitively on the local
gas-phase conditions, i.e. the catalyst adapts to the reaction
conditions and the ultimate ”active phase” is a sensitive
function of the local environment while on stream. Vice versa,
the ongoing surface chemical conversions and the concomitant
reaction heat modify this local environment and therewith
contribute to the establishing flow patterns in the reactor.
Traditionally, one each aspect has been worked on by two

quite distinct communities. Chemical engineering work focused

primarily on the reactor level; fundamental surface science
focused primarily on the reactive surface chemistry. In
computational work, this has, on the one hand, led to the
development of most powerful computational fluid dynamics
(CFD) simulation approaches.2 They are capable of describing
the heat and mass flow in realistic reactor models, but they rely
on simplified reaction kinetic expressions such as generic power
laws that lack any surface chemical basis. The counterparts in
surface science are increasingly detailed microkinetic descrip-
tions, largely developed for controlled experiments, e.g. in
ultrahigh vacuum (UHV), where heat and mass-transfer effects
in a given reactor geometry are negligible.3 In particular, first-
principles kinetic Monte Carlo (1p-kMC) simulations fully
resolve spatial heterogeneities and site correlations at the
catalyst surface, while drawing on kinetic parameters for the
elementary processes from quantitative first-principles calcu-
lations.4

Recent years have seen a merging of these two strands at an
amazing pace. Chemical engineers introduce increasingly

Received: August 8, 2014
Revised: October 2, 2014
Published: October 7, 2014

Research Article

pubs.acs.org/acscatalysis

© 2014 American Chemical Society 4081 dx.doi.org/10.1021/cs501154e | ACS Catal. 2014, 4, 4081−4092

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

pubs.acs.org/acscatalysis
http://pubs.acs.org/page/policy/editorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


refined kinetic expressions into their reactor models, which at
the CFD level of theory enter in the form of boundary
conditions for the macroscopic fields. Noteworthy, the
CatalyticFoam solver5 exploits the operator-splitting technique
to separate transport and reaction terms, and therewith allows
already for the solution of the Navier−Stokes equations for
complex and general flows at reactive surfaces described on the
level of mean-field microkinetic rate equations. The Cata-
lyticFoam solver is intrinsically dynamic, and the steady state is
reached by time-dependent simulation. In this respect the
separation between reaction and flow-time scales is essential.
This feature is extremely important when multiple steady-state
solutions are possible depending on the initial conditions.5 In
particular within the notion to establish so-called in situ
approaches dealing with model catalysts at near-ambient
operation conditions, kinetic modelers in turn care increasingly
about heat and mass transport effects and integrate their kinetic
descriptions into successively refined reactor models. In
particular, Matera and Reuter employed an instantaneous
steady-state approximation to generically present any irregularly
gridded steady-state reactivity data of any complex (first-
principles) kinetic model in the form of an interpolated data
field for the boundary condition.6,7

In their original work, Matera and Reuter presented this for
idealized reactor geometries.6−8 Conceptually, however,
nothing prevents this approach from being employed in more
powerful general solvers such as CatalyticFoam, as long as one
maintains the assumption that the length scales of temperature
and pressure variations at the catalyst surface are large
compared to the correlation lengths of the adsorbate
populations. Under this assumption, which is also the general
framework for most CFD simulations based on more coarse-
grained kinetic expressions,2 the intrinsic catalytic activity at
every resolved surface mesh point of the macroscopic fields is
solely dependent on the local temperature and partial pressures
at this point. The activity at neighboring mesh points only
enters indirectly through its effect on these local gas-phase
conditions, not directly through some coupling mediated by the
surface population itself. In particular for macroscopically
homogeneous catalysts, such as the single-crystal model catalyst
surfaces used to illustrate the approach in this work, it then
suffices to determine one interpolated data field for the intrinsic
catalytic activity as a continuous function of the temperature
and all partial pressures. This data field can then be used as a
CFD boundary condition independently at every CFD surface
mesh point.
In this paper we contribute to this general context by

augmenting the CatalyticFoam functionality to consider such
interpolated data fields as the reactive surface boundary
condition. In this endeavor to make complex kinetics available
for practitioners in general CFD solvers an important
intermediate step is hereby to optimize the reliability and
efficiency with which such an interpolated representation can
be generated from gridded activity data, e.g. from 1p-kMC
simulations. To this end, our work includes a refined modified
Sheppard interpolation approach, which allows faithful
representation of the abrupt activity changes over a narrow
range of gas-phase conditions, as typically obtained in 1p-kMC
based kinetics with a limited number of grid data points. In the
following we describe this interpolation strategy and the
CatalyticFoam implementation after a brief survey of the
general theory. We demonstrate the capabilities of the
established approach by applying it to a series of problems of

increasing flow complexity that are particularly geared toward in
situ experiments at flat-faced model catalysts. In all cases we do
observe intricate couplings of reactive surface chemistry and
flow that significantly modify the observable catalytic function.
This underlines the necessity of reliable accounts of both
aspects in integrated multiscale catalysis simulations when
aiming to establish an atomic-scale mechanistic understanding
of this function in technologically relevant environments.

2. METHODOLOGY
2.1. Continuum Transport Equations. CFD packages

such as CatalyticFoam5 evaluate the macroscopic flow of heat
and mass in a given reactor geometry by numerically solving
continuum conservation equations for mass, energy, and
momentum of a multicomponent, compressible gas phase.
For a Newtonian fluid, these equations of total mass, mixture
momentum, individual species mass fractions, and mixture
energy, respectively, read as follows:9
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In these equations, t is the time, p and T are the total
pressure and the temperature, respectively, ρ is the density, λ is
the thermal conductivity, μ is the dynamic viscosity, and cp is
the specific heat at constant pressure of the gas-phase mixture. v ̲
is the velocity vector and g ̲ the acceleration vector due to
gravity. Ng is the number of different species in the
multicomponent gas mixture. The subscript k refers to the
individual gas-phase species k, and ωk is its mass fraction. V̲k is
its diffusion velocity, τk its formation rate due to the gas-phase
reactions, cp,k its specific heat at constant pressure, and hk its
mass specific enthalpy in the gas phase.
The density of the mixture is calculated using the equation of

state for ideal gases. As we are considering low fluid velocities,
we employ the Low Mach Number Approximation to filter out
acoustic (high frequency) modes in the compressible Navier−
Stokes equations, which allows significantly larger time steps in
the numerical solution. For this we decompose the total
pressure into a spatially constant component from which we
calculate the density and the so-called dynamic pressure, which
appears only in the momentum balance.7 Both Fickian and
thermal diffusion are taken into account for evaluating the
diffusion velocities, according to the approach suggested in10
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where Γk is the individual species mixture averaged diffusion
coefficient, Xk the mole fraction, and θk the thermal diffusion
ratio. Mass conservation is enforced by employing the approach
proposed in ref 11, based on the definition of a conservation
diffusion velocity. In particular, in this approach a corrected
diffusion velocity vector V̲k

C is used in eqs 3 and 4 instead of V̲k.
This vector is given as

̲ = ̲ + ̲V V Vk
C

k C (6)

where V̲C = −∑k = 1
Ng ωkV̲k is a constant correction factor

(independent of species, but varying in space and time)
introduced to satisfy the mass conservation. The evaluation of
transport properties is performed through mixture averaging
rules, with the actual pure species transport and thermochem-
ical coefficients calculated as described in detail in ref 7.
2.2. Boundary Conditions. For the solution of the above

conservation equations, boundary conditions are required for
all dependent fields, i.e. total pressure, velocity vector, species
mass fractions, and temperature. Equivalently, velocity vector,
temperature, and all partial pressures {pk} could be specified. In
the present context of catalytic reactors, the boundary
conditions for the total pressure are generally imposed in the
form of a fixed pressure value at the outlet boundary and a zero-
gradient condition at the inlet and at the reactor walls. For the
velocity field, no-slip conditions are assumed at the walls; that
is, the tangential components are set to zero there. We further
assume that no mass accumulates on the surfaces, which is
justified by the vanishing volume of the surface region. This
results in a zero normal velocity component to respect mass
conservation. At the inlet the velocity profile is assigned, while
at the outlet boundaries the flow is assumed to be fully
developed and a zero normal gradient is imposed.
The boundary conditions for the gas-phase species mass

fractions (or partial pressures) and temperature at the inlet
result from the feed conditions that are to be simulated. As
such, the temperature is simply set to a prescribed value. For
the gas-phase species, Danckwerts’ conditions are instead
imposed; that is, the total mass flux for each species k
(accounting for diffusion and convection) is specified. If
composition gradients exist at the boundary, these conditions
allow diffusion into the computational domain and, therefore,
give a more accurate description than classic Dirichlet
conditions

ρω ρω̲ + ̲ · ̲ = ̲ · ̲v V n v n( ) ( )k k k 0 (7)

where the term on the right side is the prescribed total mass
flux and n ̲ is the inward pointing normal vector.
The reactor outlet boundaries are usually far enough

downstream, so that temperature and concentration gradients
have vanished and a zero normal gradient for T and ωk can be
assumed. At inert reactor walls, the normal mass flux of the
individual species k must be equal to zero, as no species are
consumed or produced. To leading order, this corresponds to a
zero normal gradient for the mass fractions. If the inert walls are
assumed adiabatic, i.e. heat dissipation through them is
neglected, the normal gradient of the temperature is equally
set to zero. Else, a Dirichlet boundary condition for T is
imposed; that is, the temperature is fixed to a given value
(which still might vary spatially and temporally though).
At catalytically active walls, i.e. the actual catalyst surface, the

mass flux of the individual species k must balance with the

formation rate (mass source) τk
het due to the ongoing

heterogeneous reactions
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where n̲ is again the inward pointing normal vector. Rα
het are the

reaction rates (measured as turnover-frequency (TOF) in a
number of reactions per unit time and surface area) of the Nhet

different ongoing surface reactions, να,k is the stoichiometric
coefficient of species k in reaction α, and mk is the molecular
mass of species k.
Analogously, the (intrinsic) heat flux −λ▽T must balance

with the heat Qhet released by the heterogeneous reactions
occurring on the catalytically active wall and with the heat flux
q ̲solid in the solid bulk of the catalyst

λ∇ · ̲ = − · ̲T n Q q nhet solid
(9)

If the temperature of the catalyst surface can be controlled to a
given value (e.g., through external heating), the above formula
is replaced with the corresponding Dirichlet boundary
conditions. Adiabatic operation, i.e. no heat dissipation into
the solid, results from setting the solid heat flux to zero.

2.3. Integrated Surface Chemistry and Instantaneous
Steady-State Approximation. The reactive surface chem-
istry enters the partial differential equations describing the flow
through the boundary conditions for the mass flux, eq 8, and
the heat flux, eq 9, at the catalytically active walls. This leads
generally to the aforementioned intricate coupling of both
aspects. On the one hand, the gas-phase species concentration
profiles and temperature at the catalyst surface are modified by
the actual catalytic activity, τk

het. On the other hand, this activity
is, of course, a sensitive function of the local gas-phase
conditions, i.e. the values of these fields at the surface. If the
reaction rate is determined from simple phenomenological
mean-field microkinetics, this coupling can be explicitly
addressed. The corresponding rate equations can be efficiently
incorporated into the actual CFD, e.g. by operator splitting
techniques, as proposed by Maestri and Cuoci.5 For more
demanding microkinetic models, a corresponding direct
integration may nevertheless quickly become the numerical
bottleneck. This holds even more for a kMC-based description
of the catalytic activity, where additional potential instabilities
have hitherto restricted the direct coupling approach to very
simple flow geometries and surface models.12−15

An appealing alternative is therefore to achieve an effective
decoupling of the problem through an instantaneous steady-
state approximation.2,7 This approximation exploits the
typically quite different time scales of surface kinetics and gas
flow. Upon a change of the local gas-phase conditions
(temperature, pressure, species mass fractions), the surface
relaxes to a new steady-state catalytic activity corresponding to
these changed conditions on time scales that are generally
much shorter than those on which changes in the macroscopic
fields actually occur. If this steady state is unique, there is then
no need to actually evaluate the coupled dynamics of surface
chemistry and flow fields. Instead, for whatever dynamical
change of the flow field, the surface kinetics can thus be
assumed to adapt instantaneously, and the reaction rates
required for the boundary conditions in eqs 8 and 9 can at each
time be replaced by the steady-state reaction rates for the
current gas-phase conditions.
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Under this approximation it thus suffices to have a
continuous representation of the steady-state reaction rates as
a function of the gas-phase conditions (temperature, pressure,
species mass fractions or equivalently temperature, partial
pressures). Only this representation is employed in the
evaluation of the CFD boundary conditions; that is, the factor
determining the overall computational efficiency is the
efficiency with which this representation can be evaluated and
not necessarily the efficiency with which the actually employed
kinetic model yields the steady-state reaction rates. If the latter
is numerically demanding, or as in the case of kMC simulations
yields the steady-state reaction rates only in the form of discrete
data, then the steady-state reaction rates can be precomputed
once before the CFD simulation and be used to determine a
numerically efficient continuous representation, e.g. through
interpolation (vide inf ra).
We have to mention that the current approach (both for the

model of the reaction rates as well as for employed boundary
conditions) relies on the neglect of any direct communication
between macroscopic points; that is, these points affect each
other only by the transport in the bulk phases. This is a
common approximation in the modeling of catalytic flows,
which2 is justified by the reaction conditions varying over
length scales which are several orders of magnitude larger than
the characteristic lengths of the surface kinetics. The
concomitant transport on the surface is then sufficiently small
that it is negligible compared to the gas surface interaction. On
these length scales, the reaction conditions can therefore be
considered homogeneous and nonlocal effects can be neglected.
For more extreme situations, this needs not be the case, e.g. for
microscopic flows with concomitant large concentration
gradients. However, there the use of continuum mechanics to
model the gas flow is at least questionable, as the characteristic
system size approaches the mean free path in the gas.
2.4. First-Principles Kinetic Monte Carlo Simulations.

In this work, the surface kinetics are derived from 1p-kMC
simulations.4,16 As with any microkinetic approach, the
molecular-level basis of 1p-kMC simulations is all elementary
processes involved in the catalytic cycle and their correspond-
ing rate constants. In the 1p-kMC approach employed here,
these rate constants are obtained from density-functional
theory (DFT) calculations together with harmonic transition
state theory (hTST).17 On this basis, the actual 1p-kMC
simulation achieves a numerical solution of the Markovian
master equation describing the rare-event type time evolution
of the surface system.
In order to keep the required first-principles input tractable,

prevalent 1p-kMC realizations focus on a coarse-grained lattice
representation of the surface system consisting of the individual
active sites.18 In contrast to prevalent rate-equation based
microkinetic theory, which only achieves a mean-field
approximate solution of the Markovian master equation, 1p-
kMC simulations fully account for all lateral and temporal
correlations and fluctuations in the occupation of these lattice
sites with surface species.19,20 Through the temperature and
pressure dependence of the rate constants, the solution of the
master equation depends parametrically on these. After suitable
statistical or time averaging, the central outcome of a 1p-kMC
simulation in the present context is thus the steady-state
catalytic TOFs Rα

het of all surface reactions α for given
temperature and partial pressures.
Through 1p-kMC simulations for a wide range of temper-

ature and partial pressure conditions, one generates the data

points that after suitable interpolations into a continuous
representation serve for the boundary conditions, eqs 8 and 9,
in the CFD simulations. These representations, Rα

het(T,{pk}), k
= 1, ..., Ng, henceforth called TOF-maps, generally feature
largely exponential dependencies on partial pressures and an
inverse dependence on temperature in large portions of (T,
{pk})-space.

21 These regions correspond to stable ”phases” with
defined surface coverages, and high catalytic activity is typically
narrowly confined to conditions representing boundaries of
these ”phases”.22,23 In contrast to mean-field microkinetic
models which tend to smear out these ”phase” transitions, 1p-
kMC simulations characteristically feature large variations in
TOFs over a particularly small range of temperature and partial
pressures. This challenges any interpolation approach of the
(Ng + 1)-dimensional data field and motivates the specifics of
the error-based modified Shepard approach introduced below.
In practice, we also found it numerically convenient to rather
interpolate the logarithm of the reaction rates as a function of
the logarithms of the partial pressures and the inverse
temperature. More precisely, we thus interpolate the function

=αR f x xlog ( ) ({ }, )p T10
het

k (10)
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where coefficients ak and bT are chosen such that the features of
the function f({xpk},xT) have a similar resolution in all
independent directions. This particular choice of functional
dependence leads to an almost linear behavior in the regions of
(T,{pk})-space corresponding to ”stable” phases.21 These
regions can then be interpolated with a minimum of data
points, when employing a method which uses local polynomials
for interpolation.

2.5. Error-Based Modified Shepard Interpolation.
Written more generally, the interpolation task can be stated
as the generation of an interpolant S(X) of a function f(X), with
X = {{xpk},xT} on a D = (Ng+1)-dimensional domain Ω, based
on N interpolation points Xj and the function values f j, at these
points. The basic idea of the modified Shepard interpolation
approach24 is to construct an approximate Taylor expansion
Qj(X) at each interpolation point Xj
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where ΔXj,a = Xa − Xj,a. In the absence of derivative
information at the interpolation points, the polynomial Qj(X)
is fitted to the Nq nearest neighbor nodes of the node j in the
weighted least-squares sense. The weight for each neighboring
node i is hereby the inverse square distance 1/||Xj − Xi||

2, where
||·|| is the euclidean norm. The function value f j itself is not
fitted so that the interpolation constraint Qj(Xj) = f j is
automatically fulfilled. The continuous representation f(X) of
the original data field f(Xj) is then a superposition of the local
Taylor polynomials

∑=
=

f Q WX X X( ) ( ) ( )
j

N

j j
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with Wj(X) being a Shepard partition of unity, i.e. Wj(X) ≥ 0,
∑jWj(X) = 1, and Wj(Xl) = δjl. In this way, the necessary
interpolation property S(Xj) = f(Xj) is again ensured.25

In order to obtain a local formulation, the weights Wj(X)
take the form

ς

υ
=

∑
=

=

W
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w
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( )
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( )
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( )j
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N
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where υj(X) > 0 tends to zero as X approaches Xj and increases
as distance increases. The localization function ςj(X) in turn is
nonzero only inside a small cloud ωj around the node j. The
time for the evaluation of the interpolant S can thus be made
sublinear in the number of data points N, as only a small
fraction of the nodes have a nonzero contribution in the sum in
eq 12. To obtain Renka’s classical method, one chooses υj(X) =
1/||X − Xj||

2 and ζj(X) = (Rj − ||X − Xj||)+
2, where the +

indicates that the brackets return zero if the content is negative.
The radius Rj of the cloud ωj is chosen such that the Nw nearest
neighbors are included in the cloud. An alternative is, for
example, implemented in the ALGLIB library26

ς = − | − | +RX X X X( ) ( ( ) )j j
2

(14)

The difference to Renka’s method is that the radius R(X) is
now the maximum distance of the Nw nearest neighbors of the
query point X and not of node j. The cloud ωj is thus implicitly
defined by all points for which the node j is among the Nw
nearest neighbors. The advantages are 2-fold: (i) the weights
Wj are now guaranteed to be defined on the whole domain Ω,
regardless of the distribution of the data points and (ii) the
search for the nonzero contributions can efficiently be
performed using kd-trees, even for inhomogeneously dis-
tributed data.
In the above approaches, the weight of the polynomial Qj(X)

is solely determined by the distance of its node to the query
point X. This approach has limitations for functions that exhibit
rapid changes of the local gradient over distances comparable to
the local resolution of nodes, which is a situation typically
encountered for 1p-kMC based TOF-maps with their rapid
activity changes in ”phase” boundary regions. In such situations,
it might well happen that a polynomial belonging to a more
distant node actually approximates the behavior at the query
point much better than those polynomials belonging to close by
nodes. This is illustrated in Figure 1 and motivates us to use
weights that are not distance, but approximation-error based.
We correspondingly choose

= ϵu X X( ) 1/ ( )i j (15)

where ϵj(X) is an error bound for the Taylor polynomial Qj(X),
i.e.
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where (·)+ returns a zero for a negative argument. The radius
R(X) is determined by the maximum distance of the Nw nearest

neighbors of the query point X, as is done in ref 26. The
additional parameter S allows reduction of the distance
dependence of the localization function; that is, choosing S
large will result in ςj(X) ≠ 1 only within a small shell at the
boundary of ωj. In this way, we ensure that the weights are
almost purely error based (except for the localization).
What remains is a suitable expression for the error bounding

functions εj(X). Approximate Taylor polynomials can be bound
by25
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Here NO is the order of the approximate Taylor polynomial;
that is, NO = 1 for linear and NO = 2 for quadratic
approximations. The last term results from the typical one-
order-higher error bound for Taylor polynomials, and the sum
terms account for the errors induced by approximate
derivatives.25 The parameters Dj,m ≥ 0 are, without knowing
the function f(X), unknown. We therefore estimate them from
the existing data, i.e. from the known error of Qj(X) at the data
points within the corresponding cloud ωj. For every node j, we
therefore fit NO + 1 parameters Dj,m such that least-squares
deviation of the error bound from the known errors is
minimized:

∑ ϵ − | − |
ω∀ ∈

Q fX Xmin ( ( ) ( ) )
D m

j i j i i
X

,

2

j m
i j

, (19)

subject to

ωϵ − | − | ≥ ∀ ∈Q fX X X( ) ( ) 0,j i j i i i j

and Dj,m ≥ 0,∀m, where the first constraint ensures the error
bound property, eq 16, and the second constraint stems from
the derivation of eq 18. This procedure includes having to find
for each node j those data points which are inside the cloud ωj.
In other words, we have to find those points for which the node
j is among the Nw nearest neighbors. This can conveniently be
done during the preprocessing when the approximate Taylor

Figure 1. Illustration of the limitation of reaction rate interpolation
using pure distance weighting (see text). Given are the data points 1
and 2 with their respective linear Taylor polynomials Q1(X) (blue
line) and Q2(X) (red line). At the query point Xq, the true function
(black) is almost perfectly given by the value of Q2(X). However, since
point 1 lies much closer (ΔX1 < ΔX2), it gets a high weight in the
distance weighting, leading to a bad representation of the true function
at the query point Xq.
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polynomials are constructed, as this involves anyways a nearest
neighbor search. The constructed list of inverse nearest
neighbors can then be deleted after the Dj,m have been
determined.
In the Appendix we benchmark the therewith introduced

error-based modified Shepard interpolation (EB-MSI) against
the previous distance-based variants or third-order Splines
using analytical data functions. These tests indicate a superior
performance in accurately reproducing regions with strongly
nonlinear transitions at simultaneously coarse data resolution,
as would be characteristic for gridded (Ng + 1)-dimensional 1p-
kMC TOF-maps of reactions involving a large number of Ng
different gas-phase species.
2.6. Model Systems and Computational Parameters.

As representative showcases for surface reaction chemistry, we
will consider CO oxidation at a RuO2(110) and at a Pd(100)
model catalyst. For both systems, we rely on well established
1p-kMC models that have been shown to faithfully reproduce
experimental data at lower pressure conditions where heat and
mass flow effects are negligible.17,23,27−29 Specifically, both
models employ lattice representations of the active surface
including different active site types, and account for all
noncorrelated elementary processes that can take place on
these lattices: dissociative O adsorption and associative O
desorption, unimolecular CO adsorption and desorption, O
and CO surface diffusion, as well as Langmuir−Hinshelwood
CO + O surface reactions. All rate constants have been
determined through DFT and hTST, and detailed accounts of
their computation have been given in the original literature.17,29

The original 1p-kMC model for CO oxidation at Pd(100) was
developed to describe the catalytic activity of Pd(100) at lower
pressures and concomitantly lower coverages though. For the
ambient pressures considered in this work, the model instead
predicts coverages that are close to the maximum possible
within the model (∼0.5 monolayer). For consistency we
therefore employ the O binding energy value of −1.05 eV
computed with DFT for this coverage instead of the low-
coverage value of −1.25 eV employed in the original work,29

and replace the generic unity initial sticking coefficients with 0.3
for oxygen adsorption and 0.8 for CO adsorption to reflect
corresponding experimental data.30−32

Both 1p-kMC models were implemented into and evaluated
using the kmos kMC software package.18 In both models CO
oxidation steps are treated as associative desorption processes
and CO2 readsorption is neglected. The steady-state intrinsic
TOFs produced by the 1p-kMC simulations therefore only
depend on temperature and the partial pressures of CO and O2;
that is, the interpolation task is reduced to a three-dimensional
data field. In the case of RuO2, this data set is the same as
already employed and detailed in previous studies focusing on
idealized reactor geometries.6−8 It does not feature overly
strong TOF-variations over narrow ranges of gas-phase
conditions, which is why already a distance-based modified
Shepard interpolation26 provides a faithful continuous
representation. The specific parameters employed in this
interpolation are Nw = 20, Nq = 5, aCO = 1/6, aO2

= 4/15,
and bT = 5.1 × 10−5.
In comparison the Pd(100) 1p-kMC model yields much

more rapid and large activity changes, and is correspondingly
more challenging to interpolate reliably. The range of reaction
conditions considered is pO2

∈ [10,50] mbar, pCO ∈ [0.08, 50]

mbar, and T ∈ [500, 650] K. Using aCO = 0.04, aO2
= 0.04, and

bT = 3.1 × 10−5, we initially considered an equidistant data set
consisting of 17 points in the O2 dimension, 65 points in the
CO dimension, and 16 points in the temperature dimension.
For a better resolution of the rapid change in the TOF at higher
CO partial pressures, points on a grid with half the grid spacing
have been added, if they where close to this transition, leading
to a total of ∼32000 data points. This data field was
interpolated with the EB-MSI approach, using Nw = 35, Nq =
100, and S = 100. A two-dimensional cut through the obtained
representation is displayed in Figure 2 for constant pO2

= 30

mbar and visualizes the mentioned sharp transitions between
high and low intrinsic catalytic activity. Similar to the analytic
test case described in the Appendix, distance-based modified
Shepard interpolation (not shown) always led to oscillations
and severe overestimation of the TOF close to these
transitions.
Using the continuous intrinsic TOF representations for the

boundary conditions, eqs 8 and 9, the resulting reactive CFD
simulations were performed with the CatalyticFoam solver.5 In
all CFD simulations, the nonlinear equations were solved using
the implicit Euler for the time discretization, and cell centered
Gaussian Finite Volumes with linear interpolation for spatial
discretization. For the two-dimensional cases, we have used the
GMSH mesh generator33 to generate triangular meshes. In
these cases we employed a nonorthogonality correction in the
Finite Volume discretization.

3. FLOW SIMULATION RESULTS
In the following we provide several showcases to illustrate the
capabilities of the established framework. Even though more
generally applicable, we focus here on reactor geometries and
flow situations involving flat-faced model catalysts. It is
particularly for such catalysts that detailed 1p-kMC models
become more generally available, while simultaneously
dedicated in situ approaches are being developed to provide
at best atomic-scale surface characterization of the operating
surface.34 It is within the concomitant aim of a full mechanistic
understanding that the effects of flow and surface chemistry
need to be most carefully disentangled. The showcases
highlight how the coupling of these two aspects generally
modifies the observable catalytic function in nontrivial ways.
Integrated multiscale simulation approaches such as the present
framework are therefore important tools to analyze and
understand corresponding in situ data or support the
development of improved experimental setups.

Figure 2. Two-dimensional cut through the intrinsic TOF-map at
constant pO2

= 30 mbar as obtained by EB-MSI interpolation of 1p-
kMC data for the CO oxidation at Pd(100). Note the sharp transitions
between regions of high and low catalytic activity, which generally
challenge the interpolation of gridded data sets of limited resolution.
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3.1. Stagnation Flow Reactor.We start to exploit the new
possibility to integrate 1p-kMC based surface chemistry into
real reactor models by scrutinizing results obtained previously
for an ideal stagnation flow reactor.6,7 A special property of this
in general axial-symmetric reactor geometry illustrated in Figure
3 is that, in the limit of large catalyst diameter, the flow problem

can effectively be reduced to a one-dimensional problem that
describes the velocity, concentration, and temperature profiles
in the central region above the catalyst.9 Within this ideal
stagnation flow description, an intriguing bistability with one
nonreactive and one highly reactive stationary solution had
been obtained for the 1p-kMC CO oxidation at the RuO2(110)
model. This finding is inasmuch interesting, as the 1p-kMC
model itself does not show multiple steady states; that is, the
observed bistability arises solely from the coupling of gas-phase
transport and surface kinetics.7

The flat-faced catalyst surface assumed in the stagnation flow
geometry, cf. Figure 3, is perfectly suited for single-crystal
model catalysts. For reasons of cost or the reduction of reaction
heat release, only small diameters are employed in real
experiments though. In this respect, it is specifically interesting
to evaluate if the full axial-symmetric flow problem with finite
catalyst diameter still exhibits the bistability obtained before in
the ideal stagnation flow case. We address this with the explicit
reactor geometry shown in Figure 3, using dimensions
representative of corresponding reactor types:35,36 The axial-
symmetric reactor has a diameter of 6 cm and a height of 2 cm,
and features a sample holder (diameter 30 mm; height 9 mm)
at its center. The sample holder supports a RuO2(110) single-
crystal catalyst sample with a height of 1 mm and varying
diameters. Only the top face of the catalyst is assumed to be
reactive. The gas enters at the top through a sieve-like inlet,
which ensures a uniform velocity field of 20 cm/s pointing
toward the catalyst surface. The computational domain is
discretized with a triangular mesh with a minimum grid
resolution of 0.05 mm at the catalyst surface and a smooth
grading to a maximum grid resolution of 1 mm close to the
reactor walls, as illustrated in Figure 3. Assuming isothermal
conditions, we specifically focus on gas-phase conditions that
fall within the bistability region observed in the ideal solution:
T = 600 K, pCO = 1.9 bar, and pO2

= 0.3 bar. The corresponding

stationary flow profile is reached by starting with an initial
mixture with 99 wt % CO (but the same total pressure) and
then a change to the nominal conditions.
Figure 4 summarizes the results obtained for varying catalyst

diameter and compares them to the ideal stagnation flow

solution. The shown O2 mass fraction along the symmetry axis
in the center of the reactor demonstrates that almost perfect
agreement with the ideal solution is obtained for catalyst
diameters exceeding 1 cm. In this case, the axial-symmetric two-
dimensional flow simulation yields an equally active catalyst and
a corresponding strong reduction of the minority O2 mass
fraction close to the surface; that is, under these conditions the
reactor is in a mass-transfer limited regime.6,7 For smaller
diameters, deviations increase, and particularly for the smallest
diameter of 2 mm, the reactive solution is no longer reached.
The latter qualitative difference for this catalyst diameter can be
rationalized by two aspects, which both lead to larger velocities
at the surface: The radial CO2 concentration gradients induced
by the CO2 drop at the edge of the catalyst are stronger, and at
such a small catalyst loading, the sample holder itself replaces
the protruding catalyst as the stagnation surface. In this
situation, correspondingly strong mass-transfer limitations as in
the case of the ideal solution cannot build up. Yet, the latter and
their concomitant reduction of the minority O2 species are
indispensably required to bring the partial pressure ratio close
to the surface to a regime that leads to the high TOFs of the
active state. Small details of the real reactor geometry are
therefore critically important for the observable catalytic
function, while it is in turn specifically the possibility to
explicitly account for these details that now allows us to closely
guide experimental approaches that aim to address the
predicted bistability.

3.2. Isothermal vs Adiabatic Channel Flow. With the
second example we specifically emphasize how subtle features
of the intrinsic catalytic activity that are only captured on the
level of 1p-kMC simulations carry over to nonintuitive effects at
the reactor level. The RuO2(110) model catalyst surface

Figure 3. Representation of the considered stagnation flow reactor,
featuring the sample holder (gray) at its center. Supported on the
sample holder is the single-crystal catalyst with only the top face active
(turquois). The gas enters with a uniform velocity field through a
sieve-like inlet at the top (blue), streams against the catalyst, and leaves
through the outlet at the bottom (red). Typical streamlines for this
flow are shown superimposed on the right, while the triangular mesh
employed in the CFD simulation is shown on the left.

Figure 4. Calculated O2 mass fraction along the symmetry axis of the
stagnation flow reactor shown in Figure 3, where z = 1 cm corresponds
to the catalyst surface and z = 0 to the inlet position. For the
considered gas-phase conditions (pCO = 1.9 bar, pO2

= 0.3 bar, T = 600
K, inlet velocity of 20 cm/s), the results obtained for large RuO2(110)
catalyst diameters exceeding 1 cm agree with those obtained in the
ideal stagnation flow case (black solid line, see text). Due to high
catalyst activity, the reactor is in a mass-transfer-limited regime and the
mass fraction of the minority O2 species close to the active surface is
significantly reduced. Smaller samples deviate increasingly from the
ideal stagnation flow solution. Particularly for the smallest diameter of
2 mm, the active steady state cannot be reached.
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exhibits severe oxygen diffusion limitations in its trench-like
arrangement of active sites.17,19,20 Within the 1p-kMC CO
oxidation model, these limitations are captured, and in the near-
ambient pressure regime, they yield a shift of the partial
pressure ratio for which a significant intrinsic catalytic activity is
obtained at increasing temperatures. This shift toward higher
pCO/pO2

ratios can clearly be seen in the interpolated intrinsic
TOF-map shown in Figure 5. In contrast, a mean-field rate

equation based microkinetic model would already predict a
high TOF at much lower pCO/pO2

ratios, despite using the exact
same mechanism and first-principles rate constants.19

We illustrate the reactor level consequences of this TOF-
feature for a two-dimensional channel flow geometry that we
had already employed in earlier work.20 In this geometry shown
in Figure 6, two parallel plates of length 13 cm are placed at a
distance of 1 cm. At the inlet, a parabolic Hagen−Poiseuille
velocity profile with maximum velocity of 100 cm/s is set,
reflecting an unreactive channel flow upstream of the catalyst.
The catalyst of length 1 cm and with a height of 1 mm is placed
1 cm downstream of the inlet at the lower plate. Again only the
top face of the catalyst is assumed catalytically active. Figure 6
also illustrates the employed mesh representation, which varies
in its resolution from 0.25 mm and 1 mm at the inlet and
outlet, respectively, down to 0.05 mm at the catalyst surface.
We consider two extreme cases with regard to the dissipation

of the released reaction heat: (i) isothermal operation, where
reactor walls and catalyst have the same temperature as the gas
at the inlet, and (ii) adiabatic operation, where no heat
dissipation is allowed into any solid parts of the reactor. In both
cases we first bring the system to a steady state for unreactive
feed conditions, corresponding to pCO/pO2

= 0.09, p = 5 bar,
and T = 600 K. For these conditions, the catalyst is completely
inactive, and uniform concentration and temperature profiles
are obtained throughout the channel for both the adiabatic and
isothermal cases. The inlet mixture is then changed to pCO/pO2

= 7.3, that is, to conditions which nominally correspond to high
intrinsic catalytic activity (cf. Figure 5). Within 1 s, resolved in
5 × 106 time steps, the system reaches the new steady state.
Unexpectedly and as shown in Figure 7, this steady state
features a much higher CO2 concentration above the catalyst
surface in the isothermal case. The catalyst is thus markedly
more active, even though in the adiabatic case the surface heats
up by up to 35 K due to the inefficient heat dissipation into the
surrounding gas stream.
The at-first-glance, surprising observation that a hotter

catalyst at nominally highly reactive feed conditions exhibits
lower catalytic activity can be directly traced back to the TOF
topology shown in Figure 5. The mass-transfer limitations that
set in already for the initial nominal feed conditions will
generally reduce the minority species close to the catalyst
surface and therewith expose the catalyst to gas-phase

Figure 5. Intrinsic TOF-map for the CO oxidation at RuO2(110) 1p-
kMC model as a function of the partial pressure ratio and temperature
for constant total pressure of 5 bar. A rim of highest catalytic activity
arises at the transition between an O-poisoned coverage (Ox.) regime
in the upper left part of the shown range and a CO-poisoned coverage
regime (CO) in the lower right part. Note the tilt of this rim toward
higher pCO/pO2

ratios with increasing temperature, that is not obtained
by a mean-field rate equation based microkinetic model (see text).
Additionally marked with squares is the evolution of the gas-phase
conditions at the center of the catalyst within the channel flow reactor
after the switch to active feed for the isothermal (blue) and the
adiabatic case (turquois). The solid blue and turquoise lines further
indicate the finally obtained range of gas-phase reaction conditions
over the catalyst surface in the steady state for the isothermal and
adiabatic cases, respectively.

Figure 6. Representation of the considered channel flow geometry, with the catalyst (blue) placed at the bottom plate. The upper panel depicts the
velocity profile with the lengths of the vectors proportional to the velocity, and the lower panel shows the employed mesh representation with a
resolution as low as 0.05 mm close to the catalyst surface.
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conditions corresponding to a further increased pCO/pO2
ratio.

As discernible from the intrinsic TOF-map of Figure 5, this
brings the system into regions of even higher intrinsic reactivity
in the isothermal case. The thereby intensified mass-transfer
limitations further increase the pCO/pO2

ratio, and upon
approaching steady state, the system successively approaches
the highest-activity TOF-rim, as shown in Figure 5. In contrast,
in the adiabatic case, any increase in the intrinsic TOF due to
an increased partial pressure ratio goes hand in hand with an
increase of the surface temperature. With the above-described
specific shift of the highest-activity rim toward higher partial
pressure ratios at increasing temperatures, this leads to a smaller
mutual enhancement of mass-transfer limitations and intrinsic
TOF. As a consequence and as shown in Figure 5, the system
then eventually settles at the flank of the TOF-rim at a
significantly lower steady-state catalytic activity as compared to
the isothermal case. With this explanation, the current example
thus not only emphasizes again the close coupling of the
specifics of the surface kinetics with transport but also
furthermore highlights the relevance of heat dissipation
channels, which can only be properly accounted for in
realistically described reactor geometries.
3.3. Prototypical Reactor for in Situ Spectroscopy. The

last two examples can still be considered as rather well
controlled flow geometries, but they nevertheless exhibited
already peculiar couplings between chemistry and transport.
With the last example we illustrate that an explicit account of
the reactor geometry is even more important for present-day
experimental setups for dedicated in situ spectroscopies of
model catalysts. The design of chambers for the latter task is
heavily constrained by the need to place invasive machinery
such as pumps or local probes in the immediate vicinity of the
catalyst surface.34 This generally leads to very complex flow
profiles, as we exemplify by analyzing the prototypical geometry

shown in Figure 8. Without yet including any specific invasive
analysis or pumping equipment, the reactor itself consists of a

cube of edge length 3 cm, with a cuboid sample holder with a
base of 1 × 1 cm2 and a height of 1.5 cm mounted at the
bottom wall. For simplicity, the catalyst surface is modeled to
cover the entire top face of the sample holder. External heating
allows us to maintain a constant temperature at both the
reactive surface and the side walls of the sample holder, while
the remaining reactor walls are assumed to be adiabatic. The
gas streams into the reaction chamber through an inlet on the
upper left and leaves the chamber through an outlet on the
lower right. For the CFD simulations, we exploit the mirror
symmetry of the problem, and discretize one-half of the

Figure 7. Steady-state CO2 mass fraction (in logarithmic scale) for the isothermal channel (upper panel) and the adiabatic channel (middle panel),
as well as the temperature profile for adiabatic operation (lower panel). Shown are results for a gas-phase feed of pCO/pO2

= 7.3, p = 5 bar, and T =
600 K at the inlet. Although the released reaction heat increases the temperature at the RuO2(110) catalyst surface by up to 35 K in the adiabatic
case, a markedly lower activity is obtained compared to isothermal operation.

Figure 8. Representation of the reactor geometry considered as
prototypical for in situ spectroscopic measurements of model catalysts.
The gas enters with a uniform velocity at defined temperature at the
inlet on the left, streams over the model catalyst surface (blue), and
leaves the chamber through the outlet on the right. External heating
allows us to control the temperature of catalyst and sample holder
(green), while all remaining walls are set to adiabatic boundary
conditions.
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chamber with a uniform regular cubic mesh. At a resolution of
0.2 mm, this results in 848 000 computational cells.
Considering the CO oxidation on the Pd(100) 1p-kMC

model, we focus on a catalyst/sample holder temperature of
600 K and a total pressure of 1 bar. The gas enters at the inlet
with a temperature of 300 K, and mass fractions of 0.96, 0.03,
and 0.01 for an Ar buffer gas, O2, and CO, respectively. At a
uniform velocity profile of 4 cm/s, this leads to a total flow rate
of 120 mL/min through the reactor, which falls within the
range characteristic for in situ experiments using flow reactors.
With such experiments generally focusing on the temperature
control of the catalyst, also the large difference in temperature
at the inlet and the catalyst surface and sample holder is quite
representative. As initial conditions we choose uniform values
for all fields in the reaction chamber, employing the values from
the inlet (from the outlet for the total pressure). The solution is
then advanced with time steps of 5 × 10−5 s until we have
reached a total time of 15 s. At this time, the gas in the chamber
hason averagebeen once or twice exchanged and the
system has reached a pseudostationary dynamics in which the
relevant flow features are fully established. Not surprising in
view of the temperature mismatch of inlet and catalyst, a
significant degree of thermoconvection has emerged in this
pseudostationary state. Even in the absence of the actual
invasive machinery, this leads already to a highly complex flow
pattern, which we illustrate in Figure 9. Due to gravity, the

denser gas from the cold inlet drops when entering the reaction
chamber and streams toward the outlet along the bottom of the
chamber. Once the gas reaches the hot sample holder, it heats
up and rises, thereby inducing a vortex, which rotates
counterclockwise around the catalyst. For the chosen inlet
conditions, the catalyst ends up in a highly reactive state,
leading, in fact, within seconds to strong mass-transfer
limitations, as apparent from the calculated mass fractions of
the minority CO species inside the reactor. However, even
without such limitations, i.e. for a potentially less reactive

catalyst state, the complex flow pattern would render it
impossible to deduce the actual TOFs from a measurement of,
for example, the product mass fraction at the outlet. This must
be clearly borne in mind when aiming to relate spectro- or
microscopic data obtained in operando in such chambers to a
possible activity of the catalyst.

4. CONCLUSIONS AND OUTLOOK
We have presented a general numerical approach to consider
gridded catalytic activity data of complex microkinetic models
such as 1p-kMC inside CFD simulations. This allows us to
account within one multiscale modeling framework for both the
predictive-quality surface kinetics and the heat and mass flow
inside an explicitly described reactor geometry. The suitable
exploitation of the disparate time scales of surface chemistry
and transport in the form of an instantaneous steady-state
approximation reduces the actual coupling task to an efficient
and reliable interpolation of the gridded activity data. To this
end, we have devised an error-based variant of the general
modified Shepard method to specifically cope with the abrupt
variations of catalytic activity over narrow ranges of gas-phase
conditions that are characteristically obtained within 1p-kMC
descriptions.
For a given 1p-kMC model, the capabilities and limitations of

the resulting approach are correspondingly not governed by the
coupling itself, but instead by the actual CFD solver employed.
Relying on an interface to the state-of-the-art CatalyticFoam
package, the showcases presented in this work demonstrate that
this allows us to address realistic reactor geometries of the
complexity level, e.g. encountered in in situ characterization
experiments on model catalysts. A sole notable exception in this
context would be in situ X-ray photoelectron spectroscopy,
where the strong pressure gradients induced by differential
pumps placed in the immediate vicinity of the catalyst surface
cannot be treated within continuum fluid dynamics. The same
reason also presently prevents access to explicitly resolved
microporous supports. Still challenging is also the treatment of
supported nanocatalysts or polycrystalline surfaces. This has
less to do with the fundamental inadequateness of the coupling
approach, but rather the practical reason of only limited
knowledge about the surface morphology. Even if known, the
setup of a reaction mechanism (and the kMC model) and the
determination of the corresponding large number of first-
principles parameters may become a major task.
For the important class of single-crystal model catalysts or

nanoparticle catalysts at planar supports, the presented
showcases highlight the intricate coupling of surface chemistry
and transport, which generally prevents a clear-cut interpreta-
tion of in situ characterization data obtained at near-ambient
conditions. To a large part this has, of course, to do with the
focus on CO oxidation, which is the fruitfly ”prototypical”
reaction traditionally considered in ultrahigh vacuum and in situ
model catalyst studies. This facile reaction yields very high
conversions and therewith makes mass-transfer limitations
almost unavoidable. However, in particular, the details of the
heat flow are likely to decisively influence also more selective
reactions at lower conversions. Inefficient heat dissipation or
external temperature control only over parts of the reactor
chamber can lead to significant temperature gradients and
therewith to an unknown degree of surface heating and/or
thermoconvection. In all such cases, accompanying multiscale
simulations of the type and capability presented here will be
almost certainly necessary to properly interpret measured data

Figure 9. Illustration of the complex stationary flow pattern arising
during CO oxidation at Pd(100) inside the reactor. The catalyst and
sample holder are maintained at 600 K, while the gas enters at the inlet
with 300 K, a total pressure of 1 bar, Ar:CO:O2 mass fractions of
0.96:0.01:0.03, and a uniform velocity of 4 cm/s. Shown are the
temperature distribution at the symmetry plane and along two stream
ribbons displaying the gas flow. The black to white color code
indicates the temperature ∈ [300, 600] K both on the ribbons and at
the slice. The arrows on the ribbons indicate the streaming direction.
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from in situ experiments or to design appropriate experimental
setups where corresponding effects can be minimized or
controlled.

■ APPENDIX

We benchmark the performance of the error-based modified
Shepard interpolation (EB-MSI) using the analytical test
function

= − − + − −

− − + −

f x y x y u x y u

x y x y

( , ) 2sig( , ) (1 sig( , ))

( 4) cos( )
1

(20)

with the sigmoid function sig(z, u) = (1/(1 + exp(−uz))). In
the coordinate (x − y) this function features a transition
between otherwise almost linear behavior, whereby the
steepness of the transition depends on the parameter u. In
particular for large u ≥ 100, the transition is strongly nonlinear
and f1 features all characteristics of 1p-kMC based TOF-maps.
We sample the function at (21 × 21) equidistant data points in
the data range 0 ≤ x, y ≤ 1, and therewith create a data field
with a resolution typical for high-dimensional 1p-kMC TOF-
maps.
Figure 10 compares the performance against interpolation

with distance-based modified Shepard interpolation (DB-MSI)
as implemented in the ALGLIB library26 and against third-
order Splines. For both Shepard interpolations Nw = Nq = 8 and
quadratic polynomials were employed. For the chosen large u =
200, corresponding to a steep transition, both DB-MSI and
Splines have problems in properly representing the transition
domain at the given limited grid resolution. In contrast, EB-
MSI suppresses artificial oscillations at the transition and
thereby prevents spurious overestimation of the function. In
flow simulations, particularly the latter features of a reactive
boundary condition (oscillations, overestimation) can induce
instabilities and hysteresis, and as such, their suppression
through the EB-MSI approach is a significant benefit in the

present context. Of course, at higher data resolution or
smoother transitions corresponding to smaller values of u, all
three methods perform equally well, featuring interpolation
errors that are negligible for the purpose of interpolating
gridded TOF-maps.
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