
Archive of Numerical Software
vol. 4, no. 100, 2016, pages 13–29
DOI: 10.11588/ans.2016.100.26526

The Distributed and Unified Numerics Environment,
Version 2.4

Markus Blatt1, Ansgar Burchardt2, Andreas Dedner3, Christian Engwer4,
Jorrit Fahlke4, Bernd Flemisch5, Christoph Gersbacher6, Carsten Gräser7,
Felix Gruber8, Christoph Grüninger5, Dominic Kempf9, Robert Klöfkorn10,

Tobias Malkmus6, Steffen Müthing9, Martin Nolte6, Marian Piatkowski9, and
Oliver Sander2

1Dr. Blatt - HPC-Simulation-Software & Services, Heidelberg, Germany
2Institute for Numerical Mathematics, TU Dresden, Germany

3Mathematics Institute, University of Warwick, UK
4Institute for Computational und Applied Mathematics, University of Münster, Germany

5Institute for Modelling Hydraulic and Environmental Systems, Univ. of Stuttgart, Germany
6Department of Applied Mathematics, University of Freiburg, Germany

7Institute of Mathematics, FU Berlin, Germany
8Institute for Geometry and Applied Mathematics, RWTH Aachen, Germany

9Interdisciplinary Center for Scientific Computing, Heidelberg University, Germany
10International Research Institute of Stavanger, Stavanger, Norway

Received: December 17th, 2015; final revision: February 25th, 2016; published: May 10th, 2016.

Abstract: The Dune project has released version 2.4 on September 25, 2015. This paper describes
the most significant improvements, interface and other changes for the Dune core modules Dune-
Common, Dune-Geometry, Dune-Grid, Dune-ISTL, and Dune-LocalFunctions.

1 Introduction

Dune, the Distributed and Unified Numerics Environment (cf. Bastian et al. [2008a,b], Blatt and
Bastian [2007], Bastian and Blatt [2008]), is a modular toolbox for solving partial differential
equations (PDEs) with grid-based methods. It supports the easy and flexible implementation
of Finite Elements (FE), Finite Volumes (FV), and further discretization methods. Version 2.4
of the Dune core modules Dune-Common, Dune-Geometry, Dune-Grid, Dune-ISTL, and Dune-
LocalFunctions was released on September 25, 2015. This paper provides an overview of the
most significant improvements and interface changes for each core module.

Version 2.4 of the Dunemodules is available in binary form in several major Linux distributions
including Debian, Ubuntu, and openSUSE. Source tarballs and anonymous git access can be
found on the project homepage www.dune-project.org. The software is available under version 2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository: Freie Universität Berlin (FU), Math Department (fu_mi_publications)

https://core.ac.uk/display/267951721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.dune-project.org

14 DUNE Developers

of the GNU General Public License, with a special exception for linking and compiling against
Dune. (For details see http://www.dune-project.org/license.)

1.1 Overview

The most notable change concerns the build system. Instead of the GNU Autotools (Calcote
[2010]), CMake (Martin and Hoffman [2015]) is now the default build system. Autotools has been
deprecated and will be removed in the next Dune release.

In Dune-Grid, Release 2.4 introduces interface changes that allow copying entities and inter-
sections. As a result we will remove the class EntityPointer in the near future. Furthermore,
YaspGrid has gained many new features. As a consequence we will remove the SGrid grid
manager before the next release, as all features of this grid are now covered by YaspGrid. Dune-
Geometry, Dune-ISTL, and Dune-LocalFunctions only received minor changes. In particular,
various deprecated interfaces have been removed.

The Dune-Grid-Dev-Howto module, which was part of the core modules for the 2.3 release,
has been abandoned. It was intended as a module to document and teach how to implement
Dune grids. However, the module never saw any work. The IdentityGrid implementation,
whose purpose is to serve as a template for new grid implementations, has been moved from
Dune-Grid-Dev-Howto to Dune-Grid, and will continue to be maintained there.

This paper dedicates one chapter each to the changes in each module. More specifically, changes
to Dune-Common are discussed in Section 2, Dune-Geometry in Section 3, Dune-Grid in Section 4,
Dune-ISTL in Section 5, and Dune-LocalFunctions in Section 6. Finally, we list a few prominent
known issues in Section 7.

1.2 System requirements

The minimal required compilers are GCC 4.4 and Clang 3.4. On OS X, GCC 4.7 is required, see
Bugtracker issue 1590 for the details. We try to stay compatible with ICC 15 and newer. ICC
14.0.3 works, but needs patches to system headers.

For the new CMake build system, we require CMake 2.8.6 or newer. To get support for the macro
dune_enable_all_packageswe require at least CMake 2.8.12. The minimal version requirements
for the GNU Autotools build system have not changed.

2 dune-common

The major new feature in Dune-Common is the introduction of a new CMake-based build system.
But there are also a few other noteworthy improvements.

2.1 CMake as the default build system

The default build system for Dune has been switched from the GNU Autotools to CMake which
is the new default build system and GNU Autotools are still supported until the next Dune core
modules release. Because we provide the dunecontrol script to build several interdependent
Dunemodules at once, most differences in the build system are hidden from the user. In particular,
option files for dunecontrol can continue to be written as if the Autotools build system was used.
However, it is also possible to directly set CMake variables in option files. For example, the line

CMAKE_FLAGS=" -DCMAKE_CXX_FLAGS=’-g -Wall’ "

Archive of Numerical Software 4(100), 2016 c© by the authors, 2016

http://www.dune-project.org/license
https://gitlab.dune-project.org/flyspray/FS/issues/1590

DUNE 2.4 15

sets the default compiler options. Setting CMake variables directly is strongly recommended, as
the Autotools build system is scheduled for removal before the next release to avoid the overhead
of maintaining two different build systems. For Dune 2.4 passing the option --no-cmake to
dunecontrol enable Autotools.

As a result of using CMake, out-of-source builds are now the default. Besides GNU make, other
make tools like Ninja-build or Visual Studio’s MSBuild can be used. It is possible to generate
project files for various IDEs like Xcode, Visual Studio or Eclipse.

The Autotools build system provided a special target, make headercheck, that checked whether
each file contained all required #include directives. With CMake, this target is disabled by
default, as it creates a large number of files in the build directory. It can be re-enabled by adding
-DENABLE_HEADERCHECK=1 to the CMake flags. The headercheck target can only be run in the
project’s root build directory, no longer in sub-directories. Calling headercheck for single headers
is no longer supported.

New Dune projects can be set up using the duneproject script. The script now adds CMake files
so that any new project can be directly used with the new build system. CMake support can
be added to existing modules with the help of a script provided in the Dune-Common module.
Calling dune-common/bin/am2cmake.py -d <module-source-dir> will lead to the creation of
CMakeLists.txt from existingMakefile.amfiles, but note that all existingCMakeLists.txtwithin
the module will be overridden. For some modules this will be all it takes. For others some manual
adaptation of the CMakeLists.txtwill be required.

2.2 MPI is enabled by default

Previous releases of Dune would not enable MPI by default even if an MPI implementation was
found by the build system. This has changed with Dune-Common 2.4. Now, MPI support is
enabled unless deliberately switched off by passing -DCMAKE_DISABLE_FIND_PACKAGE_MPI=TRUE
for CMake and --disable-parallel for Autotools. This change implies that even sequential
programs should now start with

C++ code
1 #include <dune/common/parallel/mpihelper.hh>
2
3 int main(int argc, char** argv)
4 {
5 // this statement needs to be first, because MPI_Init is called
6 Dune::MPIHelper::instance(argc, argv);
7 // main program follows
8 return 0;
9 }

because otherwise such programs will abort at run-time if MPI is present but not explicitly
disabled.

Also related to MPI, support for very old MPI implementations, specifically implementations
without support for the MPI-2.1 standard (Gropp et al. [1999]), has been removed. Support for
such installations was deprecated in Dune 2.3. This change should affect very few users because
all major MPI implementations have been compatible with that standard since at least 2009.

2.3 Bash completion

Dune-Common now provides a simple implementation of bash-completion for the dunecontrol
command. That means that if a Dune-Common module is globally installed, the bash shell will
auto-complete dunecontrol commands and options in the usual way when double-pressing the
tab key. This improves dunecontrol usability greatly.

c© by the authors, 2016 Archive of Numerical Software 4(100), 2016

16 DUNE Developers

2.4 Miscellaneous improvements and cleanup

Further changes to Dune-Common include a few minor features, and the deprecation or removal
of several obsolete interfaces.

• The container classes FieldMatrix, FieldVector, and DiagonalMatrix can now be con-
structed from C++11 initializer lists.

• The class CollectiveCommunication is now default-constructible.

• The macros HAVE_DUNE_HASH, HAVE_INTEGRAL_CONSTANT, HAVE_RVALUE_REFERENCES,
HAVE_STD_HASH, HAVE_TYPE_TRAITS, HAVE_VARIADIC_CONSTRUCTOR_SFINAE, and
HAVE_VARIADIC_TEMPLATES, defined in config.h, are deprecated and will be removed after
Dune 2.4. The same holds for various HAVE_TR1_*macros. The corresponding features are
provided by all supported compilers.

• The class SelectType (from the file dune/common/typetraits.hh), deprecated in Dune 2.3,
has been removed. Use std::conditional from the standard library instead.

• The deprecated file misc.hh has been removed. Most math-related functionality has moved
to math.hh. The two methods hasPrefix and hasSuffix are now in the new header
stringutility.hh. The methods SQR and genFilename disappear with no replacement.

3 dune-geometry

In the Dune-Geometrymodule, the quadrature rules and reference elements have been improved.

3.1 Quadrature rules

The code for quadrature rules was improved. First of all, the class QuadratureRules, which
implements a cache for quadrature rules, is now thread-safe. One can therefore request rules by
writing, e. g.,

C++ code
1 const auto& quad = Dune::QuadratureRules<double, dim>::rule(element.type(),

quadOrder);

concurrently from more than one thread. The implementation uses std::thread, and therefore
compilers are needed that support std::thread. This includes all compilers listed in Section 1.2,
with the notable exception of GCC before version 4.7 on OS X.

Second, the programmer interface for quadrature rules has been cleaned up. The enumeration
values Gauss, Jacobian_1_0, and Jacobian_2_0 for the different types of Gauß rules have been
replaced by GaussLegendre, GaussJacobi_1_0, and GaussJacobi_2_0, respectively. The new
names were chosen because they better match the names of the corresponding rules used in the
mathematical literature.

Finally, the class QuadraturePoint exported both the dimension of the domain of integration
and the type used for coordinates twice. The values d and CoordType have been removed. The
dimension and Field parameters should be used, respectively, instead.

Archive of Numerical Software 4(100), 2016 c© by the authors, 2016

DUNE 2.4 17

3.2 Cleanup of the ReferenceElement implementation

• The methods global, mapping, volumeOuterNormal, and initializeTopology have been
removed from the ReferenceElement class.

• The methods ReferenceElement::global have been removed; use
ReferenceElement::geometry<codim>(i).global instead. The non-interface method
ReferenceElement::mapping, which is superseded by the geometry method, has been
deprecated, as well.

• The GenericReferenceElement* classes were renamed to ReferenceElement* in Dune 2.3.
The old, deprecated names have been removed.

3.3 Miscellaneous improvements and cleanup

• There are new types Codim<cd> and Dim<d> that can be used to encapsulate a (co)dimension.
They inherit from std::integral_constant<int> and are useful when an interface should
accept both a dimension and a codimension.

• The class MockGeometry, deprecated in Dune 2.3, has been removed. In most cases, replacing
it by MultiLinearGeometry and updating the includes is sufficient.

• The header genericgeometry/geometry.hh and the classes Geometry, GenericGeometry,
and LocalGeometry contained therein, which were all deprecated in Dune 2.3, have been
removed.

4 dune-grid

The major changes in Dune-Grid are the deprecation of the EntityPointer class along with
the corresponding transfer of some EntityPointer functionality to the Entity class. One grid
implementation has been added and two others have been deprecated. Loops over entities and
intersections become much easier to write and read using the C++11 range-based formechanism.

4.1 Changes to the set of grid implementations

There is one new grid implementation in the Dune-Grid module, and two old ones are being
deprecated. The SGrid structured grid implementation has been deprecated, because the com-
peting YaspGrid implementation has been improved so much that SGrid is now obsolete (see
Section 4.5). By request of the ALUGrid maintainers, the ALUGrid implementation of an unstruc-
tured parallel grid will now be provided as a separate Dune module Dune-ALUGrid outside
of the set of Dune core modules (Alkämper et al. [2016], https://gitlab.dune-project.org/
extensions/dune-alugrid). The ALUGrid bindings in Dune-Grid itself are deprecated. Support
for the external Alberta grid library version 2 and older has been abandoned without deprecation.
Alberta 3 is now required. The minimum required version of UG is now UG-3.11.0. Note that
building UG from source with Clang requires a bugfix provided by UG-3.11.1.

Finally, the IdentityGrid implementation has been moved from the abandoned Dune-Grid-
Dev-Howto module to Dune-Grid itself. IdentityGrid is a meta grid that simply forwards
everything to its host grid. Its main purpose is to serve as a template for the development of new
grid implementations.

c© by the authors, 2016 Archive of Numerical Software 4(100), 2016

https://gitlab.dune-project.org/extensions/dune-alugrid
https://gitlab.dune-project.org/extensions/dune-alugrid

18 DUNE Developers

4.2 Range-based for loops

With recent enough compilers, loops over entities, intersections, and other algorithms can now be
written using the new C++11 range-based for formalism. This leads to remarkable improvements
in code readability. For example, in Dune-Grid 2.3, a loop over all elements had to be written
using iterators

C++ code
1 GridView::Codim<0>::Iterator it = gridView.begin<0>();
2 GridView::Codim<0>::Iterator endIt = gridView.end<0>();
3
4 for (; it != endIt; ++it)
5 {
6 // Do something with the entity in ’*it’
7 }

In Dune-Grid 2.4, this simplifies to

C++ code
1 for (const auto& element : elements(gridView))
2 {
3 // Do something with the entity in ’element’
4 }

Note how the clumsy type specifications of the old version have disappeared, and how it is
obvious even to the untrained eye that this is a loop over the grid elements. Code using the new
syntax runs at the same speed as code using iterator loops.

Similarly, a loop over the vertices of a grid view is written as

C++ code
1 for (const auto& vertex : vertices(gridView))
2 {
3 // Do something with the entity in ’element’
4 }

Finally, if element is a codimension-0 entity from the grid view in gridView, then

C++ code
1 for (const auto& intersection : intersections(gridView,element))
2 {
3 // Do something with the intersection in ’intersection’
4 }

is a loop over all intersections of this entity. Note again how much simpler this is compared to
the iterator loops used previously.

4.3 EntityPointer is deprecated, entities and intersections become copyable

Previous versions of the Dune grid interface have included the EntityPointer class, which was
intended as a way to store references to grid entities. The grid entities themselves were seen as
mere views of actual objects, and could not be stored as separate objects. More specifically, the
Entity interface class did not allow copying of Entity objects. Based on similar reasoning, the
copying of Intersection objects was prohibited.

However, the distinction between EntityPointer and Entity became increasingly blurred in the
grid interface. Some methods would require Entity arguments, others required EntityPointer
arguments, with no real reason to prefer one over the other. In an effort to clean up the grid
interface, it has therefore been decided to deprecate the EntityPointer interface class completely,

Archive of Numerical Software 4(100), 2016 c© by the authors, 2016

DUNE 2.4 19

and to get rid of it eventually. To preserve the overall functionality of the grid interface, the Entity
class gains additional features; in particular, starting with Dune-Grid 2.4, Entity objects can be
copied, and two entities can be checked for equality using operator==. Additionally, to allow
containers of Entity objects, such objects become default-constructible.

All interface methods that previously returned an EntityPointer now return an Entity instead.
This change applies to the following methods:

C++ code
1 Entity::father() // for entities of codimension 0.
2 Entity::subEntity<codim>() // for entities of codimension 0.
3 Intersection::inside()
4 Intersection::outside()
5 // This method has been deprecated , please use the new method
6 // Grid::entity(const EntitySeed&) instead, which returns an Entity
7 Grid::entityPointer(const EntitySeed&).

Smoothly transitioning to the new Entity implementation has been a challenge. For the 2.4
release, Entity and EntityPointer have temporarily gained additional features that should
make Entity objects look like EntityPointer objects and vice versa. Entity and EntityPointer
have a certain amount of interoperability code to ease the transition. In particular, an Entity can
be dereference with *entity and call member methods with entity->foo(), so that code works
with both grids that have been ported to the new interfaces as well as unported grids. All of the
compatibility methods do however raise deprecation warnings. The following code sketches the
additional methods of the Entity interface class.

C++ code
1 class Entity
2 {
3 ...
4 public:
5 //! default constructor to allow for creation of empty entities
6 Entity () {}
7
8 //! convenience operators to make entity behave like entity pointer
9 const Entity& operator* () const { return *this; }

10 Entity& operator* () { return *this; }
11
12 //! public assignment operator to allow for copying
13 Entity& operator= (const Entity& rhs);
14
15 //! for entities of codimension 0.
16 //! father and subEntity return Entity objects instead of EntityPointer
17 Entity father() const;
18 Entity subEntity<codim>() const;
19 };

Dereferencing an EntityPointer now returns an Entity by value, rather than by reference.

C++ code
1 class EntityPointer
2 {
3 ...
4 public:
5 //! Returns entity object
6 Entity operator*() const;
7 };

All Dune iterators now return objects when dereferenced.

c© by the authors, 2016 Archive of Numerical Software 4(100), 2016

20 DUNE Developers

C++ code
1 class EntityIterator {
2 ...
3 public:
4 //! Dereferencing operator returning Entity object
5 Entity operator* () const;
6 //! deprecated: the access to pointers is deprecated and will be removed
7 proxy<Entity> operator-> () const;
8 };

EntitySeed objects are converted to Entity rather than to EntityPointer. On grids the method
entityPointer(const EntitySeed&) has been deprecated. Use the new method entity(const
EntitySeed&) instead, which returns an Entity.

C++ code
1 class Grid {
2 ...
3 public:
4 //! the method entity replaces the method entityPointer(seed)
5 Entity entity(const EntitySeed& seed) const;
6 };

Consequences of this change are:

• Iterators are now allowed to return temporary Entity or Intersection objects instead
of references. Code that captures the result in a const reference will still work in both
cases, because the lifetime of the temporary is bound to this reference. However: code
that forwards such references may fail due to dangling references. In order to avoid this
the correct return type can be forwarded using decltype(*it). This means for example,
changing

C++ code
1 const Entity& foo(const Iterator& it) { return *it;}

to

C++ code
1 auto foo(const Iterator& it) -> decltype(*it) { return *it;}

• Keep in mind that Entity and Intersection objects can be large. If a list of entities is
needed EntitySeed should be used instead.

• Meta grids using the new interface (like GeometryGrid) do not work with host grids that
still use the old interface.

All grid implementations in Dune-Grid have been ported to the new interface, except for the
deprecated bindings for ALUGrid 1.52. For the usage of ALUGrid one should switch to the new
Dune-ALUGridmodule.

4.4 Speed increase in meta grids

As a consequence of the changes to the Entity and Intersection interface classes, meta grids
can now be implemented with much less overhead than before.

In a meta grid, instances of Dune grids are stacked on top of each other to increase the feature set
in a modular way. Previously, to implement a meta grid entity, an entity pointer of the host grid
had to be stored in the meta grid entity to ensure the validity of the host entity during the lifetime

Archive of Numerical Software 4(100), 2016 c© by the authors, 2016

DUNE 2.4 21

0 Byte

24 Byte

48 Byte

72 Byte

96 Byte

120 Byte

 0 1 2 3 4 5 6 7 8 9 10

S
iz

e

Number of stacked IdGrids

size of Entity, DUNE 2.3 (references)
size of Entity, DUNE 2.4 (objects)
size of EntityPointer, DUNE 2.3 (references)
size of EntityPointer, DUNE 2.4 (objects)

100%

112%

125%

140%

157%

175%

 0 1 2 3 4 5 6 7 8 9 10

O
v
e
rh

e
a
d

Number of stacked IdGrids

884 736 Elements, DUNE 2.3 (references)
884 736 Elements, DUNE 2.4 (objects)
2 097 152 Elements, DUNE 2.3 (references)
2 097 152 Elements, DUNE 2.4 (objects)
4 096 000 Elements, DUNE 2.3 (references)
4 096 000 Elements, DUNE 2.4 (objects)

Figure 1: Comparison of the previous Dune interface (2.3, return as reference) with the new
interface (2.4, return as objects) that allows for a copyable class Entity. Left, the change in the
memory footprint of the classes EntityPointer and Entity. Right, the comparison of run times
for the Finite Volume test case from Klöfkorn and Nolte [2012]. Note that for the 2.4 release the
overhead of the interface introduced by another layer of IdGrid becomes almost negligible, i.e. is
stays around 100% which corresponds to the run time of the program without any IdGrid layers
(variations due to compiler effects do occur, though).

of the meta grid entity. Since until recently entities were not default constructible, a pointer to
and EntityPointer had to be stored which led to an increase of 8 bytes per meta grid layer in the
entity and entity pointer meta implementations. In Figure 1 we present a comparison of SPGrid
and layers of IdGrid, a reimplementation of IdentityGrid, which simply forwards all method
calls to the host grid. We can see that the memory footprint of the EntityPointer increases by 8
bytes for each meta grid layer while the memory of the meta entity is only 8 bytes for all layers.

As Entity objects can now be copied, storing the additional EntityPointer object is no longer
necessary. The results are impressive. When repeating the same experiment with the Dune 2.4
release, we see that the memory consumption for each extra grid layer does not increase anymore.
As a result of the reduced memory footprint (a layer of IdGrid does not add memory overhead)
we see that the performance overhead discovered earlier almost completely vanishes for our
simple Finite Volume test from Klöfkorn and Nolte [2012]. This also proves that the Dune grid
interface does not add computational overhead if the feature set of another grid implementation
is simply forwarded through the interface.

4.5 YaspGrid

YaspGrid is a standalone implementation of the Dune grid interface providing a parallel Cartesian
grid. In this release the YaspGrid grid manager has received an important overhaul. YaspGrid
objects can now be used for grids of any dimension. More importantly, YaspGrid now imple-
ments entities of all codimensions and is able to communicate on these entities. This allows
implementation of higher-order methods on distributed YaspGrid objects.

Before Dune-Grid 2.4, YaspGrid could only manage grids that were axis-aligned, with cube
elements of a single size, and the lower-left corner of the grid bounding box at the origin. With
Dune 2.4, YaspGrid becomes more flexible. To maintain runtime efficiency, this extra flexibility is
controlled by a new template parameter of the YaspGrid class. This second parameter is a policy
class that specifies how coordinates are stored. Possible choices to create a tensor product grid
are:

• Dune::EquidistantCoordinates<ctype, dim>, where dim is the grid dimension and ctype
is the type used internally for coordinates. This is the default (with ctype being double),

c© by the authors, 2016 Archive of Numerical Software 4(100), 2016

22 DUNE Developers

Figure 2: Example of a 2D tensor product grid

as it recreates the previous behavior. The fact that the coordinate type ctype is changeable
through the template parameter is a new feature in itself.

• Dune::EquidistantOffsetCoordinates<ctype, dim> with ctype and dim as above. This
implements domains (ai, bi)d with arbitrary ai, where YaspGrid was previously limited to
ai = 0, i = 1, . . . , d. There is a small but measurable performance penalty.

• Dune::TensorProductCoordinates<ctype, dim>with ctype and dim as above. This choice
allows one to define a tensor product grid, i. e., a semi-structured grid defined by a monotone
coordinate sequence per direction. This allows the definition of locally refined coarse grids
while maintaining the computational efficiency of a structured grid implementation. See
Figure 2 for an example of a two dimensional tensor product grid.

The list of constructors for the YaspGrid class has been rewritten. There is one dedicated con-
structor for each policy class listed above.

• For equidistant tensor product YaspGrids:

C++ code
1 YaspGrid(Dune::FieldVector<ctype, dim> L,
2 std::array<int, dim> s,
3 std::bitset<dim> periodic = std::bitset<dim>(0ULL),
4 int overlap = 1,
5 CollectiveCommunicationType comm = CollectiveCommunicationType(),
6 const YLoadBalance<dim>* lb = defaultLoadbalancer())

• For an equidistant tensor product grid with arbitrary lower left corner:

C++ code
1 YaspGrid(Dune::FieldVector<ctype, dim> lowerleft ,
2 Dune::FieldVector<ctype, dim> upperright ,
3 std::array<int, dim> s,
4 std::bitset<dim> periodic = std::bitset<dim>(0ULL),
5 int overlap = 1,
6 CollectiveCommunicationType comm = CollectiveCommunicationType(),
7 const YLoadBalance<dim>* lb = defaultLoadbalancer())

• For an arbitrary tensor product grid:

C++ code
1 YaspGrid(std::array<std::vector<ctype>, dim> coords,
2 std::bitset<dim> periodic = std::bitset<dim>(0ULL),
3 int overlap = 1,
4 CollectiveCommunicationType comm = CollectiveCommunicationType(),
5 const YLoadBalance<dim>* lb = defaultLoadbalancer())

Archive of Numerical Software 4(100), 2016 c© by the authors, 2016

DUNE 2.4 23

Some of the other constructors are now deprecated, and will eventually be removed. Using the
wrong combination of second template parameter and constructor will result in a failed static
assertion.

Note that YaspGrid now uses CollectiveCommunication. As these classes have just been made
default-constructible, the communicator parameter can usually be omitted on the constructor
call. This also implies that if MPI has been found by the build system, a parallel YaspGridwill be
constructed.

All partitioning code is now located in dune/grid/yaspgrid/partitioning.hh. Note that pre-
viously implemented own partitioning methods need to be update to accommodate the use of
std::array<int, dim> instead of Dune::FieldVector<int, dim>. YaspFixedSizePartitioner
is a new implementation of a partitioner with a predefined number of processors per direction.

A specialization of Dune::BackupRestoreFacility for YaspGrid is now provided in the header
dune/grid/yaspgrid/backuprestore.hh. Equidistant grids write a single file for all processes,
tensor product grids write one file per processor, that contains only the coordinate range relevant
to that processor. The output format is a human-readable ASCII format.

4.6 UGGrid

As the most prominent improvement, UGGrid now allows load balancing with the element parti-
tioning being provided by third-party software. There is no restriction on what software to use
here. All that is required is to set up a std::vector which for each element contains the rank
where this element is supposed to be sent. Everything else happens automatically.

As a first way to use this interface, a class ParMetisGridPartitioner has been added that
provides the required repartitioning information from the ParMetis partitioner, Karypis and
Kumar [1998b]. Hence, partitioning an existing UGGrid object using ParMetis (Schloegel et al.
[2002]) requires only the following few lines of code

C++ code
1 // Create initial partitioning using ParMETIS
2 std::vector<unsigned> part(ParMetisGridPartitioner<GridView>::partition(gridView ,

mpihelper));
3
4 // Transfer partitioning from ParMETIS to our grid
5 grid->loadBalance(part, 0);

Note how the information transfer goes through a std::vector, which is neither specific to
UGGrid nor to ParMetis. It is therefore easy to implement the mechanism for other grids or
partitioners. Note however, that this feature is experimental, and the interface may change again
without much prior notice.

In addition to this, edge and face geometries have been implemented in UGGrid. Therefore,
UGGrid now offers geometries for all of its entities. Apart from achieving a more complete
feature set, these geometries are required in several applications such as Dune-PDELab, once
degrees of freedom are associated with edge or face entities. The implementation is based on
MultiLinearGeometry.

4.7 Miscellaneous improvements and cleanup

• Geometry::jacobianTransposedandGeometry::jacobianInverseTransposed return their
results now by value rather than by reference. The result types are guaranteed to be copy-
able and assignable. Existing code which stored references or pointers to these returned
values will likely no longer work.

c© by the authors, 2016 Archive of Numerical Software 4(100), 2016

24 DUNE Developers

• The class Entity<0> has a new method subEntities(unsigned int codim), which returns
the number of subentities of the given codimension. It has the same functionality as the
method count<codim>, but the codim argument of the new method is a normal parameter,
rather than a template parameter. Also, we believe that the new name is more appropriate.
The countmethod is deprecated.

• The mapper classes SingleCodimSingleGeometryMapper and
MultipleCodimMultipleGeometryMapper now use the number type used by the grid index
set to return indices. Previously, intwas hard-wired.

• All iterators over entities are now forward iterators in the sense of the standard template
library (STL). In particular, they can now be default-constructed and postfix-incremented,
which wasn’t possible previously. The usual caveat concerning postfix increments applies:
postfix incrementing may be noticeably slower than prefix incrementing.

• The various mapper classes in dune/grid/common now have methods index and subIndex,
which do the same thing as the map methods. With this renaming the Mapper interface is
more consistent with the conceptually similar IndexSet interface. The old mapmethods are
still present, but they are marked as deprecated and will be removed after the 2.4 release.

• There is a new method types on index sets that returns an iterator range visiting all ge-
ometry types of a given codimension contained in the domain of the index set. Its type is
implementation defined and exported as typedef Types. The method geomTypes on index
sets is deprecated and will be removed after the 2.4 release. It is replaced by the new types
method.

• TensorGridFactory, a factory class for tensor product grids can be found in
dune/grid/utility/tensorgridfactory.hh. It is implemented through the GridFactory
for all unstructured grids and has a specialization for YaspGrid. The factory class provides
a multitude of methods to fill coordinate ranges. Check the Doxygen documentation for
details.

• The class Geometry does not export the type Jacobian anymore. It is replaced by the type
JacobianInverseTransposed.

• The class Entity no longer exports the type ctype. Use the type Entity::Geometry::ctype
instead.

• The class Entity does not export the number dimensionworld anymore. Please use
Entity::Geometry::coorddimension instead.

• The methods EntityIterator::level and EntityPointer::level have been deprecated.
To obtain the level of an entity pointed to by an iterator or EntityPointer, please dereference
the iterator/pointer and call the method level on the entity directly.

• The class EntityPointer does not export the number codim anymore. Use codimension
instead.

• The values Geometry::dimension and Geometry::dimensionworld are deprecated, and
will be removed after the release of Dune-Grid 2.4.

• The capability class Dune::Capabilities<GridType>::isParallel is deprecated because
its meaning was never well-defined. It will be removed after the 2.4 release. To suppress
the deprecation warning define the macro
DUNE_AVOID_CAPABILITIES_IS_PARALLEL_DEPRECATION_WARNING.

• The methods lbegin, lend, leafbegin, and leafend on grids are deprecated and will be
removed after the 2.4 release. Instead, use the methods begin and end from the grid’s level
and leaf grid views.

Archive of Numerical Software 4(100), 2016 c© by the authors, 2016

DUNE 2.4 25

• Comparisons between different types of entity iterators (level vs. leaf) and EntityPointer
have been deprecated. Those kinds of comparisons should be replaced by comparisons
between the entities pointed at by the iterators, so leafIt == levelIt becomes *leafIt ==
*levelIt. Iterators of a single type can of course still be compared with each other.

• Support for Grape has been deprecated and will be removed after the 2.4 release. Use
the Dunemodule Dune-Grape (http://users.dune-project.org/projects/dune-grape)
instead.

4.8 Changes for maintainers of grid implementations

Most changes described in the previous sections concern all users of the Dune grid interface.
However, there are also a few changes that implementors and maintainers of third-party Dune
grid implementations should be aware of.

• All grid implementations not using the DefaultGridView must rename their implementa-
tions from leafView / levelView to leafGridView / levelGridView.

• Grids must implement the new copyable entities and intersections. See Section 4.3 for
details.

• Grids are now allowed to return temporary objects from their entity and intersection iter-
ators. This is mostly interesting for meta grid developers, as it allows for a much more
straightforward implementation.

5 dune-istl

Dune-ISTL, Dune’s Iterative Solvers Template Library, received improved support for complex
numbers and its algebraic multigrid (AMG) code became more flexible.

• We have fixed several issues when repartitioning matrices. Thus the parallel AMGmethod is
now usable with the ParMETIS (Karypis and Kumar [1998b]) bindings of the free PT-Scotch
(Chevalier and Pellegrini [2008]) library.

• When using AMG with the SymmetricDependency the sparsity pattern of the matrix is not
assumed to be symmetric any more.

• We have fixed several issues when using our solvers with std::complex<double>. In
particular RestartedGMResSolver and MINRES now fully support complex numbers.

5.1 Deprecated and removed features

• The DiagonalMatrix class is now only available at dune/common/diagonalmatrix.hh. The
former transition header at dune/istl/diagonalmatrix.hh has been removed.

• The constructors RestartedGMResSolver do not take the argument bool recalc_defect
any more. It indicated whether the defect should be recalculated on restart. The old
constructors were deprecated.

c© by the authors, 2016 Archive of Numerical Software 4(100), 2016

http://users.dune-project.org/projects/dune-grape

26 DUNE Developers

6 dune-localfunctions

• All LocalFiniteElement classes now have a method size, which returns the number of
shape functions of the finite element. This method is for convenience: previously, the
localBasis had to be fetched to get the same information.

• The MonomLocalFiniteElement class has been renamed to MonomialLocalFiniteElement.
Correspondingly, its header monom.hh has been renamed to monomial.hh. The old class and
header are still there for backward-compatibility.

• New Raviart–Thomas elements were added but only for interpolation as the Jabobians are
missing. The new elements are Raviart–Thomas 3 and 4 for 2d quadrilaterals. The code for
this was contributed by Jizhou Li.

• Second derivatives of the shape functions of the Pk2DLocalFiniteElement are now avail-
able. The code for this was contributed by Elisa Friebel.

6.1 Deprecated and removed features

• The class Q2LocalFiniteElement, deprecated in Dune 2.3 has been removed. Please use
the more general QkLocalFiniteElement instead.

• The class RannacherTurek2DLocalFiniteElement<D, R>, deprecated in Dune 2.3, has been
removed. Please use RannacherTurekLocalFiniteElement<D, R, 2> instead.

• Most of the Raviart–Thomas and Brezzi–Douglas–Marini elements not following the new
naming scheme have been removed.

7 Known bugs

As is typical for a software of this complexity, Dune contains a certain number of bugs. We list
here a few of the most relevant ones. A lot of them are related to the build system. A complete
list of known bugs can be found online in our bug-tracker https://gitlab.dune-project.org/
flyspray/FS/issues.

7.1 Known issues regarding the build system

• Building shared libraries with CMake might break if used with external static libraries
compiled without support for position independent code (g++ -fpic).

• Dune-Grid fails to build with GCC 4.4 when configured with UGGrid. This is due to an
overload resolution failure in GCC 4.4 that is no longer present in newer compilers. (See
FS #1695.)

• Can only be build Dune with GCC 4.9 without the -pedantic flag because it will otherwise
reject some compatibility code needed to support GCC 4.4. (See FS #1634.)

• Dune does not build on Debian-based systems if all the following conditions are satisfied:
The system uses GCC 4.9 or newer as default compiler, GCC 4.8 or below and MPICH are
used. The reason is Debian bug #624349 which makes MPI propose flags from the newer
default compiler also for older compilers where they are not supported.

Archive of Numerical Software 4(100), 2016 c© by the authors, 2016

https://gitlab.dune-project.org/flyspray/FS/issues
https://gitlab.dune-project.org/flyspray/FS/issues
https://gitlab.dune-project.org/flyspray/FS/issues/1695
https://gitlab.dune-project.org/flyspray/FS/issues/1634
https://bugs.debian.org/624349

DUNE 2.4 27

7.2 Further known issues

• The pseudo inverse which is used in the implementations of MultiLinearGeometry and
AffineGeometrymight fail for nearly singular matrices. This is not really a problem unless
the grid is nearly degenerate.

• The parallel UGGrid may return wrong ids on very complex adaptively refined and load-
balanced grids. The reason is that the Dune grid interface mandates that two entities on
different levels have the same id if they are copies. Therefore the UGGrid id/subId methods
look through the ancestry of a given entity to see if there are copies. However, UG does
so-called vertical load-balancing, which means that the ancestry may be distributed across
different processors. Since the current code does not take that into account, wrong ids will
be returned in the presence of vertical load-balancing. This is a potentially severe issue,
because users do not get error messages, only ids that are tacitly wrong.

• Dune-ISTL does not work with version 5 of METIS (Karypis and Kumar [1998a]), see
FS #1212.

8 Recommended optional third party scientific software

Some of Dune’s functionality can only be used with additional third party scientific software.
We recommend to install the following external packages for an extended feature set available
through the Dune core modules:

• The supported external grid managers: ALBERTA (Schmidt and Siebert [2004]), Dune-
ALUGrid (Alkämper et al. [2016]), or UG (Bastian et al. [1997]).

• A (parallel) load balancer for parallel grids and for the parallel algebraic multigrid method:
METIS/ParMETIS (Karypis and Kumar [1998a,b]) and/or PT-Scotch (Chevalier and Pelle-
grini [2008]).

• A viewer for VTK (Schroeder et al. [1996]) for better post processing of the simulation
output.

• Gmsh (Geuzaine and Remacle [2009]) for generating meshes read by some of Dune’s grid
implementations.

• A direct linear solver for better convergence of the algebraic multigrid method: SuperLU
(Li [2005]) and/or UMFPack (Davis [2004]).

• Your favorite optimized implementation of BLAS (Blackford et al. [2002]) and LAPACK
(Anderson et al. [1990]).

Further information can be found in the installation instructions available from the Dune home-
page www.dune-project.org.

9 How to cite DUNE

If using one of the Dune core modules please cite the appropriate papers from the list of original
Dune papers (Bastian et al. [2008a,b], Blatt and Bastian [2007], Bastian and Blatt [2008]) and the
current release notes. Please note, that other Dune modules might require citation of further
papers, such as Dune-ALUGrid (Alkämper et al. [2016]), Dune-Fem (Dedner et al. [2010]), or
Dune-PDELab (Bastian et al. [2010]). Further Dunemodules are described in Dedner et al. [2012]
and on the Duneweb page www.dune-project.org.

c© by the authors, 2016 Archive of Numerical Software 4(100), 2016

https://gitlab.dune-project.org/flyspray/FS/issues/1212
www.dune-project.org
www.dune-project.org

28 DUNE Developers

10 Acknowledgments

We would further like to thank Martin Alkämper, Timo Betcke, Andreas Buhr, Marco Cecchetti,
Elisa Friebel, Stefan Girke, Claus-Justus Heine, Emmanouil Kiagias, Ole Klein, Angela Klew-
inghaus, Andreas Lauser, Jizhou Li, Arne Morten Kvarving, Andreas Nüßing, Steffen Persvold,
Elias Pipping, Uli Sack, Bård Skaflestad, and Jonathan Youett for their contributions to the Dune
project. Robert Klöfkorn acknowledges the National IOR Centre of Norway for financial support.

References
M. Alkämper, A. Dedner, R. Klöfkorn, and M. Nolte. The DUNE-ALUGrid Module. Archive of

Numerical Software, 4(1):1–28, 2016. URL http://dx.doi.org/10.11588/ans.2016.1.23252.

E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Hammerling,
J. Demmel, C. Bischof, and D. Sorensen. LAPACK: A portable linear algebra library for high-
performance computers. In Proceedings of the 1990 ACM/IEEE Conference on Supercomputing,
Supercomputing ’90, pages 2–11, Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.
URL http://dl.acm.org/citation.cfm?id=110382.110385.

P. Bastian and M. Blatt. On the generic parallelisation of iterative solvers for the finite element
method. Int. J. Computational Science and Engineering, 4(1):56–69, 2008. URL http://dx.doi.
org/10.1504/IJCSE.2008.021112.

P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuß, H. Rentz-Reichert, and C. Wieners. UG—A
flexible software toolbox for solving partial differential equations. Computing and Visualization
in Science, 1(1):27–40, 1997. URL http://dx.doi.org/10.1007/s007910050003.

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, and O. Sander.
A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation
and tests in DUNE. Computing, 82(2–3):121–138, 2008a. URL http://dx.doi.org/10.1007/
s00607-008-0004-9.

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and O. Sander. A generic grid
interface for parallel and adaptive scientific computing. Part I: Abstract framework. Computing,
82(2–3):103–119, 2008b. URL http://dx.doi.org/10.1007/s00607-008-0003-x.

P. Bastian, F. Heimann, and S. Marnach. Generic implementation of finite element methods in the
Distributed and Unified Numerics Environment (Dune). Kybernetika, 46(2):294–315, 2010. URL
http://eudml.org/doc/197255.

L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Heroux, L. Kaufman,
L. Andrew, A. Petitet, R. Pozo, K. Remington, and R. C. Whaley. An updated set of basic
linear algebra subprograms (BLAS). ACM Trans. Math. Softw., 28(2):135–151, June 2002. URL
http://doi.acm.org/10.1145/567806.567807.

M. Blatt and P. Bastian. The iterative solver template library. In B. Kagstrüm, E. Elmroth,
J. Dongarra, and J. Wasniewski, editors, Applied Parallel Computing. State of the Art in Scientific
Computing, number 4699 in Lecture Notes in Scientific Computing, pages 666–675, 2007. URL
http://dx.doi.org/10.1007/978-3-540-75755-9_82.

J. Calcote. Autotools: A Practitioner’s Guide to GNU Autoconf, Automake, and Libtool. No Starch
Press, 2010. URL http://www.freesoftwaremagazine.com/books/autotools_a_guide_to_
autoconf_automake_libtool.

C. Chevalier and F. Pellegrini. PT-Scotch: A tool for efficient parallel graph ordering. Parallel
computing, 34(6):318–331, 2008. URL http://dx.doi.org/10.1016/j.parco.2007.12.001.

Archive of Numerical Software 4(100), 2016 c© by the authors, 2016

http://dx.doi.org/10.11588/ans.2016.1.23252
http://dl.acm.org/citation.cfm?id=110382.110385
http://dx.doi.org/10.1504/IJCSE.2008.021112
http://dx.doi.org/10.1504/IJCSE.2008.021112
http://dx.doi.org/10.1007/s007910050003
http://dx.doi.org/10.1007/s00607-008-0004-9
http://dx.doi.org/10.1007/s00607-008-0004-9
http://dx.doi.org/10.1007/s00607-008-0003-x
http://eudml.org/doc/197255
http://doi.acm.org/10.1145/567806.567807
http://dx.doi.org/10.1007/978-3-540-75755-9_82
http://www.freesoftwaremagazine.com/books/autotools_a_guide_to_autoconf_automake_libtool
http://www.freesoftwaremagazine.com/books/autotools_a_guide_to_autoconf_automake_libtool
http://dx.doi.org/10.1016/j.parco.2007.12.001

DUNE 2.4 29

T. A. Davis. Algorithm 832: UMFPACK v4.3—An unsymmetric-pattern multifrontal method.
ACM Trans. Math. Softw., 30(2):196–199, June 2004. URL http://doi.acm.org/10.1145/
992200.992206.

A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger. A generic interface for parallel and adaptive
scientific computing: abstraction principles and the Dune-Fem module. Computing, 90(3–4):
165–196, 2010. URL http://dx.doi.org/10.1007/s00607-010-0110-3.

A. Dedner, B. Flemisch, and R. Klöfkorn. Advances in DUNE. Springer, 2012. URL http:
//dx.doi.org/10.1007/978-3-642-28589-9.

C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh generator with built-in pre-
and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):
1309–1331, 2009. URL http://dx.doi.org/10.1002/nme.2579.

W. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced features of the message-passing interface.
MIT press, 1999.

G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning Irregular
Graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998a. URL http://dx.doi.org/
10.1137/S1064827595287997.

G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning and sparse
matrix ordering. Journal of Parallel and Distributed Computing, 48(1):71–95, 1998b. URL http:
//dx.doi.org/10.1006/jpdc.1997.1403.

R. Klöfkorn and M. Nolte. Performance Pitfalls in the Dune Grid Interface. In A. Dedner,
B. Flemisch, and R. Klöfkorn, editors, Advances in DUNE, pages 45–58. Springer, 2012. URL
http://dx.doi.org/10.1007/978-3-642-28589-9_4.

X. S. Li. An overview of SuperLU: Algorithms, implementation, and user interface. ACM
Transactions on Mathematical Software, 31(3):302–325, Sept. 2005. URL http://doi.acm.org/10.
1145/1089014.1089017.

K. Martin and B. Hoffman. Mastering CMake. Kitware, 2015.

K. Schloegel, G. Karypis, and V. Kumar. Parallel static and dynamic multi-constraint graph
partitioning. Concurrency and Computation: Practice and Experience, 14(3):219–240, 2002. URL
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview.

A. Schmidt and K. G. Siebert. Design of Adaptive Finite Element Software. The Finite Element
Toolbox ALBERTA. Springer Lecture Notes in Computational Science and Engineering, 42, 2004.
URL http://dx.doi.org/10.1007/b138692.

W. J. Schroeder, K. M. Martin, and W. E. Lorensen. The design and implementation of an
object-oriented toolkit for 3D graphics and visualization. In Proceedings of the 7th conference on
Visualization’96, pages 93–100. IEEE Computer Society Press, 1996. URL http://dl.acm.org/
citation.cfm?id=244979.245018.

c© by the authors, 2016 Archive of Numerical Software 4(100), 2016

http://doi.acm.org/10.1145/992200.992206
http://doi.acm.org/10.1145/992200.992206
http://dx.doi.org/10.1007/s00607-010-0110-3
http://dx.doi.org/10.1007/978-3-642-28589-9
http://dx.doi.org/10.1007/978-3-642-28589-9
http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1006/jpdc.1997.1403
http://dx.doi.org/10.1006/jpdc.1997.1403
http://dx.doi.org/10.1007/978-3-642-28589-9_4
http://doi.acm.org/10.1145/1089014.1089017
http://doi.acm.org/10.1145/1089014.1089017
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://dx.doi.org/10.1007/b138692
http://dl.acm.org/citation.cfm?id=244979.245018
http://dl.acm.org/citation.cfm?id=244979.245018

	Introduction
	Overview
	System requirements

	dune-common
	CMake as the default build system
	MPI is enabled by default
	Bash completion
	Miscellaneous improvements and cleanup

	dune-geometry
	Quadrature rules
	Cleanup of the ReferenceElement implementation
	Miscellaneous improvements and cleanup

	dune-grid
	Changes to the set of grid implementations
	Range-based for loops
	EntityPointer is deprecated, entities and intersections become copyable
	Speed increase in meta grids
	YaspGrid
	UGGrid
	Miscellaneous improvements and cleanup
	Changes for maintainers of grid implementations

	dune-istl
	Deprecated and removed features

	dune-localfunctions
	Deprecated and removed features

	Known bugs
	Known issues regarding the build system
	Further known issues

	Recommended optional third party scientific software
	How to cite Dune
	Acknowledgments

