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Abstract

Adaptive Molecular Resolution approaches in Molecular Dynamics are becoming rele-

vant tools for the analysis of molecular liquids characterized by the interplay of different

physical scales. The essential difference among these methods is in the way the change of

molecular resolution is made in a buffer/transition region. In particular a central ques-

tion concerns the possibility of the existence of a global Hamiltonian which, by describing

the change of resolution, is at the same time physically consistent, mathematically well

defined and numerically accurate. In this paper we present an asymptotic analysis of

the adaptive process complemented by numerical results and show that under certain

mathematical conditions a Hamiltonian, which is physically consistent and numerically

accurate, may exist. Such conditions show that molecular simulations in the current

computational implementation require systems of large size and thus a Hamiltonian ap-

proach as the one proposed, at this stage, would not be practical from the numerical

point of view. However, the Hamiltonian proposed provides the basis for a simplification

and generalization of the numerical implementation of adaptive resolution algorithms to

other molecular dynamics codes.

∗ luigi.dellesite@fu-berlin.de
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I. INTRODUCTION

Large systems of molecular liquids are characterized by processes occurring at

different scales which in turn often require a different level of accuracy regarding

the molecular model [1]. Highly accurate molecular models lead to a complete

physical picture but require large computational resources and additional work of

analysis of the large amount of data produced; in fact a clear description of a pro-

cess requires a screening of data to the essential. On the other hand, less accurate

molecular models are computationally convenient and produce a small amount of

data to analyze, however they are likely to miss, due to their simplification, es-

sential physical features [2]. In this perspective, multiscale methods in Molecular

Simulation (MS) have been developed in the last years for optimizing the need of

a consistent physical treatment and acceptable numerical and analysis costs [1, 2].

In particular adaptive molecular resolution methods, which by partitioning the

system in regions of different molecular resolution, change the number of degrees

of freedom on-the-fly became very appealing due to successful numerical perfor-

mance [3, 4]. Various implementation of this method exist and they differ for the

definition of the coupling between different regions [3–6]. In this work we propose

a procedure for coupling the atomistic and coarse-graining region via an interface

region which acts as a filter to transform atomistic resolution into coarse-graining

resolution and vice versa. The coupling is done by considering the Hamiltonian of

the interface as a perturbation to an otherwise exact Hamiltonian written as a sum

of a full atomistic and a full coarse-grained Hamiltonian. Next we perform a math-

ematical treatment in terms of asymptotic analysis involving characteristic lengths

of the system. In this way we derive mathematical conditions which, if reasonably

fulfilled in the numerical simulation, assure that the system behaves practically as

a Hamiltonian system. The existence of a global Hamiltonian, although not neces-

sary for adaptive resolution simulations [6, 7], could provide technical advantages

in the implementation of the code. In fact all standard molecular dynamics codes
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are based on Hamiltonian algorithms and thus one may use their computational

architecture in an almost straightforward way. In general the direct coupling of

an atomistic system with a coarse-graining system is expected to lead to dissi-

pation thus different correction terms are added to take care of such a problem

[4–9]. In particular in Hamiltonian-based algorithms the Hamiltonian is corrected

by adding a free-energy term. Our aim instead is to provide a definition of global

Hamiltonian based solely on particles’ degrees of freedom, it is our opinion that a

formula that contains free-energy terms does not define a proper Hamiltonian. If

such a definition is possible, then the system would be self-contained in the sense

that once the simulation set up is defined, the numerical calculation can run with-

out any need of further additional quantity calculated in additional simulations.

In particular our partitioning of the system paves the way for a generalization

of the algorithm to different codes. This can be done by a simplification of the

computational algorithm offered by the partitioning we propose: the simulation

(given the interaction cutoff) at a certain stage can be performed in two distinct

regions (atomistic and coarse-grained) and then a third region where they over-

lap (the region of perturbation). For each time step, force calculations (i.e. the

most expensive part of the code) can effectively run in parallel in each of the two

regions and then synchronized through the force calculation in the overlapping

region. Work along this direction is currently in progress. Finally, it must be also

clarified that all the adaptive methods cited before [4–7] from the mere numerical

point of view are essentially equivalent and/or equivalently efficient. The concep-

tual difference we discuss here regards the formal background on which they are

based and the physical interpretation of global Hamiltonian in terms of statistical

mechanics of their results (see also note 4 in Ref.[6])
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II. ADAPTIVE MOLECULAR RESOLUTION: FORCE-BASED OR

HAMILTONIAN-BASED

In this section we review the basic principles employed in the construction of

adaptive resolution schemes. The schemes can be classified in two major categories:

(a) Force-based interpolation schemes [2, 3]; (b) Potential-based (Hamiltonian-

based) schemes [4, 5, 10–13].

A. Force-based and Grand-Canonical-like scheme

The Adaptive Resolution Simulation (AdResS) method has been developed

following a simple intuitive principle. Such a principle consists of dividing the

space in three distinct regions: (i) atomistic region (high resolution), (ii) coarse-

grained region (low resolution), (iii) interface or hybrid/transition region where

molecules change their resolution. Next the intuitive physical requirement is that

the molecules of the atomistic region follow the rules of a standard atomistic dy-

namics, the molecules of the coarse-grained region follow the rules of a standard

coarse-grained dynamics and when a molecule transits in the interface region its

dynamics slowly passes from atomistic type to a coarse-grained type (or vice versa),

The meaning of “slowly” is that the perturbation due to the change of resolution

to the dynamics of the atomistic and of the coarse-grained region is negligible in

the calculations of physical quantities of interest. In Molecular Dynamics (MD)

such a principle can be easily implemented by smoothly interpolating in space the

atomistic and coarse-grained forces:

F i,j = w(r i)w(r j)F
AT
i,j + [1− w(r i)w(r j)]F

CG
i,j (1)

where i and j are the indices of two distinct molecules, FAT is the force derived

from the atomistic potential (UAT ) and F
CG is the force derived from the coarse-

grained potential (UCG) (usually a COM-COM potential, where COM indicates
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“the center of mass”), r is the COM position of the molecule and w(x) is a smooth

function varying from 0 to 1 in the transition region (HY ):

w(x) =























1 x < xAT

cos2
[

π
2(d)

(x− xAT )
]

xAT < x < xAT + d

0 xAT + d < x

(2)

with xAT the x-location of the border of the AT region (see Fig.1). In an effective

FIG. 1. Pictorial representation of the adaptive resolution set up.

way, the atomistic degrees of freedom are slowly removed when a molecule leaves

the atomistic region and enters into the coarse-grained region and vice versa. As

it is described above, the scheme is dissipative, that is the change in number of

degrees of freedom implies a gain or loss of kinetic and potential energy which is not

spontaneously balanced, and in fact the system, prepared following this scheme,

is not Hamiltonian [14]. However, when coupled to a an external thermostat,

which takes care of adsorbing the excess or adding the missing energy, it was

proven to be technically sufficient for the scheme to work properly [15, 16]. At

a later stage this empirical finding was justified on the basis of first principles of

thermodynamics and statistical mechanics and recently the basic scheme reported

above was embedded into the formalism of a Grand Canonical ensemble where the
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coarse-grained and transition region act as a particle reservoir for the atomistic

region [6–9, 18–20]. The technical details are not relevant for this paper, except

that in a Grand Canonical-like set up, the reservoir acts in a stochastic way and

thus the only Hamiltonian of relevance is that of the atomistic region which implies

that the non-existence of a global Hamiltonian is no more a problem. However,

some branches of research followed a different path based on the search of a global

Hamiltonian without the addition of any stochastic aspect. An overview of the

progress and pitfalls of such approaches is reported below.

B. Hamiltonian based schemes

In a series of papers Ensing and collaborators [4, 10–12] presented a scheme

based on the interpolation of potentials instead of forces as done in AdResS:

U tot
ij = s(r i, r j)U

AT
i,j + [1− s(r i, r j)]U

CG
i,j (3)

where Uij is the global potential of interaction between molecule i and molecule

j, s(r i, r j) is the smooth interpolation function (slightly but not substantially dif-

ferent from the function w used in AdResS) and UAT
i,j , UCG

i,j are the atomistic and

coarse-grained potential acting between molecule i and molecule j. If, from U tot
ij

one derives the force between molecule i and molecule j then the result is a force

as that of AdResS plus an additional term: ∇s(r i, r j)(U
AT
i,j −UCG

i,j ). In their work

the dissipative action of this spurious force needs to be balanced such that it disap-

pears from the simulation statistics. To achieve this, the method uses book-keeping

of the gain/loss of energy of molecules that change resolution and thus adding at

each instant the gain/loss of energy due to the change of resolution and preserve

a global Hamiltonian approach. The accurate determination of the gain/loss of

energy per molecule and its adsorption/release in the system was done by violat-

ing the request that the system should be self-contained. In fact, in essence, the

system was coupled to a generic external thermostat and thus this method became
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equivalent to the force-based AdResS scheme. It was then shown that without the

thermostat the system was highly dissipative and that the interpolation of poten-

tials plus the book-keeping energy was not sufficient to build a conservative scheme

[14]. However, later on, the idea of providing/removing energy without using a

thermostat was technically implemented by a method named “H-AdResS” devel-

oped by Potestio and collaborators [5, 13, 17, 21]. In H-AdResS the interpolation

is also done as in Eq.3 and it was observed that such an interpolation is equivalent

to the scheme of thermodynamic integration for the calculation of the difference

of free energy between a state A and a state B of the system. In this case state A

and state B meant the passage from the atomistic potential to the coarse-grained

potential and thus the interpolation formula is equivalent to the space dependent

change of free energy between the atomistic and the coarse-grained representation:

∆F (λ) =

∫ λ

0

< UAT − UCG >λ
′ dλ

′

(4)

where < ... > indicates the ensemble average and each λ corresponds to fixed

values of the switching function w(x) in the transition region, thus ∆F (λ) =

∆F (λ(x)). Thus the Hamiltonian was a posteriori modified so that the balancing

term of free energy, ∆F (λ) was added in an effective Hamiltonian. This implies

that there is no need of a generic and undefined book-keeping of the molecular

energy, but the missing energy can be quantified by ∆F (λ). However there are

several conceptual problems with such an approach. There are at least three

arguments for this thesis: (i) The scheme violates third Newton’s law, in fact

the force term: ∇w(r i)w(r j)(U
AT
i,j − UCG

i,j ) is not antisymmetric in i and j [16];

(ii) The Hamiltonian is ill defined because any additional/corrective one particle

potential, like ∆F (λ(x)), must be a solution of a partial differential equation of the

first order but with two boundary conditions [22]; (iii) the effective Hamiltonian

is not a first principles Hamiltonian but, by construction, depends on the specific

thermodynamic state point (in fact it carries a free energy term: ∆F (λ(x))) [1, 6,

7]. In this perspective the search for a first principle (self-contained) Hamiltonian
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that allows for a change of resolution without the need of a priori or a posteriori

(artificial) corrections, motivated us to explore new directions, as reported in the

next section.

III. REFORMULATION OF THE TRANSITION REGION VIA ASYMP-

TOTIC ANALYSIS

A. Symbols and labels

Table.I is a list of symbols and labels used in this section for future reference:

B. Perturbed Hamiltonian via asymptotic expansion

Consider a typical adaptive resolution set up as illustrated in Fig.1 and let us

decompose the hypothetical global Hamiltonian of the system as:

Hglob = HAT−AT +HCG−CG +HHY−HY +HAT−HY +HCG−HY +Hintra (5)

where:

HAT−AT =

NAT
∑

a=1

(

sa
∑

ia=1

p2
ia

2mia

)

+

NAT
∑

a=1

(

NAT
∑

b=1;b6=a

VAT (ra, rb)

)

(6)

HCG−CG =

NCG
∑

a=1

(

sa
∑

ia=1

p2
ia

2mia

)

+

NCG
∑

a=1

(

NAT
∑

b=1;b6=a

VCG(Ra,Rb)

)

(7)

HHY−HY =

NHY
∑

a=1

(

sa
∑

ia=1

p2
ia

2mia

)

+ w(Xa)w(Xb)

[

NHY
∑

a=1

(

NHY
∑

b=1;b6=a

VAT (ra, rb)

)]

+ (1− w(Xa)w(Xb))

[

NHY
∑

a=1

(

NHY
∑

b=1;b6=a

VCG(Ra,Rb)

)]

(8)

HAT−HY =

NAT
∑

a=1

(

NHY
∑

b=1;b∈HY

VAT (ra, rb)

)

(9)
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TABLE I. Symbols and labels

Symbol Meaning

VAT Atomistic potential

VCG Coarse-grained potential

FAT Atomistic force

FHY Hybrid force

FCG Coarse-grained force

a, b label of molecules (a, b=1, 2, 3,· · · , Ntot)

Ntot Total number of molecules

ia i-th atom of the a-th molecule

sa number of atoms in a-th molecule

ra set of spatial coordinates of all atoms composing the a-th molecule

mia mass of the i-th atoms of the a-th molecule

Ra (Xa, Ya, Za), coordinates of the center of mass of the a-th molecule

pia Momentum of the i-th atom of the a-th molecule

NAT number of molecules in AT region

NCG number of molecules in CG region

NHY number of molecules in HY region

D characteristic extent of AT region along the change of resolution

d characteristic extent of HY region along the change of resolution

L characteristic extent of CG region along the change of resolution

HCG−HY =

NCG
∑

a=1

(

NHY
∑

b=1;b∈HY

VCG(Ra,Rb)

)

. (10)

Hintra = Hbond +Hangle (11)

Where Hbond is the sum of all intramolecular atom-atom bonding energies, and

Hangle is the sum of all the intramolecular bonding angle energies. The specific
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form of Hintra depends on the molecular model used and it will be defined in

Section IV.

In the formulas above we have worked from the hypothesis that the atomistic

degrees of freedom for the kinetic energy and of the intramolecular potentials are

present in all molecules independently of the resolution (double resolution every-

where) but their adaptive character is considered only in relation to the inter-

molecular interaction sites. Such a situation corresponds to the actual (current)

numerical implementation of the adaptive resolution scheme, in fact from the nu-

merical point of view the calculations of the forces correspond to about 75% of the

computational effort. Moreover, the coarse-grained potential is derived to repro-

duce the thermodynamics and the probability distribution function in space up

to the two body case, i.e., the radial distribution function g(r), of the atomistic

resolution. At this point we can rewrite Eq.5 as the sum of “exact” and “pertur-

bation” terms as follows. The exact terms involve all contributions to the energies

and interactions in Eq.12 that are well defined by the physics and do not involve

any external or artificial quantities, such as w(x). Thus,

Hexact = [HAT−AT +HAT−HY ] + [HCG−CG +HCG−HY ] +Hintra +KHY , (12)

where KHY =
∑NHY

a=1

(

∑sa

ia=1
p
2

ia

2mia

)

is the kinetic energy of the hybrid region. The

remaining perturbations to the exact Hamiltonian related to the presence of the

hybrid region read:

∆H = w(Xa)w(Xb)

[

NHY
∑

a=1

(

NHY
∑

b=1;b6=a

VAT (ra, rb)

)]

(13)

+ (1− w(Xa)w(Xb))

[

NHY
∑

a=1

(

NHY
∑

b=1;b6=a

VCG(Ra,Rb)

)]

. (14)

Let us now reformulate the definition of the switching function w(x) in terms

of some characteristic lengths of the problem:

w(X) = ŵ (φ(X)/d) = ŵ(ξ) (15)
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where φ(X) is the signed distance from the boundary of the atomistic region and

d is the characteristic thickness of the hybrid/transition region, i.e., the hybrid

region is covered letting 0 ≤ ξ ≤ 1. One of the characteristic lengths of primary

importance is lc, that is, the range of molecular interaction. Other characteristic

lengths are the size of the AT region, D, and that of the CG region, L.

To proceed in the development of an asymptotic limit formulation, and to meet

the actual numerical set up used in AdResS simulations, we assume to work in

a regime with ǫ = lc/d << 1. We observe that the atomistic and coarse-grained

interatomic forces, FAT
ia,jb and FCG

ab , are very small when |Xa − Xb| > lc. As a

consequence, the weighting functions w(Xa), w(Xb) in the expression for forces in

the hybrid region can only contribute sizeably when |Xa−Xb| . lc. Thus, whenever

the intermolecular forces are sizeable, a Taylor expansion of the weighting function

evaluated at X̄ = Xa+Xb

2
yields, e.g., for Xa,

w(Xa) = w(X̄) + ǫ
dŵ

dξ

Xa − X̄

lc
∇φ(X̄) +O

(

ǫ2
)

(16)

and the perturbation Hamiltonian reads

∆H = ∆H(ǫ) = w(X̄)2VAT + (1− w(X̄)2)VCG +O (ǫ) . (17)

Since w(X̄) is slowly varying, i.e., dw(x)
dx

= O (ǫ), we obtain the leading force term,

~FHY = w(X̄)2 ~FAT + (1− w(X̄)2)~FCG +O (ǫ) . (18)

This is a force formulation for the transition region, that is close to that known

from the standard adaptive resolution approaches discussed before which was never

derived before from a potential energy/Hamiltonian point of view. Here, this force

emerges as the gradient of the interpolated potential up to perturbations of order

ǫ. As a consequence, the particle motion within the transition region follows

some perturbed weakly non-Hamiltonian dynamics. This is the starting point of a

further asymptotic analysis regarding different scales involved in the problem, in
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particular, it becomes of interest to perform such an analysis with respect to the

other characteristic lengths involved, such asD and L. D, the size of the AT region,

represents in principle the smaller scale, that is, it is the region involved in the

observation of a very local event, looked at with all atomistic details; instead L, the

extension of the coarse-grained region, represents the scale of the part of the system

with the role of a large macroscopic reservoir which ensures that the macroscopic

quantities of the thermodynamics state (particle density, temperature, pressure)

are preserved. In the following we explain how to use Eq.18 and the asymptotic

approach for L, d and D to determine the degree of the perturbation and thus,

if this is negligible, to identify the conditions under which the adaptive scheme is

essentially Hamiltonian.

C. Hamiltonian versus Dissipative scheme

Let us define the quantities η = D
L
; ζ = d

L
;λ = D

d
. We can the perform numer-

ical simulations using Eq.18 and sample the space of η, ζ, λ to check numerically

combinations of such parameters for which the system is dissipative or Hamilto-

nian. The ideal set up, from the mathematical point of view, for a Hamiltonian-like

behaviour, would be: η << 1; ζ << 1;λ << 1. In fact one could have a large

coarse-grained region which, being dominant assures that the overall thermody-

namic conditions are preserved, and a large HY region compared to the AT region

where the condition dw(x)
dx

≪ 1 can be reasonably met. Moreover, such a situ-

ation is also optimal for the physical interpretation of multiscale analysis, that

is a very localized event analyzed in a very small (AT) region compared to the

rest of the system. However, since the asymptotic considerations described above

rely predominantly on the smallness of ǫ = lc/d, i.e., on the hybrid region being

“thick” in comparison with the molecular interaction distance, the case of a large

D and a small d would be equally acceptable from this point of view as long as
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ǫ ≪ 1 is guaranteed. In this regime, the large coarse-grained and atomistic regions

are expected to produce more reliable spatially nearly homogeneous statistics, al-

though related simulations will, of course, be substantially more expensive. In the

numerical simulation we will have as a reference the full atomistic simulation in

a microcanonical ensemble (NVE), that is, the system is self-contained and there

is no external thermostat (as it is instead in the NVT ). We will compare the full

atomistic simulation with the adaptive resolution simulation; this latter will also

be performed without the help of any external tool/thermostat. By monitoring the

temperature as a function of time we check whether the system behaves strongly

in a dissipative way or closer to conservative, if the system is dissipative then it

is certainly not Hamiltonian. If the system is conservative we then check whether

structural properties of the atomistic region are the same as those of a full atom-

istic simulation and structural properties of the coarse-grained region are the same

as those of a full coarse-grained simulation; if the result is positive then, from a

physical point of view, we can claim to have found a Hamiltonian that by allowing

a spatial adaptive molecular resolution can preserve basic thermodynamic prop-

erties (i.e. temperature conservation) and structural properties of a full atomistic

and full coarse-grained simulation.

IV. NUMERICAL SIMULATION

A. Molecular Model

We have constructed a toy model, that is a molecule with a methane-like

structure which has a tetrahedral arrangement of lighter atoms (hydrogen-like,

thus named H) connected via flexible (harmonic) bonds to a central heavier atom

(carbon-like, thus named C) and with the H-C-H bond angle that is also described

by a harmonic potential (see Fig.2). Intermolecular interactions are described by
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FIG. 2. Intramolecular Interactions of the full atomistic model

FIG. 3. Intermolecular Interactions of the full atomistic model

a smoothed Lennard-Jones 12-6 potential[23]:

VXY (r) = CXY
12 f12(r)− CXY

6 f6(r) (19)

while X,Y can be C or H.

fs(r) =























1
rs
− Cs r < r1

1
rs
− sAs

3
(r − r1)

3 − sBs

4
(r − r1)

4 − Cs r1 ≤ r < rc

0 rc ≤ r

(20)
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where s can be 12 or 6, r1 = 1.1 nm is the switching radius for the smoothing

and rc = 1.3nm is the cut-off radius of interaction. As, Bs and Cs are chosen that

f ′
s(rc) = 0 , f ′′

s (rc) = 0 and f ′′
s (r) is continuous at r = r1. So the original L-J

interaction is changed smoothly from r = r1 to zero at r = r0. CXY
s , ka, kb, b0, θ0

are taken from the Gromacs OPLS/AA force field [24, 25]. The choice of such a

molecular model is justified by the fact that we need a model sufficiently simple for

a straightforward numerical implementation but at the same time also sufficiently

complex to represent a valid challenging test for the mathematical principles be-

hind the method. With this model, we can now write the specific form of Hintra

Hintra =
Ntot
∑

a=1

(

4
∑

i=1

1

2
kb(|r

C
a − rHi

a | − b0)
2 +

3
∑

i=1

4
∑

j=i+1

1

2
ka(θ

HiCHj
a − θ0)

2

)

(21)

where rCa is the spatial coordinates of the carbon atom of the a-th molecule, rHi
a

is the spatial coordinates of the i-th hydrogen atom of the a-th molecule, θ
HiCHj
a

is the bond angle Hi - C - Hj of the a-th molecule.

We then perform numerical simulations at a temperature 111 Kelvin and pres-

sure 1.0 atm, i.e., a condition at which the structure of this system is typical of a

standard liquid. The coarse-grained model is built by performing the IBI proce-

dure (Iterative Boltzmann Inversion) with pressure correction [26]. This procedure

assures that the resulting coarse-grained model matches the COM-COM (Center of

mass) RDF (Radial distribution function) of the full-atomistic model and assures

the same pressure (at the same given temperature). A pictorial representation of

the molecular coarse-grained model and the resulting numerical/tabulated poten-

tial are shown in Fig.4.

At this point we possess all the necessary ingredients for performing adaptive

resolution simulations using Eq.18 in the d,D,L space. We keep lc, that is the range

of molecular interaction, fixed at a value typical of atomitistic simulations; this

choice is taken for practical purposes so that our results can be directly applied

to any atomistic simulation of typical molecular liquids of interest in chemical
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FIG. 4. (a) Coarse-grained model and its corresponding numerical potential derived by

the IBI procedure. (b) Comparison between the center-of-mass center-of-mass radial

distribution function of the full atomistic simulation and the equivalent obtained from

the coarse-grained potential of (a) within the IBI procedure.

physics. In the next section we report the technical details of the simulations so

that our results can be reproduced.
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B. Technical details

All simulations are performed using double-precision home-modified Gromacs-

4.6.5[27]. The IBI technique with pressure correction is employed to derive the

coarse-grained model by using the VOTCA-2.6 package [28]. The time step for the

IBI is 0.002 ps and the pressure correction is added every 2 in 3 iteration steps with

a standard pressure smoothing at the post update stage. The smoothing potential

for L-J interaction and for the coarse-grained potential is numerically implemented

by using the user defined table with spacing 0.0005 nm. The switching radius of

the smoothing is 1.1 nm while the cut-off radius lc is 1.3 nm.

1. Preparation/equilibration of the system

The system is prepared starting from an initial box containing 470 “methane”

molecules with dimensions of the system 3.0×3.0×3.0 nm3. Next the box is copied

along the x-direction to produce the initial configuration for larger systems. It fol-

lows a full atomistic NPT simulation (that is at fixed number of molecules, pressure

and temperature, while the volume is allowed to fluctuate) using the Parrinello-

Rahman coupling method [29, 30] for 50 ps in order to determine the equilibrium

volume. The coupling type is isotropic, the reference pressure is 1.0 atm, the time

constant for pressure coupling is τp = 2.0 ps and the compressibility is 4.1× 10−3

bar −1. Next, an NVT simulation is thermally equilibrated, with V fixed at the

equilibrium value of the NPT simulation, by using a Langevin thermostat for 100

ns. The reference temperature is 110 K and the time constant for temperature

coupling is τt = 0.1 ps. The NVT thermally equilibrated configuration is the used

for a full NVE full atomistic simulation (reference calculation) and for an equiv-

alent adaptive resolution simulation. The timestep used for all the simulations is

0.0005 ps.
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C. Results and Discussion

TABLE II. Systems investigated, H stays for Hamiltonian behaviour while NH for

dissipative behaviour. Note that the cut-off radius for intermolecular interaction is

always lc = 1.3nm.

Label Ntot D(nm) d(nm) L(nm) H or D ǫ

(1) 47000 61.5 15 73.1 H 0.087

(2) 47000 13.5 3 133.5 NH 0.433

(3) 28200 30 30 30 H 0.043

(4) 20680 5 30 31 H 0.043

(5) 18800 15 15 30 H 0.087

(6) 15980 5 15 31 H 0.087

(7) 12220 5 5 29 NH 0.260

(8) 12220 5 15 19 NH 0.087

Table II reports results about some representative examples of systems that we

have studied by sampling the D, d, L (η, ζ, λ) space. It must be reported that ǫ is

not the sole parameter governing the H (Hamiltonian) or NH (non Hamiltonian)

behaviour. In fact the size of the coarse-grained and of the atomistic region also

play an important role. For the atomistic region one would like a size as small as

possible (yet statistically valid) so that the saving of the computational resources

can be optimized. For the coarse-grained region instead a small size would mean

that the distribution of the dissipation of the hybrid region will be distributed

among a relatively small number of molecules (that is the coarse-grained region

does not act as a large “reservoir”). As a consequence if the coarse-grained region

is too small, the perturbation of the hybrid region will induce a large perturbation

(per molecule) of the coarse-grained region and thus a sizable perturbation to the

overall thermodynamics of the system. Systems of smaller size (i.e. with less than
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12000 molecules) are not reported because they do not meet neither the math-

ematical nor the (intuitive/practical) physical conditions for being Hamiltonian.

Instead the systems reported in Table II are in principle all possible candidates for

being Hamiltonian systems, however, some meet the conditions better than others.

The numerical indicator for the classification in H or NH as reported in Table II

is that in the time frame between 0.5 and 1.0ns the temperature of the adaptive

systems overlaps with that of the full atomistic simulation of reference, and that

structural properties in the atomistic region (and trivially in the coarse-grained

region) agree with those of the corresponding full atomistic simulation of reference.

This classification is based on the idea that since after 0.5ns the system is equili-

brated, for (at least) short trajectories of 0.5ns (i.e. from 0.5 to 1.0ns) we run in

a Hamiltonian regime which fully corresponds to that of full atomistic simulation.

Thus for calculating statistical properties one may create an ensemble of indepen-

dent trajectories of (at least) length 0.5ns and obtain valid results by averaging

over the ensemble. In previous adaptive resolution studies such approach (even

over shorter time windows) has been already used [31]. However, in IVC we will

also discuss one example where the simulation run is much longer and analyze how

the dissipation due to the perturbation in the hybrid region influences the actual

numerical results. In general, some systems, in the time window considered, have

shown a clear Hamiltonian nature, they are characterized by a relatively large HY

region and thus the condition: dw(x)
dx

≪ 1 is satisfactorily met and the CG re-

gion is large enough to provide thermodynamic stability to the rest of the system.

Fig.5 show the temperature as a function of time compared with the equivalent

full atomistic NVE simulation for system (f), taken as representative example;

the agreement is remarkable (if the system was dissipative the temperature would

show a sizeable drift compared to the reference full atomistic simulation). As dis-

cussed before, Fig.5 is not sufficient to justify the claim that the Hamiltonian of

the system is a “proper” adaptive Hamiltonian. In fact, it may well be that while
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the system preserves the temperature in a proper way, other properties are instead

modified in such a way that they do not reproduce the properties of the reference

full atomistic system (or full coarse-grained system). For this reason we studied

two important structural properties, that is the molecular number density and the

radial distribution functions, C-C, C-H and H-H in the atomistic region; here we

report the result for the most critical case that is for system (6). Fig.6 shows for

the system (6) the density across the box after 750ps. After such time if the sys-

tem did not behave properly it should display large deviations from the reference

NVE results. The density profile agrees with the reference one, with differences,

in the most unfavorable case, of about 6% in the region of maximal perturbation,

that is in the HY region, however in the rest of the system the differences are

below 2% which is highly satisfactory. Moreover Fig.7 shows that the atomistic

radial distribution functions of the adaptive systems essentially overlap with those

of the reference full atomistic system. Other systems reported in Table II and

characterized as “H” show the same accuracy of system (6).
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FIG. 5. Temperature as a function of time for system (6). Data are analyzed after 500

ps to allow the system for basic equilibration in the adaptive set up.

On the basis of this result we can claim that we have found several systems

where the adaptive set up corresponds closely to a self-contained Hamiltonian
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FIG. 6. (a) Molecular number density as a function of the position in the simulation

box of system (6). The horizontal line corresponds to the uniform target density. The

blue vertical lines correspond to the borders between the HY and CG region, the vertical

green lines correspond instead to to the borders between the HY and AT region. (b) A

zoom of the density in the AT region.

which produces highly satisfactory results on time windows of at least 1000 ps. As

said before the time window considered is the same as that used in other adaptive

work to calculate static properties of the full atomistic region. Instead systems (2)

and (7) do not produce satisfactory results; in system (2) the transition region is

very small and thus it strongly violates the mathematical condition of w(x) being

slowly varying. In fact despite the fact that the dissipation produced by the sharp

transition can be mostly adsorbed by the large AT and very large CG region, the
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FIG. 7. Atom-atom radial distribution functions in the AT region compared with the

equivalent from the full atomistic simulation of reference.
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dissipation of energy is clearly visible in the plot of the temperature as a function

of time (see Fig.8). Finally for system (7) we have a smaller AT and CG region

than for system (2); this, together with the small size of the HY region, makes

the system highly dissipative as reported in Fig.9. System (8) instead, although it

has got a relatively large HY region, is characterized by a CG region which is too

small to act as equilibrating reservoir.
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FIG. 8. Temperature as a function of time for system (2). Data are analyzed after 500

ps to allow the system for basic equilibration in the adaptive set up.

D. Hamiltonian behaviour v.s. dissipative behaviour: Beyond 1.0ns

In the previous section we have chosen a rather strict criterion for defining a

systems’ behavior as H or NH . However the strict criterion allows to state that

in the time frame considered there are no differences between a full atomistic sim-

ulation and an adaptive resolution simulation. Nevertheless one needs to address

the question of what happens beyond the time window considered, above all for

systems classified as H ; in fact the lost or gain of energy is cumulative, that is it

adds up during the simulation. This process is inevitable since, beside the integra-

tion error present also in the full atomistic simulation, in the adaptive resolution
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FIG. 9. Temperature as a function of time for system (7). Data are analyzed after 500

ps to allow the system for basic equilibration in the adaptive set up.

simulation we have only an approximate Hamiltonian system. In this section we

discuss this aspect by considering the three systems discussed in the previous sec-

tions. In particular for system (6), we have performed a much longer simulation

(4.0ns) and compared its results with the equivalent full atomistic simulation. The

slope of the linear regression of the temperature v.s. time for systems (2) and (7)

is respectively 6.6−4 and 1.15−3, that is the Kelvin dissipated (acquired) per ps.

This implies that in a time window of 4000ps(4.0ns), system (2) increases the

temperature of about 2.7K while system (7) increases the temperature of 4.6K.

The deviations found are not dramatic, but certainly sizeable. For system (6)

instead, being classified as H we have run a longer simulation and the curve of the

temperature v.s. time is reported in Fig.10. The slope in this case is 4.4−4 and

this should be also compared with the correspondent quantity of the full atomistic

simulation which is 1.0 × 10−4. The result is that the deviation from the ideal

(target) temperature after 4.0ns is of about 1.6K while the difference with respect

to a corresponding full atomistic simulation is about 1.3K. The question is now

whether for (6) one may in practice use the longer simulation for calculating, e.g.

structural properties. In Figs.11 and 12 we have calculated the density across the
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FIG. 10. Temperature as a function of time for system (6) for 4.0ns. Data are analyzed

after 500 ps to allow the system for basic equilibration in the adaptive set up. The

continuous lines represent the curve of linear regression for, respectively, the adaptive

resolution simulation and the corresponding full atomistic simulation.

system and various atomistic radial distribution functions in the atomistic region

for a time frame between 1.0ns and 4.0ns. This time frame considers time when

the curve of the temperature of the adaptive resolution system and of the full

atomistic system are not strictly overlapping anymore. The results show that the

agreement of the structural properties is still satisfactory. For longer time win-

dows of course system (6) will start to deviate significantly from a Hamiltonian

behaviour. In any case, the results of this section show the robustness of approach

for time windows which can be used for productive runs; certainly this approach

represent a promising basis for building an improved numerical algorithm.

V. DISCUSSION AND CONCLUSION

Hamiltonian-based approached to introduce the idea of adaptive molecular res-

olution are gaining popularity in the community of molecular dynamics. The

conceptual background on which they are based is still subject of disputation; in

particular the existence of a global adaptive resolution Hamiltonian written solely

in terms of particles’ degrees of freedom is still an open question [1, 14, 22, 32]. In
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FIG. 11. (a) Molecular number density as a function of the position in the simulation

box of system (6) in the time window 1.0−4.0ns. The horizontal line corresponds to the

uniform target density. The blue vertical lines correspond to the borders between the

HY and CG region, the vertical green lines correspond instead to to the borders between

the HY and AT region. (b) A zoom of the density in the AT region.

this work we have proposed a modification of the coupling between the atomistic

and the coarse-grained region; the key difference with the other methods [4, 5]

is that the Hamiltonian term which couples the atomistic region with the hybrid

region and the Hamiltonian term which couples the coarse-grained region with the

hybrid region are written in the form of full atomistic interactions and full coarse-

grained interactions respectively without the introduction of any space dependent

weight. This choice allows then to write the Hamiltonian corresponding to the
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FIG. 12. Atom-atom radial distribution functions in the AT region compared with the

equivalent from the full atomistic simulation of reference for system (6). Calculations

are perform,ed over the time window 1.0− 4.0ns.
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interactions between the molecules of the hybrid region as a perturbation (intro-

duced by a space-dependent interpolating weighting function) to the sum of a full

atomistic and a full coarse-grained Hamiltonian. The perturbation then is a well

defined term, independent of the interactions with the other regions, thus it can

be mathematically analyzed in an asymptotic approach. From the technical point

of view the partitioning proposed offers the possibility to implement the numer-

ical procedure in a simplified and more general way for any molecular dynamics

code: the atomistic and coarse-grained region can be treated independently and

then synchronized by adding the perturbation term of the Hamiltonian. We have

carried out an asymptotic analysis and a numerical verification of the proposed

scheme and show that when some mathematical conditions are reasonably fulfilled

the system behaves practically as a Hamiltonian system. It should be underlined

that the mathematical conditions are such that for molecular simulations in the

current implementation the set up required by the Hamiltonian approach implies

the choice of large systems and thus the necessity to perform large expensive cal-

culations when compared to other adaptive Hamiltonian-like approaches [4, 5] or

to (technically) equivalent non-Hamiltonian/stochastic adaptive schemes based on

the idea of open boundary/Grand Canonical-like approach [6–9, 18–20, 33]. We

hope that the conceptual and (potentially) technical advantages offered by our par-

titioning together with the detailed mathematical and numerical analysis carried

here can be employed for improving the numerical and conceptual development of

the adaptive resolution technique.
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