
Konrad-Zuse-Zentrum für Informationstechnik Berlin

Rainer Roitzsch Ralf Kornhuber

BOXES

A Program to Generate Triangulations

from a Rectangular Domain Description

Technical Report TR 90–9 (December 1990)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository: Freie Universität Berlin (FU), Math Department (fu_mi_publications)

https://core.ac.uk/display/267951673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BOXES

A Program to Generate Triangulations

from a Rectangular Domain Description

Rainer Roitzsch Ralf Kornhuber

Abstract BOXES computes a triangulation from a 2D domain description
which consists of an arbitrary set of rectangles. Each rectangle may have
attributes to control the triangulating process, define subdomain classes, or
specify boundary conditions. The output of the program can be used as a
coarse grid for KASKADE or one of its variants.

1

Chapter �

Introduction

��� Motivation

The finite element program KASKADE [2, 8, 9] needs a coarse, initial trian-
gulation to solve a problem by adaptive refinement techniques. Some applica-
tions as for example semiconductor device simulation lead to rather complex
geometries with subdomains representing different materials where different
sets of constants (doping, dielectric constant) are valid. See Figure 1.1 for a
problem from [4].

Figure 1.1: Different materials in a domain Ω

This geometry is described quite simply by a set of rectangular or almost
rectangular boxes (Figure 1.2) ignoring some special features. For numerical
reasons a suitable partition of Ω has to represent the inner boundaries. Note,
that the factor between the longest and the shortest edge is well over 10�.

BOXES generates from such a partition a coarse triangulation which is well
suited to the adaptive refinement algorithm used in BDKASK (a program
treating reverse biased pn–junction [6]) including anisotropic refinement [5].
The triangulation generated by BOXES from the set of rectangles shown in
Figure 1.2 is depicted in Figure 1.3.

BOXES includes features to generate necessarily finer triangulations which
have no flat triangles. As the resulting triangulation (Figure 1.4) involves
much more nodes it is less desirable in the multi–level context, where the
initial grid is intended to be very coarse.

2

Figure 1.2: Initial partition of Ω by a set of boxes

Figure 1.3: Triangulation generated by BOXES (267 nodes)

Note that the appropriate choice of an initial set of rectangles has to be done
by hand but is supported by rigid checks for the correctness of the user input.
The graphical facilities help the user to find errors and flaws in his design.

Future versions may support features like interactive graphical editing, input
and output of standard formats (e.g. PIF [3]). At least the internal data
structures are designed to make such extensions feasible.

��� Tasks of BOXES

As indicated in the preceding section BOXES is not a general mesh generator
but a tool to generate triangulations of a 2D domain described by an initial
set of rectangles. To simplify this we require that each side of a rectangle

3

Figure 1.4: Fine triangulation generated by BOXES (2420 nodes)

touches at most two sides of other rectangles completely. A possible situation
is illustrated in Figure 1.5 showing the coarsest triangulation for this domain
on the right side.

2

1

3

Figure 1.5: Rectangles and coarsest triangulation for a simple example

This triangulation has some nice triangles (box 1), pairs of flat triangles (box
3) and some really nasty triangles from green closure (box 2).

Without being too specific, a nice triangle is one with neither obtuse nor acute
angles. A triangulation of nice triangles make a basis for a good discretization
of a finite element approximation and acceptable condition numbers of the
corresponding linear equation system.

Now the nice triangles inherit their quality by regular (red) refinement due
to Bank et al. [1] (Figure 1.6). Pairs of flat triangles resulting from flat
rectangles may be improved by directed (blue) refinement [5] as illustrated
in Figure 1.7.

Hence the boxes 1 and 2 of Figure 1.5 are candidates for red refinement while
the triangles resulting from box 3 are marked for blue refinement.

Note, that the blue refinement is not always possible (see Appendix). These
operations are implemented in KASKADE and the need of such a refinement

4

Figure 1.6: Nice rectangles refined red

Figure 1.7: Flat rectangles refined blue

can be driven by an edge oriented error estimator or purely geometric criteria.

• •

Figure 1.8: Green closures of irregular points

To remedy the nasty green closures (Figure 1.8) we apply successive red or
blue refinement as illustrated in Figure 1.9 and 1.10.

2

1

Figure 1.9: Resolving in the red case

In general we use a refinement algorithm which is roughly described as fol-
lows.

5

2
1

Figure 1.10: Resolving in the blue case

Algorithm 1: Resolving a coarse triangulation.

Step 1: If no coarse triangulation exists – generate one.

Step 2: Refine edges harmoniously.

Step 3: Refine all triangles with more than one edge refined or one edge
refined twice. Use the blue refinement if the longest edge is twice as
long as the shortest.

Step 4: Repeat Step 3 as long as triangles are refined.

Step 5: Generate the green closure.

The second step of Algorithm 1 needs some further explanation:

Algorithm 2: Refine edges harmoniously.

For all edges in the edge list do

Step 1: if the midpoint of the edge is in [1/3, 1/3], go on.

Step 2: Divide the edge (midpoint at 0.5).

Step 3: Take the old midpoint as midpoint of the corresponding son.

Step 4: Append the new edges at the end of the edge list.

Step 4 introduces a kind of recursiveness: the edges are refined until a mid-
point is in [1/3, 1/3].

Remark: The refinement process described in Algorithm 1 allows no hi-
erarchical interpretation as for example the usual father/son relationship of
edged or triangles. Hence it does not fit in the data structures used in
KASKADE.

6

Remark: To generalize Algorithm 1 to nonrectangular initial boxes the
criterion for blue refinement in step 2 has to be extended to quadrangles.
This can be done in a natural way as long as quadrangles are “almost”
rectangles.

Remark: Rectangular structure may be lost, if conflicting requirement
from opposite edges of the rectangle is imposed (see Figure 1.11). This
can be remedied by a better choice of the initial partition as shown in Figure
1.12. The accurate choice of an initial set of boxes will be supported by a
future version of BOXES.

Figure 1.11: Loosing the rectangular structure

Figure 1.12: Saving the rectangular structure by an additional box

BOXES handles subdomain classes and boundary classes. That means that
all triangles inherit a user specified class identifier from its enclosing rectan-
gle. The same holds for boundary edges and points.

Additional features can be used to generate edges following a quarter circle
or to discard one triangle from the triangulation.

BOXES generates output in the format for KASKADE or one of its variants.
The final green closure is not submitted to KASKADE, which detects the
corresponding irregular points by the input routine and generates its own
green closure. This allows red refinement of these triangles in the adaptive
refinement process.

7

Chapter �

The Rectangular Domain Description

The syntax of the domain description is very simple. Items are defined on
a single line, the type of the item is given by the first non blank character.
Table 2.1 shows all types of items.

item types description
P point
B box (rectangle)

Table 2.1: Item types

A point item must be further specified by an integer value which is used as
an identifier, the x, y–coordinates, and a set of parameters. Each parameter
starts with a character followed by optional values, see Table 2.2.

parameter default meaning
T〈int〉 0 class of the point
N|D|C|I I boundary condition
S〈real〉 0.0 start value for

the iterative solver

Table 2.2: Parameters for points

The class of a point is useful in the KASKADE context when the user has
to write routines to define a problem. These procedures may take advantage
of the class to decide their behavior. An example is the use of different
boundary value functions for different sets of points. The class of a new
point is set to the class value of the edge of which it is midpoint. The rules
to generate the class of edges are described later.

The boundary condition type denotes ’D’ for Dirichlet, ’N’ for Neumann,
’C’ for Cauchy (mixed), and ’I’ for no conditions. The start value might
be used by an iterative solver of KASKADE.

Examples: The following lines define point 123 with (1.0,-3.4) as x, y–
coordinates, and Dirichlet boundary conditions, and point 1 with start value
1.0. Note that parenthesis, colon and additional blanks are optional.

8

P 123 1.0 -3.4 D

P 5 (-1, -1) S 1.0

The box items use an integer identifier too, followed by four integers defin-
ing these edge points. The edge points should be oriented in mathematical
positive sense. The parameters are given in Table 2.3.

parameter default meaning
T〈int〉 – class of the box, default

is the last used class valve,
at the start 0

F〈int〉 0 coarse triangulation rule,
{N|D|C|I}〈int〉 – boundary condition for edge 〈int〉
B〈int�〉 〈int�〉 – class of edge 〈int�〉 is set to 〈int�〉
A〈int〉 – alternative class for the second

triangle of the coarse triangulated box
R〈int〉 – the diagonal should be a quarter circle

with point 〈int〉 as midpoint

Table 2.3: Parameters for boxes

Figure 2.1 clarifies the numbering of the points, edges, and coarse triangles.

1 2

34

1

2

3

4
[1]

[2]
[1]

[2]

Figure 2.1: Numbering of boxes, F0 and F1

The class of boxes can be used to define subdomains.

A class value -1 means that the triangle will not belong to the triangulation.
The coarse triangulation rules are F0 to place the diagonal edge of the box
from bottom/left to top/right and F1 for the other case (from top/left to
bottom/right). The boundary condition type is defined by the characters
D, N, C, and I followed by the number of the edge. (The number 5 denotes
the diagonal edge.) New edges inherit their boundary condition from their
parents or are set to I if they are new inner edges. The same is valid for the
inheritance of edge classes which are set with the B parameter. In this case
the value for new inner edges will be taken from the triangle (box) class.

9

Example:

B 1 (1,2,3,4) T1 N4 B1 5

B 23 (2,5,6,3) A2 D1 R1

The first box (number 1) is class 1, with Neumann boundary condition on
e4, and class 5 on e1. The second box should be a square, the midpoint of
the diagonal is point 1, see Figure 2.2.

R1 R2 R3 R4

Figure 2.2: Arcs as edges, initial triangulation and first refinement

Remark: It is obvious from the preceding example that successive red re-
finement including arcs leads to arbitrary acute angles. This problem may
be remedied by restricting the accuracy of the resolution of interior arcs by
introducing a certain minimal angle. This strategy is supported by the fact
that changes in the material are usually not exactly represented by such an
arc.

Example:

C3 C1 D 1.0 E-5 E 11.9

Class 3 will have the color attribute 1 (RED), the doping 1.0 E-5 and the
dielectricity constant 11.9 (silicon).

Remark: The lexical analysis ignores white space characters and certain
fill characters like color, left or right parenthesis. (That’s not really true, any

10

sequence of these characters is used as a delimiter). Upper and lower case
letters are identified. The characters ‘#’ and ‘%’ start a comment up to the
end of the current line.

A Complete Example: The following description defines the geometry
shown in Figure 2.3. The resulting triangulations are shown in Figure 2.4
and 2.5.

p 1 0 5 d t1

p 2 80 5 d t1

p 3 80 140 t2

p 4 0 140 n t2

b1 1 2 3 4 d1 n4 t1

p 5 80 160 d t2

p 6 0 160 d t2

b2 4 3 5 6 d3 n4 t2

p 7 200 5 d t1

p 8 200 140 d t1

b3 2 7 8 3 d1 d2 t1

p 9 100 140 t1

p10 200 160 d t3

p11 100 160 t3

b4 9 8 10 11 d2 t1

b5 3 9 11 5 t1 a2 r4

p12 200 170 d t3

p13 80 170 d t3

b6 5 10 12 13 d2 d3 d4 t3

11

Figure 2.3: Boxes and boundaries of the example

Figure 2.4: Triangulation after resolving

Figure 2.5: Fine triangulation after resolving

12

Chapter �

Interactive Command Language

The interactive command language of BOXES has the same basis as the
one of KASKADE [8]. The syntax is straightforward, the command name is
followed by parameters and values. The commands do, quit, and help are
the same as in KASKADE.

��� Basic BOXES Commands

The generation of a triangulation from the domain description is controlled
by the following commands.

read 〈filename〉
〈filename〉 or 〈filename〉.box should contain a description of the domain as
outlined in Chapter 2. It is not possible to read a second file.

write [〈filename〉]
If no 〈filename〉 is given the name of input file is taken to generate the output
filename by the extension .geo. An old extension box is stripped.

coarse

The coarse command generates an initial triangulation. It is automatically
triggered by the resolve command.

resolve [onestep]

The coarse triangulation is generated if it did not exist yet. Then the problem
areas are resolved as described in Section 1.1 (Figure 1.9 and 1.10). The
process can be done step by step with the onestep parameter.

refine { red | blue }
All triangles are refined in the “red” fashion if the red parameter is used.
The blue parameter triggers “blue” refinement if the triangles with the ap-
propriate geometrical attributes are found, i.e. the geometrical properties
(acute and obtuse angles) are improved.

inform

The inform command just counts the points, edges, triangles, and boxes of
the current triangulation and displays these values.

13

��� Graphic Commands

The graphical environment of BOXES uses one output device with the pos-
sibility of an attached second output stream. That means the graphical
operations (line or text drawing, filling) are sent to two devices. The default
device is a window on the screen, the attached device can be a postscript file.

window

The window command opens a window. It is useful if the user starts operating
on the postscript device and decides later to use the screen.

ps { tex | width 〈cm〉 | height 〈cm〉 }
The ps command opens the postscript device or changes some attributes.
The width and height parameters define the size of the output given in
centimeters. The origin on the page is set to (0.0,0.0) through the tex

parameter. These files can be used as input files for TEX postscript drivers.

show { [index] { boxes| points| edges } | boundary | areas
| triangles | green | clear }

The show command displays objects of BOXES. Objects are boxes or trian-
gles, which are shown by their surrounding lines. The index of boxes, edges,
and points may be additionally requested by the index parameters. The
boundary is drawn by a thicker line and the different subdomains (areas)
may be displayed through different colors. The “green” closure is added by
the green parameter.

The clear parameter erases the window or/and inserts a show page com-
mand in the postscript file.

Acknowledgements Thanks to everybody who helped.

14

Appendix� Incompatible Triangulations

It is well–known (see [2, 7]) that red refinement of neighboring triangles
causes forced red refinement of these triangles as shown in Figures A.1 and
A.2.

�
�
�
�
�
�A
A
A
A
A
A�
�
�
�
�
�A
A
A
A
A
A

• •
�
�
�
�
�
�A
A
A
A
A
A�
�
�
�
�
�A
A
A
A
A
A�

�
�A

A
A

A
A
A�
�
�

�
�
�
�
�
�A
A
A
A
A
A�
�
�
�
�
�A
A
A
A
A
A�

�
�
�
�
�

A
A
A A

A
A
A
A
A

�
�
�

Figure A.1: Forced red refinement

�
�
�
�
�
�A
A
A
A
A
A�
�
�
�
�
�

�
�
�A

A
A

�
�
�
��

• �
�
�
�
�
�A
A
A
A
A
A�
�
�
�
�
�

�
�
�A

A
A

�
�
�
��

��AA �
�
�
�
�
�A
A
A
A
A
A�
�
�
�
�
�

�
�
�
�
�
�

A
A
A

A
A
A

��AA

�
��

Figure A.2: Forced red refinement

Obviously this structural refinement is a recursive process which is hoped to
terminate. It is easily seen that the refinement of a certain triangle cannot
cause the forced refinement of one of its sons as long as only red refinement
is used. Hence the whole process stops at least after the refinement of all
triangles.

The situation becomes more complicated as soon as blue refinement is used.
Figure A.3 shows how blue refinement leads to the structural red refinement
of one of the resulting sons causing an infinite avalanche of forced red re-
finements. The reason for this phenomenon is that triangles with different
refinement depth may have a common edge (due to blue refinement).

The solution for this problem in KASKADE is the substitution of blue refine-
ment by red refinement if this situation occurs. Therefore after each request
for blue refinement, the forced red refinement is immediately computed to
check its effects.

The same problem has to be handled in BOXES. The sequence of pictures
in Figure A.4 should illustrate this situation. Similar problem arise if we
use our technique of resolving degenerately parted edges without using blue

15

Figure A.3: Blue refinement causing endless forced red refinement

refinement, see Figure A.5. Note the small and the thin box on top of the big
box. They are revealed only at higher magnifications. The reason for infinite
forced refinement is the same as in the case above: forced red refinement
around a point.

Obviously the problems occurring in Figures A.4 and A.5 can be settled
using forced blue refinement where it is possible and geometrically desirable.
Supported by computational experiments we conjecture that infinite loops
are prevented in this way as long as rectangular initial boxes are used. In
the case of arbitrary quadrangles this strategy fails as follows from a simple
extension of the above example (Figure A.3).

16

Initial triangulation:

after the first blue refinement:

after the second blue refinement:

and the forced red refinement:

after the third blue refinements:

and the forced red refinements (magnified twice):

after the fourth blue + forced red refinement (magnified twice):

after the fifth blue + forced red refinement (magnified fourfold):

after the sixth blue refinement (magnified fourfold):

forced red refinement will lead to the catastrophe

Figure A.4: The dangers of blue refinement

17

Coarse triangulation first resolve step

second resolve step (2×) third resolve step (2×)

fourth resolve step (4×) fifth resolve step (4×)

sixth resolve step (8×) seventh resolve step (16×)

Figure A.5: The dangers of BOXES resolving techniques

18

Bibliography

[1] Bank, R.E., Sherman, A.H., Weiser, A: Refinement Algorithms and
Data Structures for Regular Local Mesh Refinement. In R. Stepleman
et al.(Eds.), Scientific Computing, p 3-17. IMACS/North–Holland, Am-
sterdam (1983)

[2] Deuflhard, P., Leinen, P., Yserentant, H.: Concepts of an Adaptive Hi-
erarchical Finite Element Code. IMPACT 1 , p. 3–35 (1989)

[3] Duvall, S.G.: An Interchange Format for Process and Device Simulation.
IEEE Trans. on Computer-Aided Design 7 p 741–753 (1988)

[4] Falck, E., Gerlach, W.: Private communications (1990)

[5] Kornhuber, R., Roitzsch, R.: On Adaptive Grid Refinement in the Pres-
ence of Internal or Boundary Layers . IMPACT 2 p 40–72 (1990)

[6] Kornhuber, R., Roitzsch, R.: Self Adaptive Finite Element Simulation of
Reverse Biased pn–Junctions. SC 90–10 Konrad–Zuse–Zentrum Berlin
(ZIB) (1990)

[7] P. Leinen: Ein schnell adaptiver Löser für elliptische Randwertprobleme
auf Seriell– und Parallelrechnern. Dissertation, Universität Dortmund
(1990)

[8] Roitzsch, R.: KASKADE User’s Manual. TR89–4 Konrad–Zuse–
Zentrum Berlin (ZIB) (1989)

[9] Roitzsch, R.: KASKADE Programmer’s Manual. TR89–5 Konrad–
Zuse–Zentrum Berlin (ZIB) (1989)

19

