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Abstract

The partitioning of solar energy over the Earth’s surface drives weather and climate of the coupled land–

ocean–atmosphere system. Over water surfaces, the evolution of water temperatures at a given depth in the

mixed layer implicitly contains the signature of surface energy partitioning, and as such it can be used to

diagnose the surface energy balance. In this study, we develop a novel numerical scheme by combining the

Green’s function approach and linear stability analysis to estimate the water surface energy balance using

water temperature measurement at a single depth. The proposed method is capable of predicting water tem-

perature in the mixed layer, and solving for the components of the surface energy budgets with physically

based schemes. Evaluation against in situ measurement and the maximum entropy production method dem-

onstrates that this approach is robust and of good accuracy. It is found that performance of the proposed

method depends strongly on the accurate estimation of turbulent thermal diffusivity from in situ measure-

ments, which carries information of meteorological and limnological conditions. Without explicitly using

wind speed or temperature/moisture gradient, the proposed approach reduces uncertainty and potential error

associated with meteorological measurements in estimation of water surface energy balance.

Partitioning of the solar energy into its various compo-

nents over the Earth’s surface drives the global energy and

water cycles. Since water occupies about 71% of the Earth’s

total surface area, accurate estimation of the surface fluxes

over water (including sensible heat and latent heat fluxes to

the atmosphere, and heat transported to subsurface thermal

mass) is of fundamental importance not only for limnology

and oceanography, but also in numerical simulations of

regional and global weather and climatic processes. To predict

the energy fluxes over a water surface, a number of methods

have been developed during recent decades, which can be

broadly categorized into two groups. The first group simply

uses land surface models in which turbulent heat fluxes are

estimated using bulk transfer formulae (Oleson et al. 2010;

Best et al. 2011; Niu et al. 2011). The water surface is treated

as non-vegetated land surface in the models, and the accuracy

of predicted turbulent heat fluxes is largely determined by the

parameterization of the transfer coefficient. Existing

parameterization schemes in this group vary in complexity

and assumptions, and no single scheme outperforms others

under all conditions (Henderson-Sellers et al. 2003). The sec-

ond group encompasses empirical models derived from regres-

sion analysis of in situ measurements (Morton 1983; Granger

and Hedstrom 2011). This group of models mainly focuses on

prediction of the latent heat flux, and the resulting site-

specific relation may not be applicable to water surface under

different oceanographic and meteorological conditions. It is

noteworthy that the land surface models and empirical mod-

els have two limitations in common. First, the estimated heat

fluxes are not necessarily constrained by conservation of ener-

gy at the water surface. This can lead to a large residual in the

surface energy balance, known as the surface energy imbal-

ance closure problem (Leuning et al. 2012). Second, model

predictions are strongly affected by multiple meteorological

variables, such as wind speed, air temperature, and moisture

(Kiehl and Trenberth 1997). Measurement error related to

individual variables is amplified and necessarily leads to great

uncertainties in the modeled fluxes.

Developed from different perspectives, two recently proposed

numerical methods for estimating surface energy budgets have

been able to overcome the aforementioned limitations. The
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methods are capable of predicting surface energy budgets with-

out explicitly using temperature and moisture gradients, wind

speed, and empirical parameters, while inherently satisfying the

conservation of energy at the interface. The first method is based

on the maximum entropy production (MEP) principle (Wang

et al. 2014), which predicts the surface energy budget as the

most probable and macroscopically reproducible distribution

that produces the maximum entropy with given information

(Dewar 2005; Wang and Bras 2009). Evaluation against in situ

measurements verified accuracy of the MEP model over both

land and water surfaces (Wang and Bras 2011; Wang et al. 2014).

The second method is the numerical procedure developed by

Yang and Wang (2014). Using Green’s function approach, the

method is able to reconstruct soil thermal field from a single

depth soil measurement of either temperature or heat flux

(Wang 2012; Wang and Bou-Zeid 2012). Once the heat flux into

the subsurface is obtained, the turbulent fluxes into the atmo-

sphere are estimated using linear stability analysis (Yang and

Wang 2014). The model’s accuracy and reliability have been

assessed using field measurements. Compared with the MEP

model, the numerical procedure has better accuracy, especially

for the ground heat flux (Yang and Wang 2014); however, it has

not yet been tested over water surfaces.

Compared with land surface, surface energy partitioning

over a water surface is further complicated due to the pene-

tration and absorption of solar radiation in the water body.

Thermal stratification and turbulent mixing in water bodies

are also distinct from subsurface heat transfer process in

soils. A schematic comparing surface energy balance over

water and land surface is shown in Fig. 1. The goal of this

study is thus to generalize the numerical procedure, origi-

nally developed for land surface via combined Green’s func-

tion approach and linear stability analysis, to estimate the

water surface energy balance using temperature measure-

ment at a single depth. The model’s performance is tested

against in situ measurement over Lake Geneva, Switzerland.

The effects of turbulent heat transfer, radiation penetration

and absorption are elucidated by a parametric analysis.

Methodology

Considering an infinitesimally thin layer at the water sur-

face (Fig. 1), and ignoring the shortwave absorption at the
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Fig. 1. A schematic for energy balance and heat transfer over water and land surface. Rn is the net radiation; Rn
s and Rn

1 denote the net shortwave

and longwave radiation; H is the sensible heat flux; LE is the latent heat flux; Q0 and Qz are the heat transported to the subsurface thermal mass, at
the surface and at depth z, respectively; and Tz is the temperature at depth z. The vertical length of the graph is not in scale.
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surface since liquid water is mostly transparent to solar radi-

ation, the surface energy balance can be written as:

Rn
l 5H1LE1Q0 (1)

where Rn
l is the net longwave radiation, H, LE, and Q0

denote the sensible heat, latent heat, and heat transported

to deeper water at the surface, respectively (Q0 is usually

denoted by G0 over land). Each flux on the right-hand side

of Eq. 1 can be considered as a “dissipative” term that con-

sumes energy at the surface and restores the system to

“equilibrium.” Shortwave radiation penetrates through the

water surface and warms subsurface water layers. Significant

warming begins near the surface and heat is propagated into

deeper water level driven by turbulent mixing as a result of

the surface wind shear. In general, roughly half of the radia-

tive heat is absorbed in the upper 2 m (Fairall et al. 1996).

This layer is defined as a warm layer (see Fig. 1) in the upper

mixed layer, because its radiation-induced warming is signifi-

cantly larger than that in the deeper part.

Q0 and subsurface heat transfer carry the information of

surface energy partitioning and conserve it in the mixed lay-

er. Consequently, within the mixed layer, the thermal field

in water body can be reconstructed by retrieving the signal

from a single depth measurement. Across the thermocline

immediately beneath the mixed layer, the surface forcing

signal might be lost as heat transfer is strongly affected by

deep water temperature. Hence, this study focuses on the

mixed layer of water bodies, which ranges from water surface

to a depth of 2–13 m over lakes (Fee et al. 1996); but we

note that the approach is also applicable over comparable

depths even if the water surface is fully quiescent and not

mixed (sunny days with weak winds). The one-dimensional

heat transfer in the mixed layer is given by:

@Tðz; tÞ
@t

5j
@2Tðz; tÞ
@z2

1sðz; tÞ (2)

with boundary conditions:

2k
@Tðz; tÞ
@z

����
z50

5fðtÞ;2k
@Tðz; tÞ
@z

����
z!Dm

50 (3)

and initial condition:

Tðz;0Þ5TiðzÞ (4)

where T(z, t) is the water temperature at depth z and time t,

j 5 k/Cw the thermal diffusivity (which should include the

turbulent mixing where applicable), k and Cw the thermal

conductivity and heat capacity of water, respectively, s(z, t) a

source term due to absorption of shortwave solar radiation,

f(t) an analytical function prescribing surface flux forcing,

Dm the depth of mixed layer, and Ti(z) the initial tempera-

ture profile. Compared with heat transfer over land surface

(Yang and Wang 2014), absorption of shortwave solar

radiation adds the heating source term s(z, t) to Eq. 2 and

creates additional complexity for reconstruction of water

thermal fields (see Fig. 1). One underlying assumption of Eq.

2 is that j does not change significantly with depths, thus

the proposed method requires a relatively constant thermal

diffusivity in the study depths of water body. Furthermore,

thermal diffusivity is enhanced through turbulent mixing in

the water (W€uest and Lorke 2003). This will be discussed fur-

ther in the following section.

Using a Green’s function approach for the canonical heat

conduction problem in a finite field, the general solution for

temperature resulting from Eqs. 2 to 4 is (Cole et al. 2010):
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gðz; tjz0;0ÞTiðz0Þdz01

ðt

s50
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ðDm
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j
k
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(5)

where z0 and s are integration variables, gðz; tjz0; sÞ is the

impulse Green’s function solution corresponding to an

influx of heat with unity strength (mathematically repre-

sented as a Dirac delta function at the surface):

gðz; tjz0; sÞ5 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pjðt2sÞ

p e2ðz2z0Þ2=4jðt2sÞ1e2ðz1z0Þ2=4jðt2sÞ
h i

(6)

On the right-hand side of Eq. 5, the first, second, and third

terms represent the contribution of the initial conditions,

source term, and boundary conditions to the temperature

variability, respectively. Combination of the first and third

terms represents a homogeneous heat conduction problem

over land surface, whose solution is given by Wang and

Bou-Zeid (2012):ðDm

z050
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where h(z, s) is the step Green’s function solution, which

resolves the singularity of the impulse Green’s function by

temporal integrations (Wang et al. 2005):
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k
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s50

gðz; sÞds5
2

ffiffiffiffiffiffiffiffiffiffi
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Therefore, the major outstanding challenge is to solve the

contribution of source term s(z, t) to the solution of water

temperature. According to the Beer–Lambert law (Jerlov

1976), the intensity of solar radiation decreases
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exponentially as sunlight travels through the water, leading

to the following source term due to absorption at a given

depth z:

sðz; tÞ5 Rn
s ðtÞ
Cw

X
j

gjlje
2ljz (9)

where Rn
s is the net shortwave radiation at the water surface,

lj and gj denote the absorption coefficient and fraction of

radiation of the jth spectral component. Note in Eq. 9, the

continuous spectrum is divided into limited number of

bands and represented using a finite summation. Defant

(1961) reported the optical properties of seawater based on

experimental studies and identified coefficients for 9 bands,

which have been adopted in later studies for various water

surfaces (Paulson and Simpson 1981; Wang et al. 2014). The

9-band approximation is used in this study, with all parame-

ters summarized in Table 1. The absorption coefficients also

depend on water characteristics; and properties such as tur-

bidity, organic matters, and vegetation can significantly

modify the attenuation of solar radiation in the water (Jerlov

1976; Paulson and Simpson 1981). Substituting Eqs. 6 and 9

into Eq. 5 yields (see Supplementary Materials for a detailed

derivation):ðt

s50

ds
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In Eq. 7, the boundary condition at the surface yields

f(t) � Q0(t) 1 Rn
s ðtÞ. Therefore the solution of water tempera-

ture at any depth is given by:

Tðz; tÞ5TiðzÞ1
ðt

0

Q0ðt2sÞ1Rn
s ðt2sÞ

� �
dhðz; sÞ

1

ðt

s50

X
j

Rn
s ðt2sÞgjlj

Cw
dAjðz; sÞ
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A numerical quadrature is needed here to discretize the inte-

grand for explicitly formulating the surface temperature Ts

(which is taken here as the temperature of the top few milli-

meters in water) in terms of water temperature at an arbi-

trary depth. Discretizing the time continuum into {t 5 tkj
k 5 0, 1, 2, . . ., n} where n is the number of time steps, and

applying the trapezoidal rule to Eq. 12, we obtain:

Q0ðnÞ5
�
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s ;DhzÞ

2
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where:

Jn21ðQ0;DhzÞ5Q0ðn21ÞDhzð1Þ

1
Xn21

k52

½Q0ðn2k11Þ1Q0ðn2kÞ�DhzðkÞ
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JnðRn
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Xn

k52

½Rn
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s ðn2kÞ�DhzðkÞ (15)

where Tðz;nÞ5T z;nð Þ2TiðzÞ is a normalized temperature,

Dhz(k) 5 hz(tk) 2 hz(tk21), and DAj(z,k) 5 Aj(z,tk) 2 Aj(z,tk21). It

is clear from Eq. 13 that Q0(t) can be obtained from known

quantities, including time series of Q0(t0< t) (prior to the

current time step), measured time series of water tempera-

ture T(z, t), and net shortwave radiation at the water surface

Rn
s ðtÞ. Once the time series of Q0(t) is estimated, water tem-

perature at any depth can be obtained by substituting Q0(t)

into Eq. 12 with prescribed water depth. Similarly, the

Green’s function approach enables reconstructing time series

of Q at any depth from a single depth measurement of

Q(z, t) in the mixed layer (Wang 2012).

After time series of Q0 and Ts are obtained, the sensible

and latent heat fluxes can be estimated via linear stability

analysis. Linear stability analysis estimates turbulent heat

fluxes by quantifying their relative efficiencies in restoring

the thermodynamic equilibrium of surface energy balance

when a perturbation is imposed (Bateni and Entekhabi

2012). Detailed information of the method can be found in

previous studies (Bateni and Entekhabi 2012; Yang and

Wang 2014). Using linear stability analysis, the relative effi-

ciency of LE to H for a saturated surface in the absence of

advective effects in the atmosphere, i.e. when air near the

Table 1. Summary of absorption coefficients and radiation
fractions for different portions of the solar spectrum in water
(Paulson and Simpson 1981).

Wavelength

portion of the

spectrum (1026 m)

Absorption

coefficient,

l (m21) Fraction of radiation, g

0.2–0.6 2.874 3 1022 0.2370

0.6–0.9 4.405 3 1021 0.3600

0.9–1.2 3.175 3 101 0.1790

1.2–1.5 1.825 3 102 0.0870

1.5–1.8 1.201 3 103 0.0800

1.8–2.1 7.937 3 103 0.0246

2.1–2.4 3.195 3 103 0.0250

2.4–2.7 1.279 3 104 0.0070

2.7–3.0 6.944 3 104 0.0004
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water surface is in equilibrium with that surface, is given by

Yang et al. (2013):

Dre5
LE

H
5

Lv

cp

@q�s
@T

� �����
T5Ts

(16)

where cp is the specific heat of air; Lv is the latent heat of

vaporization for water; q�s is the saturated specific humidity.

Using the Clausius–Clapeyron equation, q�s is a function of

surface temperature and therefore Dre depends only on Ts.

Detailed derivation of Dre is provided in Yang and Wang

(2014). The sensible and latent heat flux are then given by:

H5
Rn

l 2Q0ðnÞ
Dre11

; LE5
Dre

Dre11
Rn

l 2Q0ðnÞ
� �

(17)

It is clear from Eqs. 13 and 17 that the proposed method

only requires the surface radiation budget and water temper-

ature at a single depth as input. The water surface fluxes are

formulated without explicitly using meteorological variables

such as wind speed, air temperature, and humidity. This

reduces the error and uncertainty of the modeled surface

fluxes since the measurement error of radiation budget and

temperature are significantly smaller than that of wind speed

and temperature/moisture gradient (Wang et al. 2014). Fur-

thermore, the model prediction of the fluxes is bounded by

the conservation of energy at the surface. The model howev-

er requires equilibrium between the air and water layers near

the interface (weak horizontal heat transfer in both layers);

turbulent fluxes are computed at a rate dissipating radiative

energy to maintain that surface equilibrium.

In a nutshell, the numerical method for estimating the

water surface energy balance developed in this study follows

a two-step procedure. First, heat transported to deeper water

at the surface Q0 is estimated by solving one-dimensional

heat transfer problem via Green’s function approach. Using

Eqs. 2-4 for heat transfer in the mixed layer, the method

assumes that lateral boundary conditions and horizontal

heat transport play a negligible role in determining water

temperatures. Hence, the developed method is preferably

applicable for large water bodies with homogeneous or weak

horizontal heat transport, and far from water–land bound-

aries. Estimating Q0 in moving water bodies with complex

lateral boundaries (e.g., rivers) will require adding a horizon-

tal heat source term on the right-hand side of Eq. 2 as well

as a reasonable description of the lateral boundary condi-

tions. Moreover, turbulent fluxes H and LE are predicted

based on the Q0 estimated in the first step and the measured

net longwave radiation Rn
l .

The major underlying assumptions of the proposed meth-

od include: (1) the quasi-static thermal equilibrium between

the water surface and near-surface atmosphere, inherited

from the premise of the linear stability analysis (Bateni and

Entekhabi 2012), and (2) the analogy in turbulent heat and

moisture transport (Yang and Wang 2014). Approaching the

thermal equilibrium, the evolution of the state of near-

surface air (i.e., temperature, humidity, etc.) follows closely

that of the surface (Bateni and Entekhabi 2012) with its sig-

nal embedded in the evolution of water surface state. In

addition, the analogy in transport mechanism of heat and

moisture is commonly assumed in the literature when in

situ measurements are unavailable (Liang et al. 1994; Mote

and O’Neill 2000), canceling the dependence of the LE/H

ratio on the aerodynamic resistance. Subsequently, H and LE

can be formulated without explicitly using meteorological

variables based on these assumptions. Using flux measure-

ments over the ocean, Large and Pond (1982) found that

transfer coefficients of moisture and heat are very similar

under various meteorological conditions as long as the atmo-

spheric layer is unstable. However, the assumptions do not

necessarily hold all the time (Stensrud 2009). For instance,

the transfer coefficient of heat is found to be significantly

smaller than that of moisture in a stable air layer (Large and

Pond 1982). Wallace and Hobbs (2006) showed that the

magnitude of transfer coefficients of moisture and heat

diverges as wind speed increases. Strong horizontal air move-

ment can also break the equilibrium between water surface

and near-surface air. Therefore, better accuracy of the current

method is expected in predicting surface turbulent heat

fluxes when applied to unstable atmospheric conditions

with low wind speeds.

Site description

In this study, the proposed method is tested against in situ

measurements over Lake Geneva, Switzerland. The field data

were collected during the Lake-Atmosphere Turbulent

Exchange (LATEX) field campaign from 15 August to 27 Octo-

ber 2006. The experimental platform was located about 100 m

offshore in a shallow part of the lake without significant

aquatic vegetation (Vercauteren et al. 2008). Meteorological

variables such as wind velocity, air temperature, and humidity

were measured at four different heights above the water sur-

face using a vertical array of sensors. In this study, we used the

measurements at 1.66 m for subsequent analysis, which is the

closest to the water surface. A water temperature profile was

measured at a frequency of 5 min using a Raman-scattering

fiber-optic temperature profiler. About 1 m of the profiler was

above the water surface, whereas the remaining 1.85 m was

submerged in water. The vertical and temperature resolution

of the profile is 0.004 m and 0.018C. Due to technical issues,

several gaps exist during the measurement period. Detailed

information on equipment and experimental setup can be

found in Vercauteren et al. (2008, 2011).

Results and discussion

Sensitivity analysis

Penetration and absorption of shortwave radiation are the

major players that distinguish surface energy partitioning
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and subsurface heat transfer for water bodies from their land

counterparts. From Eq. 9, it is clear that radiative absorption

is mainly affected by the available net shortwave radiation at

the water surface Rn
s ðtÞ and the absorption coefficient l. For

the study site, Vercauteren et al. (2011) found that the effec-

tive thermal diffusivity in top 1.5 m of the lake mainly

depended on turbulence, and hence was much larger here

than molecular diffusivity. By analyzing phase shift and

amplitude of variation of water temperature, they estimated

an effective thermal diffusivity ranging from 6.6 3 1025 to

3.0 3 1023 m2 s21 in sunny conditions with low wind

speeds. Thermal diffusivity determines the heat transfer rate

in water and has a significant effect on the temperature solu-

tion. Thus, we conducted a parametric analysis to quantify

the sensitivity of water temperature to Rn
s ðtÞ, l and j. The

simulation starts at 00:00 and ends at 24:00 on 4 September

2006, a sunny day with low wind speeds. As shown in Eqs.

12 and 13, constructing the subsurface thermal field requires

Rn
s ðtÞ and temperature measurement at a single depth as

input. Here, the measured water surface temperature from

the fiber-optic temperature profiler is used. To simplify the

problem in the parametric analysis, a uniform initial temper-

ature profile is assumed, and net shortwave radiation at the

water surface is prescribed by a sinusoidal function:

Rn
s 5A sin ðxtloc1/Þ; 6 � tloc � 18 (18)

where A is the amplitude of diurnal variation, x 5 2p/24 rad

h21 is the angular speed of rotation of the earth, tloc is the

local time in hours, / is the phase lag. Three sets of simula-

tions were carried out separately to illustrate the impact of

Rn
s ðtÞ, l, and j on the vertical profile of water temperature.

Four different amplitudes were tested in the first set, namely,

0, 200, 400, and 600 W m22, while l is adopted from Table

1 and a mean thermal diffusivity of 1.0 3 1024 m2 s21 is

used for j. For the second set, l is multiplied by a parameter

a to represent the absorption process with different water

characteristics. Tested a ranges from 0.5 to 4, and the ampli-

tude A and thermal diffusivity j have a constant value of

400 W m22 and 1.0 3 1024 m2 s21, respectively, in these

runs. In the last set, j is varied between 1 3 1026 and 1 3

1023 m2 s21, while l is adopted from Table 1 and A is fixed

to 400 W m22.

Vertical profiles of predicted water temperature with vary-

ing A at 12:00 and 16:00 are shown in Fig. 2a,b. Without

shortwave radiation absorption, heat transfer over the water

surface is identical to that over the land surface. The profile

with A 5 0 represents the temperature solution driven by

homogeneous heat conduction, where the surface forcing is

embedded in the time series of surface temperature. As net

longwave radiation at the surface is the sole energy source,

water temperature decreases with depth. When there is

shortwave radiation absorption, it provides additional energy

other than surface forcing that heats up water unevenly in

the vertical direction, which modifies the homogeneous heat

transfer process in the water body. The difference between

various temperature profiles in Fig. 2a,b thus represents the

cumulative effect of heat transfer and radiation absorption at

different times. Fig. 2a,b clearly show that the water temper-

ature increases with the intensity of shortwave radiation, as

expected. At 12:00, the maximum temperature increase is

found at the depth of 0.5 m. Compared with the case with

no shortwave radiation, temperature increase is about 0.28,

0.55, and 0.838C for A 5 200, 400, and 600 W m22, respec-

tively. The vertical distribution of temperature increase has a

linear relationship with the magnitude of Rn
s ðtÞ, as indicated

in Eq. 12. Note that with a stronger shortwave radiation,

water temperature at a few centimeters depth can be slightly

greater than the surface temperature, owing to the large

absorption coefficient at the longer end of the solar wave-

length band, as presented in Table 1. At 16:00, the maxi-

mum temperature (compared with the no radiation case)

increase occurred at the depth of 0.9 m. The shift of depth

where the maximum temperature increase occurs is due to

reduced Rn
s after noontime. The effect of radiation absorp-

tion decreases with reduced Rn
s as heat transfer plays a more

important role in determining water temperature. As the

temperature closer to the surface is consistently higher with

decreased radiation intensity, diffusion tends to transfer the

large amount of accumulated surface thermal energy to

deeper water. At the depth of 1.5 m, shortwave radiation of

600 W m22 will lead to a temperature increase of about

0.518C at 12:00 and about 0.728C at 16:00.

Results with different a values at 12:00 and 16:00 are plot-

ted in Fig. 2c,d. By changing a, the vertical absorption of

shortwave radiation in the water body is modified, leading

to a different vertical distribution of temperature. However,

it is clear from Fig. 2c,d that the temperature profiles are

insensitive to the selected a values. At 12:00 and 16:00, the

maximum temperature difference is less than 0.18C when a
is increased from 0.5 to 4. The negligible impact is caused by

the efficiency of turbulence in transferring energy in the

mixed layer, which redistributes (mixes) the local effect of

modified radiation absorption rapidly. This is a useful result

since it indicates that our model skill as assessed in the fol-

lowing section is minimally sensitive to l, which is a param-

eter that can vary across sites and with water conditions as

explained before (except potentially in sites with very high

turbidity).

The impact of j on water temperature solutions at 12:00

and 16:00 is demonstrated in Fig. 2e,f. It is shown that the

vertical distribution of water temperature changes markedly

with the magnitude of thermal diffusivity j. With a small j
value of 1 3 1026 m2 s21, heat transfer in the water is so

slow that absorption of shortwave radiation essentially dic-

tates the profile. At 12:00, the maximum temperature is

found at the depth of 0.05 m, and temperatures deeper than

0.6 m remain mostly unperturbed (warming <0.28C as
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compared with initial temperature). Results constructed from

T0.10 were very close to results shown in the manuscript. A

larger j value represents a faster heat transfer in the water

body, and therefore tends to smooth the vertical tempera-

ture profile. When j is 1 3 1023 m2 s21, large thermal diffu-

sivity transports heat very efficiently, such that absorbed
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Fig. 2. Vertical profile of predicted water temperature with (a) varying A at 12:00, (b) varying A at 16:00, (c) varying a at 12:00, (d) varying a at
16:00, (e) varying j at 12:00, and (f) varying j at 16:00, on 4 September. Reference values of parameters, unless varied and specified in the graph,
are A 5 400 W m22, a 5 1, j 5 1.0 3 1024 m2 s21.

Yang et al. Unraveling water surface energy balance

95



energy is redistributed evenly throughout the simulated

depths. At 12:00, the difference between surface temperature

and water temperature at a depth of 1.5 m is only about

0.68C. Temperature profiles with different j values at 16:00

are qualitatively similar to those at 12:00. After 4 hours of

heat transfer, under the condition of small thermal diffusivi-

ty (j 5 1 3 1026 m2 s21), the depth exceeds which water

temperature remains mostly uninterrupted (warming<0.28C

as compared with initial temperature) shifts from 0.6 m to

0.9 m. The parametric analysis indicates that intensity of the

net shortwave radiation Rn
s ðtÞ and thermal diffusivity j deter-

mine the distribution of temperature increase, while the

absorption coefficient l has a negligible impact under a tur-

bulent heat transfer regime.

Reconstruction of water temperature

Following the previous study (Yang and Wang 2014),

temperature measurement at 0.05 m depth from fiber-optic

temperature profiler is adopted to construct the water ther-

mal field. The simulation period is from 1 September to 17

October 2006. The depth of 0.05 m is selected for the follow-

ing reasons: (1) it is in the thermally active shallow water

layer such that the surface energy balance signal is not

significantly contaminated by numerical errors and instabil-

ities in thermal reconstruction; and (2) it is not too close to

the surface such that the signal is not largely influenced by

the oscillation of water surface conditions (e.g., waves). Nev-

ertheless, we performed the reconstruction using a depth of

0.1 m and the results were very similar to the ones we

report; the reconstruction is thus not very sensitive to the

exact depth of the measurements. Measured net radiation

and wind speed during the study period are shown in Fig. 3.

It is clear from the graph that the lake is under sunny condi-

tion with low wind speeds in general. Vercauteren et al.

(2008) reported that the heights of the waves in the lake had

a median of about 0.03 m and rarely exceeded 0.2 m for

wind speeds between 1 and 10 m s21.

Vertical mixing in the mixed layer is mainly caused by

wind stress on the water surface such that j is not expected

to be constant in time and space. By analyzing phase shift

and amplitude of variation of water temperature in the lake,

Vercauteren et al. (2011) found that high wind speed tends

to increase depth of the mixed layer, as it generates stronger

shear force at the surface. During September, it was observed

that the top 1 m of the lake is generally well mixed with an

estimated j of about 1.2 3 1024 m2 s21. Hence, we used a
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Fig. 3. Measured (a) net radiation and (b) wind speed during the study period from 1 September to 17 October 2006.
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constant j of 1.2 31024 m2 s21 for reconstructing water tem-

peratures in top 1 m of the lake. It is noteworthy that our

approach is capable of reconstructing water temperatures

with varied j, as long as temporal variation of j is available.

The diffusivity estimated from field measurements implicitly

contains information of mean atmospheric conditions and

water column stability in this period. Thus the proposed

method here is not entirely uncoupled from atmospheric

conditions.

Reconstructing water temperature requires measured net

shortwave radiation as input, while only net radiation is

available for this particular dataset. To estimate the net

shortwave radiation, the Stefan-Boltzmann law is used:

Rn
s 5Rn2Rn

l 5Rn2ðeaT
4
a2ewT4

s Þ (19)

where ea and ew denote the emissivity of air and water; r is

the Stefan-Boltzmann constant 5.67 3 1028 W m22 K24, and

Ta is the air temperature in Kelvin. The emissivity of water

ew is relatively constant; here we used a value of 0.98 follow-

ing a previous study (Rees and James 1992). The atmospheric

emissivity ea in Eq. 19 represents the whole atmospheric col-

umn of air above the site; it is thus sensitive to various mete-

orological variables, including air temperature, relative

humidity, cloudiness, etc. (Crawford and Duchon 1999), and

ranges from the clear-sky value to the fully cloudy value of

unity. Following a previous study (Satterlund 1979), ea is cal-

culated using:

ea5clf1ð12clfÞ3 1:08 12exp 2e0
Ta=2016


 �h in o
(20)

where clf is the cloud fraction, e0 is the vapor pressure in

millibar. A clear-sky condition is assumed in this study as

cloud fraction cannot be estimated without direct measure-

ment of downward shortwave radiation. Estimated ea from

the Eq. 20 falls in a small range of 0.84–0.88 for the simula-

tion period over the study site. Considering the air tempera-

ture range of 10–208C during the study period, maximum

error in estimated Rn
s and Rn

l is about 51.0–58.5 W m22. In

addition, in the previous section, the sensitivity analysis

showed that a difference of 200 W m22 in magnitude of Rn
s

leads to a difference of about 0.288C for water temperatures

in the top 1.5 m. Therefore, the error due to Ea estimation is

tolerable for the purpose of water temperature reconstruction

in this study.

The air temperature measured at 1.66 m above the water

surface is used for Eq. 19 as it is the closest to the surface.

Three sets of surface temperature data are available, collected

by thermocouple, IR sensor, and fiber-optic temperature pro-

filer, respectively. Measurement from fiber-optic temperature

profiler is selected, as it has the highest data availability and

is consistent with the input temperature measurement. As

water level varies with wind condition throughout the day,

surface temperature is determined by finding the sharp

change around still water level in the temperature profile,

where difference between two adjacent temperature measure-

ments exceeds 2.5 times of the standard deviation of water

temperature.

Comparisons of model predicted surface temperature (Ts),

water temperature at 0.15 m (T0.15), and water temperature

at 1.0 m (T1.0) against field observations are shown in Fig. 4.

Due to gaps in measured input variables, predicted Ts, T0.15

and T1.0 are discontinuous. The agreement between predic-

tion and observation is generally good throughout the simu-

lation period, confirming the model’s capability in

accurately reconstructing water temperature from measure-

ments at another depth in the mixed layer. For T0.15 and

T1.0, the coefficient of determination R2 is 0.98 and 0.96,

and root mean square error (RMSE) is less than 0.18C, indi-

cating a reasonable goodness-of-fit between predictions and

observations. It is found that the model’s accuracy of water

surface temperature prediction is slightly impaired, as com-

pared with the prediction of water temperature at 0.15 m

and 1.0 m. This could be related to the variability of bound-

ary conditions at the water–air interface, e.g., wave, wind

shear, boat wakes, etc. Furthermore, Vercauteren et al.

(2009) reported that a considerable deviation existed

between surface temperature measurements from different

sensors. Evaluating the predictions of surface temperature

thus becomes challenging with the significant uncertainty

and error related to in situ measurements.

In addition, it is also important to evaluate the perfor-

mance of the method in predicting spatial distribution of

water temperature. Simulated water temperature profiles are

compared against field measurements in the lake for two

days with distinct meteorological conditions: a calm clear

day (maximum wind speed <1 m s21), September 20

(Fig. 5a), and a windy day (maximum wind speed >5 m s21),

October 8 (Fig. 5b). Though it is aforementioned that the

proposed method is preferably applicable for low wind con-

ditions, Fig. 5 shows that reconstructed temperature profiles

agree with measurements reasonably well for the sunny day

and the windy day. Note that the initial time of simulation

for the sunny day and the windy day is 10:00, September 17

and 06:00, October 6, respectively. A full diurnal cycle

(warming and cooling of water temperatures) has been simu-

lated before the predicted temperature profiles shown in Fig.

5 to reduce the impact of initial conditions. We should

emphasize here that the information of mean atmospheric

and water conditions, rather than atmospheric and water

variability, is implicitly contained in the estimated diffusivi-

ty from field measurements. Thus, it does not contradict the

reasonable agreement in Fig. 5 with a same j for two distinct

meteorological conditions. At depths between 0.1 and 1.0 m,

difference between predicted and observed water tempera-

tures is less than 0.28C. The largest deviation of more than

28C is observed at the surface, which is mainly attributable

to measurement errors and fluctuation of boundary
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conditions at the water–air interface. In the vertical direc-

tion, surface temperature is the highest (compared with oth-

er depths) during daytime (12:00 and 16:00) and the lowest

at night (4:00 and 20:00) on the calm clear day. On the oth-

er hand, the surface is consistently the coolest point of the

profile throughout the diurnal cycle on the windy day. This

indicates that presence of solar radiation has a significant

warming effect on water layer close to the surface (<0.1 m)

only under a low wind condition.

Prediction of surface energy balance

After the time series of surface temperature is recon-

structed, H and LE can be estimated from Eq. 17. Through-

out the simulation period, both observed and predicted
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turbulent heat fluxes contain several big gaps due to limited

data availability. Hence scatter plots are used to compare

model prediction against observation over the entire simula-

tion period. Note that due to complexities at the water–air

interface, direct in situ measurement of Q0 at the water sur-

face is extremely challenging. In practice, the most com-

monly used (hereafter referred to as “the conventional”)

approach to estimate Q0 is through a combination of gradi-

ent method and calorimetry (Liebethal et al. 2005):

Q0ðtÞ52k
@T

@z

����
zq

1

ðzq

0

Cw
@T

@t
dz2

ðzq

0

Cwsðz; tÞdz (21)

where zq is an arbitrary depth close to surface and equals to

0.05 m in this study. This approach accounts for the vertical

gradient of temperature measured at zq and includes the

heat storage in the water body above when determining Q0.

From Eq. 21 it is clear that the conventional approach uses

measured time series of water temperature profiles to calcu-

late Q0, while the proposed method in this study (Eq. 13)

only requires measured time series of water temperature at a

single depth.

Figure 6 shows that predicted Q0 from the single-depth

method in this study agrees well with that from the conven-

tional approach, while modeled turbulent heat fluxes are not

highly accurate. RMSEs for H, LE, and Q0 are about 30, 71,

and 22 W m22, respectively. As the model capacity in esti-

mating Q0 is validated by Fig. 6c, the substantial discrepancy

in H and LE is hypothesized as primarily due to the inade-

quacy of radiation parameterization. The estimate of net

longwave radiation entails among other uncertainty in the

surface temperature measurement, and its maximum error

can be greater than 50 W m22 as illustrated in the previous

discussion. The error is propagated to the available energy

for turbulent heat fluxes (i.e., Rn
l 2Q0ðnÞ in Eq. 17 equals to

measured Rn minus estimated Rn
l from Eqs. 19 and 20),

which can cause a sizable deviation considering the mag-

nitude of H and LE. To verify this hypothesis, we force

the available energy for turbulent heat fluxes by

explicitly imposing the surface energy balance constraint

(i.e., Rn
l 2Q0ðnÞ in Eq. 17 equals to observed (H 1 LE)). A sim-

ilar treatment was adopted by Vercauteren et al. (2009) to

estimate the evaporation arising from the water surface, and

is hereinafter referred to as the repartitioning approach. As

shown in Fig. 6, with the repartitioning of the available

energy using measured dataset, the accuracy of the linear

stability analysis method (Eq. 17) is significantly improved

and the method is now capable of accurately predicting both

sensible and latent heat arising from the lake surface. Values

of RMSE for H and LE using the repartitioning approach are

19 and 26 W m22, significantly smaller than those using the

estimated radiation (Eq. 19). Nevertheless, it is found that

the repartitioning method slightly overestimates H and

underestimates LE. This deviation results from the deviation

in surface temperature prediction, which is strongly affected

by the oscillation of water surface conditions.

Comparison to the MEP model

To illustrate the performance of the method proposed in

this study with respect to existing numerical approaches,

here we compare it with the MEP model. Wang et al. (2014)

recently extended the MEP model for surface energy budgets

over water, snow, and ice surfaces. Model prediction shows

encouraging agreement with observation from several field

experiments. The relative efficiency of LE to H in the MEP

model is given by Wang et al. (2014):

Dre5
LE

H
56

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11
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Lv

cp

@q�s
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� �
jT5Ts

s
21

 !
(22)

and Q0 is calculated by a physically based analytical

solution:
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Fig. 5. Evolution of predicted and observed water temperature profiles in the top 1 m of the lake for (a) a calm clear day, September 20, and (b) a
windy day, October 8. The solid lines represent model results, while the point markers are for the measurements. Predicted water temperatures are

reconstructed from T0.05.
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where Iwsi5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qwcwk

p
is the thermal inertia parameter of water

(Wang et al. 2014), qw and cw denote the density and spe-

cific heat of water. Once Q0 is obtained, the MEP model can

predict turbulent heat fluxes by distributing available energy

at the surface (Rn
l 2Q0) based on the relative efficiency

between H and LE in Eq. 22. Note that the MEP model only

requires Rn
s , Rn

l , and Ts as inputs to estimate the surface ener-

gy budgets.

Model predictions by the proposed and the MEP methods

are shown in Fig. 7. Predicted surface heat fluxes from both

methods are in good agreement. A negative Q0 value implies

transport of thermal energy from water to the atmosphere.

This confirms the finding in previous study that shortwave

radiation absorption within the water layer close to the sur-

face is an important energy source of the turbulent heat

fluxes (Wang et al. 2014). Compared against observed turbu-

lent fluxes and Q0 from the conventional approach, the MEP

model has RMSEs of about 25, 39, and 36 W m22 for H, LE,

and Q0, respectively. These results indicate that the method

proposed in this study has a slightly better overall perfor-

mance than the MEP model, when driven by the accurate

measurement of available energy, in predicting water surface
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Fig. 6. Scatter plots of (a) predicted LE versus observation, (b) predicted H versus observation, and (c) predicted Q0 from proposed method versus
that from the conventional approach for 1 September–17 October 2006.
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energy balance over the study site. This finding is consistent

with simulation results over land surface in previous study

(Wang et al. 2014; Yang and Wang 2014).

Concluding remarks

In this study, we developed a new physically based scheme

to estimate the surface energy components over water surface

by combining the linear stability analysis and the Green’s

function approach. The underlying mechanism is that subsur-

face thermal mass in the mixed layer implicitly contains the

signal of surface temperature evolution, which regulates the

partitioning of solar energy at the surface. Capable of predict-

ing all dissipative surface energy budgets, the method only

requires the net longwave and shortwave radiative fluxes and

temperature measurement at a single depth in the mixed

layer, and is thus highly suitable for large-scale applications.

Performance of the proposed method is strongly affected by

estimation of turbulent thermal diffusivity, which carries the

information of meteorological and limnological conditions.

Without explicitly using wind speed or temperature/moisture

gradient, the method substantially reduces the uncertainty

and potential error associated with meteorological measure-

ments. Using the estimated j from in situ measurements,

results show that the model is able to reconstruct water tem-

perature profile from a single-depth measurement reasonably

well. With an accurate measurement of available energy at

the water surface, predicted H and LE from the linear stability

analysis method are in reasonable agreement with experimen-

tal observations. In addition, results of comparison with the

MEP model illustrate that the proposed method is of better

accuracy over the study site.
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Though results from the proposed method are promising,

there are a few limitations that need to be addressed in

future studies. The contribution of aerodynamic conditions

in parameterizing turbulent heat fluxes is not accounted in

this study. This simplification underestimates the influence

of aerodynamic conditions on surface energy partitioning,

and may lead to considerable bias under strong wind condi-

tion. A uniform and time-invariant thermal diffusivity in

vertical direction is assumed in this study based on previous

data analysis (Vercauteren et al. 2011). This particular value

is not expected to be universal, and the homogeneity and

time-invariance assumptions might not hold in oceans or

seas where mixing in the water body can fluctuate signifi-

cantly more than in a lake. Though our simulation in this

study does not strictly account for temporally varied j, we

recommend time and site-specific determination of turbulent

thermal diffusivity, especially for study areas and periods

where meteorological and limnological conditions change

vastly. Another limitation is that model performance is eval-

uated with a limited data set of field measurements over a

lake. Further tests of the proposed method over water surfa-

ces with different fetch sizes (and over oceans and seas) and

hydroclimatic conditions are needed, particularly when the

turbulent diffusivity in the water is different from the typical

lake value we use here. Nevertheless, the method proposed

in this study offers a novel and physically based tool to pre-

dict water surface energy partitioning with a minimal set of

information. With enhanced representation of water–atmo-

sphere interaction, the method has potential applications for

water ecosystems and oceanographic study, especially at

large scales.
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