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as it is needed for multigrid like iterative methods. In the present article,
this problem is resolved for selfadjoint second order problems and Dirichlet
boundary conditions. The idea is to construct appropriate subspace decom-
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a cube. Then the general theory of subspace correction methods can be
applied.
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Chapter �

Introduction

By definition, a multilevel method for finite element equations is based on
a sequence of refined triangulations. One starts with a coarse initial mesh
crudely reflecting the properties of the boundary value problem under consid-
eration. For the usual mathematical test problems like the Laplace equation
on the unit square or on an L–shaped domain, this initial triangulation con-
sists of only very few elements. Real–life problems, on the other hand, are
often posed on very complicated regions, which can only be described by
hundreds or thousands of finite elements.

A possibility to construct fast solvers for the resulting linear systems is to
disregard any refinement history of the underlying grids and to decompose
these grids a posteriori. This leads to some kind of algebraic multigrid meth-
ods. A recent approach is described in the paper of Bank and Xu in these
proceedings.

In the present article, we follow the opposite direction of approximating com-
plicated geometries in course of the refinement process. We restrict our
attention to second order selfadjoint elliptic boundary value problems and
Dirichlet boundary conditions. For this special class of problem we are able
to construct nearly optimal iterative methods, which do not depend on the
regularity of the boundary. For plane domains, even unphysical boundary
conditions at a single point (which have no continuous counterpart) are al-
lowed.

The idea is to construct appropriate subspace decompositions of the corre-
sponding finite element spaces by way of an embedding of the domain under
consideration into a simpler domain. Then the general theory of additive
and multiplicative subspace correction methods can directly be applied. For
a survey of this machinery, see the review articles of Xu [10] and of Yserentant
[14], for example.

Our construction has originally been motivated by the numerical solution
of obstacle problems; see [6], [5], [7]. In this application, the domain, on
which linear elliptic problems have to be solved, is the subdomain where the
current approximate solution does not touch the obstacle. This subdomain
is unknown in advance of the computation and for this reason usually has no
exact representation on coarser grids.
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Chapter �

The Discrete Elliptic Problem

Let Ω ⊆ R
2 be a simple polygonal domain, e.g., a square. Let T0 be a coarse

initial triangulation of Ω, which is refined several times, giving a sequence
of triangulations T0, T1, . . . , Tj. Despite the fact that all techniques and es-
timates in this paper can easily be generalized to the case of nonuniformly
refined grids, we assume for ease of presentation that the triangles are uni-
formly refined. The triangles in Tk+1 are generated from the triangles in
Tk by subdividing these triangles in the usual fashion into four congruent
subtriangles.

With the triangulations Tk we associate finite element spaces Sk, consisting
of the continuous functions, which are linear on the triangles in Tk. The
functions u ∈ Sk are given by their values at the nodes x

(k)
i , which are the

vertices of the triangles in Tk. With every node x
(k)
i we associate a basis

function ψ
(k)
i of Sk, taking the value 1 at this node and the value 0 at all

other nodes.

Let Ω′ be an arbitrarily complicated, nasty subdomain of Ω, possibly without
any regularity property. Consider the nested subspaces

S ′
k = span{ψ(k)

i |ψ(k)
i (x)=0 for x /∈Ω′} (2.1)

of the spaces Sk and in particular the space S ′=S ′
j. The supports of the func-

tions in the subspaces S ′
k exhaust Ω′ from interior. Our aim is to construct

and to analyze fast iterative solution procedures for the discrete boundary
value problem to find the function u ∈ S ′ satisfying

a(u, v) = f∗(v), v ∈ S ′. (2.2)

Here f∗ is a given linear functional on S ′. a(u, v) denotes a symmetric coer-
cive bilinear form on S ′ with the property that

δ|u|21 ≤ a(u, u) ≤ M |u|21 (2.3)

holds for all u ∈ S ′. δ and M are positive constants and |u|1= |u|1;Ω′ denotes
the usual seminorm on H 1(Ω′) given by

|u|21 =
2∑
i=1

∫
Ω′
|Diu(x)|2dx. (2.4)

We assume that | · |1 is a norm on S ′.
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Chapter �

Subspace Correction Methods

Let 〈u, v〉 be an arbitrary inner product on S ′. Define the operator A : S ′ →
S ′ by the relation

〈Au, v〉 = a(u, v), v ∈ S ′ , (3.1)

and determine the right hand side f ∈ S ′ by

〈f, v〉 = f∗(v), v ∈ S ′. (3.2)

Then the discrete boundary value problem (2.2) is equivalent to the operator
equation

Au = f. (3.3)

To solve (3.3) iteratively, one specifies subspaces

Wk ⊆ S ′
k, k = 0, 1, . . . , j , (3.4)

where the caseWk = S ′
k is explicitly included. Introducing the a–orthogonal

projections Pk : S ′ →Wk by

a(Pku, wk) = a(u, wk), wk ∈ Wk, (3.5)

the basic building blocks of the iterative methods considered here, are the
subspace corrections

ũ ← ũ+ Pk(u− ũ) (3.6)

with respect to the spaces Wk. After the subspace correction (3.6), the
error u− ũ between the exact solution u and the new approximation ũ is a–
orthogonal to the space Wk. Utilizing the projections Qk : S ′ → Wk, given
by

〈Qku, wk〉 = 〈u, wk〉, wk ∈ Wk, (3.7)

and the operators Ak : Wk → Wk, defined analogously to A : S ′ → S ′, the
correction step (3.6) can be written as

ũ ← ũ+ A−1
k Qk(f − Aũ). (3.8)

For large subspacesWk, as considered here, the correction steps (3.8) are too
expensive. Therefore, one replaces these correction steps by the approximate
correction steps

ũ ← ũ+B−1
k Qk(f − Aũ) (3.9)
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with symmetric and positive definite operators Bk : Wk → Wk. These
operators should have the property that the correction term

dk = B−1
k Qk(f − Aũ) (3.10)

can easily be computed as the solution of the linear system

〈Bkdk, wk〉 = 〈f − Aũ, wk〉, wk ∈ Wk. (3.11)

It should be noted that the evaluation of

〈f − Aũ, wk〉 = f∗(wk)− a(ũ, wk) (3.12)

neither requires an explicit knowledge of the abstract operator A nor of the
right hand side f .

If the single subspace correction steps (3.9) are repeated in a cyclic order, one
gets a multiplicative subspace correction method . These methods generalize
the classical Gauss–Seidel iteration, where the subspaces are one–dimensional
and are spanned by basis functions. The corresponding additive subspace
correction method

ũ ← ũ+
j∑

k=0

B−1
k Qk(f − Aũ) (3.13)

is a Jacobi–type iteration. It is usually applied in form of a preconditioner
for the conjugate gradient method.

A classical multigrid method for the solution of (2.2) and (3.3), respectively,
would correspond to the choice Wk = S ′

k and to a simple symmetric Gauss–
Seidel or Jacobi–iteration B−1

k .

The general framework outlined here arose from the abstract formulation of
domain decomposition methods. A breakthrough in the analysis of these
methods were the papers [2] and [3] of Bramble, Pasciak, Wang and Xu, in
which the first satisfying convergence proof for the multiplicative case has
been given. For detailed references and a thorough discussion, we refer to
[10], [14], or to Oswald’s paper in these proceedings.
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Chapter �

Subspace Decompositions

The basic step in the convergence analysis of the subspace correction methods
is to find a subspace decomposition

S ′ = V0 ⊕ V1 ⊕ . . .⊕ Vj (4.1)

of the space S ′ = S ′
j into subspaces

Vk ⊆ Wk, k = 0, 1, . . . , j , (4.2)

such that
j∑

k=0

〈Bkvk, vk〉 ≤ K1 ‖
j∑

k=0

vk‖2 (4.3)

holds for all vk ∈ Vk. The norm on the right hand side of this equation is the
energy norm

‖u‖ = a(u, u)1/2 (4.4)

associated with the boundary value problem under consideration. The con-
stant K1 (possibly still depending on the number j of refinement levels)
describes the stability of the decomposition (4.1).

If the Bk are taken as usual (Jacobi method, symmetrized Gauss–Seidel it-
erations, etc.) and if the level 0 correction is exactly computed, the estimate
(4.3) is equivalent to the estimate

|v0|21 +
j∑

k=1

4k‖vk‖20 ≤ K̃1 |
j∑

k=0

vk|21 (4.5)

for the functions vk ∈ Vk, or follows at least from this estimate. The (semi–)
norm on the right–hand side of (4.5) is given by (2.4), and the inner product

(u, v) =
∑
T∈T0

1

area(T )

∫
T
uv dx (4.6)

induces the norm ‖v‖0 = (v, v)1/2. The task of the weights 1/area(T ) is to
make the estimates independent of the size of the triangles in the initial tri-
angulation. In the three–dimensional case, these factors have to be replaced
by other factors behaving like 1/diam(T )2. The factors 4k = (2k)2 arise from
the fact that the diameters of the triangles shrink by the factor 2 from one
refinement level to the next. For a detailed exposition of the relation between
(4.3) and (4.5), see [14].
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For the analysis of the additive version one needs the second essential condi-
tion that

‖
j∑

k=0

wk‖2 ≤ K2

j∑
k=0

〈Bkwk, wk〉 (4.7)

holds for all wk ∈ Wk, or equivalently, as above, the estimate

∣∣∣ j∑
k=0

wk
∣∣∣2
1
≤ K̃2

{
|w0|21 +

j∑
k=1

4k‖wk‖20
}
. (4.8)

As (4.8) is known to hold for all functions wk ∈ Sk (the spaces associated
with the basic domain Ω) with a constant K̃2 not depending on j, nothing has
to be shown here. For a proof of (4.8), see [1] or [14]. Similarly, the Cauchy–
Schwarz inequality, needed for the analysis of the multiplicative procedure
(see [10] or [14], for example), is a direct consequence of the corresponding
property for the full spaces Sk.
The speed of convergence of the optimally scaled additive method (3.13),
or of its conjugate gradient–accelerated version, can be estimated in terms
of the constants K1 and K2 in (4.3) and (4.7). Similar results hold for the
multiplicative version. For a detailed exposition, we refer again to the survey
articles [10] and [14].
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Chapter �

A Subspace Decomposition by Interpolation

Operators

The remaining task is to construct a decomposition (4.1) of the discrete
solution space S ′ with the property (4.5). In this section, we consider de-
compositions generated by interpolation–like operators I ′k : S ′ → S ′

k given
by

(I ′ku)(x
(k)
i ) =

{
u(x

(k)
i ) ψ

(k)
i ∈ S ′

k

0 otherwise .
(5.1)

Recall that such splittings are related to the hierarchical basis method [11],
[13]. Because of the decomposition

u = I ′0u+
j∑

k=1

(I ′ku− I ′k−1u) (5.2)

of the functions u ∈ S ′, the space S ′ is the direct sum of S ′
0 and of the

subspaces
Vk = {I ′ku− I ′k−1u |u ∈ S ′} (5.3)

of the spaces S ′
k.

The analytic foundation for the proof of the stability of this decomposition
is the following

Lemma 5.1 There exists a constant c depending only on the shape regularity
of the triangles T ∈ Tk such that

|u(x)− u(y)| ≤ c
√
j−k+1 |u|1;T (5.4)

holds for all functions u ∈ Sj and all points x, y ∈ T .
This estimate can be proved along the lines given in [11]. The fact, that we
are dealing with two space dimensions, enters the proof of this lemma. For
three space dimensions, the estimate (5.4) is wrong.

With Lemma 5.1, we can estimate the norm of the modified interpolation
operators (5.1). This is, in a certain sense, the key result of this section.

Lemma 5.2 There exists a constant c depending only on the shape regularity
of the triangles in T0 such that

|I ′ku|1 ≤ c
√
j−k+1 |u|1 (5.5)

holds for all functions u in the subspace S ′ = S ′
j of Sj.
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Proof. We estimate |I ′ku|21;T for the triangles T ∈ Tk. Two cases have to
be distinguished. The first case is that T is an “interior” triangle of Ω′, i.e.,
that the basis functions ψ

(k)
i associated with all three vertices of T belong to

S ′
k. In this case, the restriction of I ′ku to T is simply the linear interpolant

of u at the vertices of T . Therefore, the estimate

|I ′ku|1;T ≤ c1
√
j−k+1 |u|1;T (5.6)

follows from Lemma 5.1 by a simple scaling argument.

If there is a basis function ψ
(k)
i associated with a vertex x

(k)
i of T , which

does not belong to S ′
k, the situation is slightly more complicated. In this

case, there exists at least one point x̄ /∈ Ω′ in T1 = T or in another triangle
T1 ∈ Tk with vertex x

(k)
i . The functions in S ′ vanish at x̄. Therefore, for

every x ∈ T , one gets

|u(x)| ≤ |u(x)− u(x(k)i )|+ |u(x(k)i )− u(x̄)|
≤ c

√
j−k+1 { |u|1;T + |u|1;T1} .

As above, this yields the estimate

|I ′ku|1;T ≤ c2
√
j−k+1 |u|1;T∪T1. (5.7)

As each triangle in Tk intersects only a limited number of other triangles in
Tk, the proposition follows from (5.6) and (5.7).

The functions vk in the space Vk satisfy the estimate

4k‖vk‖20 ≤ c |vk|21 (5.8)

with a constant c depending again only on the shape regularity of the trian-
gles under consideration. This estimate relies on the observation that every
node x

(k)
i has a neighbor x

(k)
l of first or second degree at which the functions

in Vk vanish. The scaling factor 4k depends only on the number k of refine-
ment levels, because the L2–like norm induced by the inner product (4.6) is
scaled by the areas of the triangles in the initial triangulation.

As an immediate consequence of Lemma 5.2 and of (5.8) (compare [11], [12]),
we can state

Theorem 5.3 There exists a constant C depending only on the shape regu-
larity of the triangles in T0 (and not on the domain Ω′!) such that

|I ′0u|21 +
j∑

k=1

4k‖I ′ku− I ′k−1u‖20 ≤ Cj2|u|21 (5.9)

holds for all functions u ∈ S ′
j .
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Hence, the decomposition of S ′ into S ′
0 and the subspaces (5.3) is stable in

the sense of (4.3) with a constant

K1 ∼ j2 (5.10)

growing only logarithmically with 1/h ∼ 2j . Therefore, for any choice

Vk ⊆ Wk ⊆ S ′
k , (5.11)

one gets a nearly optimal multilevel method. The number of iteration steps,
needed to reduce the error by a given factor, increases at most logarithmically,
when the gridsize tends to zero. Classical multigrid methods correspond to
the choice Wk = S ′

k, whereas the other extreme Wk = Vk leads hierarchical
basis type iterative methods. This considerably generalizes related results in
[6].

Note that absolutely no regularity assumption concerning the boundary of
the domain Ω′ ⊆ Ω entered. Even unphysical boundary conditions at a single
point, which have no continuous counterpart, are allowed. On the other hand,
the construction works only for two space dimensions.
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Chapter �

The Decomposition of the Solution Space by

L2�like Projections

Assuming a certain regularity of Ω′, one can also utilize the L2–like decom-
position

u = Q′
0u+

j∑
k=1

(Q′
ku−Q′

k−1u) (6.1)

of the functions u ∈ S ′
j , where the Q′

k : S ′ → S ′
k are the orthogonal projec-

tions with respect to the inner product (4.6). Recall that this decomposition
played a crucial role in [4]. It turns out that the decomposition (6.1) of S ′

j

into S ′
0 and the subspaces

Vk = {Q′
ku−Q′

k−1u) |u ∈ S ′} (6.2)

is stable, if R2\Ω′ is “rich enough”. Different from the construction in the
last section, this approach works also for three space dimensions.

For simplicity, let S ′
k be a subspace of H1

0 (Ω) ⊆ H1(R2). We call T ∈ Tk a

boundary triangle of Ω′, if at least one basis function ψ
(k)
i , associated with

a vertex x
(k)
i of T , is not contained in S ′

k. We make the following regularity
assumption on Ω′: For every boundary triangle, there exists a circle B such
that every triangle in Tk intersecting T is completely overlapped by B and
such that the area of B can be estimated as

measB ≤ c1measB\Ω′ , (6.3)

and the diameter of B as

diamB ≤ c2 diamT. (6.4)

The property (6.3) excludes that the complement of Ω′ consists of single
points or lines. This was allowed in the last section. Nevertheless the con-
dition is extremely weak. It covers domains which some people would call
“fractal”. Oswald [9] discusses a related condition for the solution of our
problem.

For a given boundary triangle T ∈ Tk and for the associated circle B, one
can define the operator Π : L2(B)→ L2(B) by

(Πu)(x) =
1

measB\Ω′

∫
B\Ω′

u(y) dy . (6.5)
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It maps the functions in L2(B) to constants. The square of the L2–norm of
this operator is

measB

measB\Ω′ ≤ c1 . (6.6)

As Π reproduces constant functions, (6.6) yields

‖u− Πu‖L2(B) ≤ (1+
√
c1) inf

α∈R
‖u− α‖L2(B). (6.7)

With help of the Poincaré–inequality for the circle B and with (6.4), one
obtains the error estimate

‖u− Πu‖0;B ≤ c 2−k |u|1;B, u ∈ H1(B), (6.8)

with respect to the weighted L2–norm induced by the inner product (4.6) on
the left hand side. Therefore, the functions u ∈ H1(R2) vanishing on B\Ω′

and in particular the functions in u ∈ S ′ satisfy

‖u‖0;B ≤ c 2−k|u|1;B . (6.9)

The constant c in this estimate depends only on the constants c1 and c2 in
(6.3) and (6.4), respectively and on the shape regularity of T0.
Next, we introduce the L2–bounded quasi–interpolants M ′

k : S ′ → S ′
k by

M ′
ku =

∑
ψ
(k)
i

∈S′
k

(u, ψ
(k)
i )

(1, ψ
(k)
i )

ψ
(k)
i . (6.10)

Then, utilizing (6.9) and the Poincaré–inequality, one can show the error
estimate

‖u−M ′
ku‖0 ≤ ĉ 2−k|u|1. (6.11)

The proof relies essentially on the fact that the operators M ′
k reproduce

functions on a triangle T ∈ Tk, which are constant in a neighborhood of T .
Details on this technique can be found in [12].

The estimate (6.11) implies the error estimate

‖u−Q′
ku‖0 ≤ ĉ 2−k|u|1 (6.12)

for the orthogonal projections Q′
k : S ′ → S ′

k. Using in addition that

|u−Q′
0u|21 ≤ K̃1

j∑
k=1

4k‖Q′
ku−Q′

k−1u‖20 (6.13)

holds for u ∈ S ′ (this is a consequence of (4.8)), one finally obtains

11



Theorem 6.1 Provided that the subregion Ω′ has the properties described at
the beginning of this section, there exists a constant C such that

|Q′
0u|21 +

j∑
k=1

4k‖Q′
ku−Q′

k−1u‖20 ≤ Cj |u|21 (6.14)

holds for all functions u ∈ S ′.

We remark that the optimality of the decomposition (6.1) can be shown in
a similar way; see [9]. Trying to keep the conditions on the boundary of Ω′

as weak (and simple) as possible, we did not attempt to prove such a result
here.

Based on Theorem 6.1, one obtains nearly optimal subspace correction meth-
ods for Wk = S ′

k; again the number of iteration steps needed to reduce the
error by a given factor grows only at most logarithmically, when the gridsize
decreases.
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Chapter 	

Numerical Experiences and Final Remarks

As a first illustrating example, we consider the unit square Ω = (0, 1)× (0, 1)
with the initial triangulation T0 depicted in Figure 7.1 and with final trian-
gulations Tj obtained by a successive uniform refinement of T0 as described
in Section 2. The bilinear form a(u, v) of Section 2 is the Dirichlet–integral,
leading to a boundary value problem for the Laplace equation. The right–
hand side f∗(v) is given by the integral of v over Ω.

Figure 7.1: Initial triangulation

We compared the convergence rates of a classical multigrid method (the
multiplicative subspace correction method corresponding toWk=S ′

k and the
symmetric Gauss–Seidel–method as approximate solver B−1

k ) for Ω′
1=Ω with

the rates obtained for Ω′
2 = (0, 1−2−(j+2))× (0, 1) as the other extreme. The

observed convergence rates are shown in Table 7.1.

j=2 j=3 j=4 j=5 j=6 j=7

Ω′
1 0.28 0.30 0.31 0.32 0.33 0.33

Ω′
2 0.49 0.58 0.65 0.71 0.75 0.78

Table 7.1: Convergence rates for the first example

The convergence rates for the two domains differ considerably, a fact which
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can be easily explained. Of course, the unit square Ω′
1 gives an optimal

performance, whereas, for Ω′
2, the supports of the functions in S ′

k overlap
only the rectangle (0, 1−2−(k+2))× (0, 1) so that Ω′

2 = (0, 1−2−(j+2))× (0, 1)
is not exhausted very well. The convergence rates for Ω′

2 are typical for the
convergence rates that we observed for many other domains with critical
boundaries.

One possibility to improve the convergence rate is to use enlarged correc-
tion spaces Wk = S∨

k , as obtained from the extension of S ′
k by truncated

basis functions of Sk (c.f. [7],[8]). In this way, one reaches nearly the same
convergence rates as for regular problems. For the domain Ω′

2 above, the
convergence rates are asymptotically equal to the rates for Ω′

1 = Ω.

As a second example, we consider the Laplacian on a subdomain Ω′ of the
unit square Ω with “fractal” boundary. Starting with Ω′

0 = Ω, the domain
Ω′ is approximated by a sequence of domains Ω′

j , which are triangulated by
subsets T ′

j ⊂ Tj. The boundaries of Ω′
4 and Ω′

5 are shown in Figure 7.2.
We solved the boundary value problem on these domains. The convergence
rates of the multiplicative methods with Wk = S ′

k and with extended spaces
Wk = S∨

k are given in Table 7.2.

Figure 7.2: Approximate boundaries of the fractal domain
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Difficulties in the analysis of the modified versions do not arise from the
stability estimate (4.3), because one can use the same subspaces Vk ⊆ S ′

k ⊆
S∨
k as before, but from the estimates (4.7), (4.8). The optimal estimate

(4.8) does not transfer automatically from the full spaces Sk to the spaces
Wk = S∨

k as in the case of correction spacesWk ⊆ Sk. However, a very crude
argument, using only the triangle inequality, shows that (4.7) still holds with
a constant K2 ∼ j. Hence, these problems can be easily remedied at the cost
of an additional power of j.
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j=2 j=3 j=4 j=5 j=6 j=7

S ′
k 0.30 0.61 0.58 0.68 0.65 0.71
S∨
k 0.28 0.30 0.32 0.32 0.33 0.34

Table 7.2: Convergence rates for the second example
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