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MONOTONE ITERATIONS FOR ELLIPTIC VARIATIONAL

INEQUALITIES

RALF KORNHUBER

Abstract� A wide range of free boundary problems occurring in engineering
and industry can be rewritten as a minimization problem for a strictly convex,
piecewise smooth but non–differentiable energy functional. The fast solution of
related discretized problems is a very delicate question, because usual Newton
techniques cannot be applied. We propose a new approach based on convex
minimization and constrained Newton type linearization. While convex min-
imization provides global convergence of the overall iteration, the subsequent
constrained Newton type linearization is intended to accelerate the conver-
gence speed. We present a general convergence theory and discuss several
applications.

1. Introduction

We consider the minimization problem

uj ∈ Sj : J (uj) + φj(uj) ≤ J (v) + φj(v) ∀v ∈ Sj(1.1)

on a finite dimensional space Sj . The discrete problem (1.1) is typically resulting
from the discretization of a related continuous analogue. The functional J ,

J (v) = 1
2a(v, v) − �(v),(1.2)

is induced by a continuous, symmetric and positive definite bilinear form a(·, ·) and
by a linear functional �. Sj is equipped with the energy norm ‖ · ‖ = a(·, ·)1/2.
The functional φj : Sj → R ∪ {+∞} is convex, lower semicontinuous and proper,
i.e. φj(v) > −∞ and

Kj = {v ∈ Sj | φj(v) < +∞} 	= ∅.
It is well-known that (1.1) then admits a unique solution uj ∈ Sj .

Minimization problems of the form (1.1) with piecewise smooth nonlinearity φj

arise in a large number of practical applications [3, 6, 8, 9, 11, 19]. As a con-
sequence, there is a considerable interest in fast solvers motivating a variety of
solution concepts [1, 2, 10, 13].

Algorithms from convex minimization, such as nonlinear Gauß-Seidel relaxation
or steepest descent type methods, typically rely on local information about the
objective function J + φj . This usually leads to rapidly deteriorating convergence
rates when proceeding to larger spaces Sj or, equivalently, to more refined grids.
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Because the energy J +φj is not differentiable, classical Newton multigrid meth-
ods [12] cannot be applied without preceding regularization. Unfortunately, rea-
sonable convergence speed may then have to be paid by unacceptable discretization
errors and vice versa.

Extending recent monotone multigrid methods [14, 15, 16], we propose a new
approach to the fast solution of (1.1). Monotone iterations are two-stage methods
consisting of a globally convergent descent method and a subsequent constrained
Newton linearization. The first substep is intended to fix the discrete free boundary,
i.e. to deal with the non-smoothness of the problem, while the second substep is
intended to increase the convergence speed once the discrete free boundary is (more
or less) known. Note that this combination also has the flavor of an active set
method. Monotonically decreasing energy is crucial for the global convergence of
the overall iteration.

2. Monotone Iterations

Assume that Mj : Sj → Sj satisfies

J (Mj(w)) + φj(Mj(w)) < ∞

J (Mj(w)) + φj(Mj(w)) ≤ J (w) + φj(w)
∀w ∈ Sj ,(2.1)

where

J (Mj(w)) + φj(Mj(w)) = J (w) + φj(w) ⇔ w = uj.(2.2)

In addition, we require that

lim sup
ν→∞

(
J (Mj(w

ν)) + φj(Mj(w
ν))

)
≤ J (Mj( lim

ν→∞
wν)) + φj(Mj( lim

ν→∞
wν))

(2.3)

holds for each convergent sequence (wν)ν≥0 ⊂ Kj .
We shall see that the above conditions are sufficient for global convergence of the

iteration uν+1
j = Mj(u

ν
j ). However, the convergence speed may be unacceptable

low. As a possible remedy, we introduce slightly more general monotone iterations

ūν
j = Mj(u

ν
j )

uν+1
j = Cj(ūν

j )
(2.4)

where the additional substep Cj is intended to accelerate the convergence speed.
Note that classical multigrid methods for selfadjoint linear problems can be inter-
preted in a similar way. Adopting multigrid terminology, Mj is called fine grid
smoother, ūν

j is the smoothed iterate and Cj is called coarse grid correction.
We are now ready to state our basic convergence theorem.

Theorem 2.1. Let φj be upper semicontinuous (and therefore continuous) on Kj.
Assume that the smoother Mj satisfies conditions (2.1) - (2.3) and that the coarse
grid correction Cj has the monotonicity property

J (Cj(w)) + φj(Cj(w)) ≤ J (w) + φj(w) ∀w ∈ Sj .(2.5)

Then the monotone iteration (2.4) is globally convergent.
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Proof. For notational convenience, we introduce the abbreviation J̄ = J +φj. Let
us first show that the sequence of iterates (uν

j )ν≥0 is bounded. As φj is convex,
lower semicontinuous and proper, there are constants c, C ∈ R, such that

φj(v) ≥ c‖v‖+ C ∀v ∈ Sj

(cf. e.g. [7]). As a consequence, we have

J̄ (v) ≥ 1
2‖v‖2 + (c− ‖�‖)‖v‖+ C ∀v ∈ Sj ,(2.6)

so that ‖v‖ → ∞ implies J̄ (v) → ∞. Hence, (uν
j )ν≥0 must be bounded, because

J̄ (uν
j ) ≤ J̄ (ū1

j) < ∞ ∀ν ≥ 1

follows from (2.1) and (2.5).
Now, let uνk

j , k ≥ 0, be an arbitrary, convergent subsequence of uν
j with the limit

u∗ ∈ Sj ,

lim
k→∞

uνk
j = u∗.(2.7)

Such a subsequence exists, because uν
j is bounded and Sj has finite dimension. Note

that u∗ ∈ Kj , because (uνk
j )k≥1 ⊂ Uj := {v ∈ Sj | J̄ (v) ≤ J̄ (ū1

j)} ⊂ Kj and the

sublevel set Uj is closed. We now want to prove u∗
j = uj . In the light of (2.2), it is

sufficient to show

J̄ (Mj(u
∗)) = J̄ (u∗).(2.8)

Observe that (2.1) and (2.5) imply

J̄ (u
νk+1

j ) ≤ J̄ (uνk+1
j ) ≤ J̄ (Mj(u

νk
j )) ≤ J̄ (uνk

j ).

In virtue of the continuity of J̄ on Kj , this leads to

lim
k→∞

J̄ (Mj(u
νk
j )) = J̄ (u∗

j ).

Now the equality (2.8) is an immediate consequence of conditions (2.1) and (2.3).
As (uνk

j )k≥0 was an arbitrary convergent subsequence, the whole sequence uν
j

must converge to uj . This completes the proof.
Note that φj is known to be upper semicontinuous on Kj provided that Kj is

locally simplicial [18].
As a by-product, we also get the convergence of the smoothed iterates

lim
k→∞

ūν
j = uj .(2.9)

We emphasize that the coarse grid correction alone does not need to be convergent.
This gives considerable flexibility in constructing Cj .

3. Fine Grid Smoother

All descent methods from convex minimization are natural candidates for the
fine grid smoother Mj .

Example 3.1 (Nodal type nonlinearity)
Let Sj be the space of linear finite elements with respect to a triangulation Tj of

a bounded polygonal domain Ω. The set of vertices of all triangles t ∈ Tj is called
Nj , nj = #Nj and

Λj =
(
λ(j)
p1

, . . . , λ(j)
pnj

)
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denotes the nodal basis of Sj , ordered in a suitable way. Now assume that φj can
be written as

φj(v) =
∑
p∈Nj

Φp(v(p)) hp(3.1)

with convex, lower semicontinuous and proper functions Φp : R → R ∪ {+∞} and
weights hp ∈ R. Then φj is convex, lower semicontinuous, proper, and continuous
on Kj = {v ∈ Sj | v(p) ∈ dom Φp, p ∈ Nj}.

The nonlinear Gauß-Seidel relaxation MGS
j (cf. e.g. [10, 16]) for the iterative

solution of (1.1) reads as follows. Starting with a given iterate wν
0 := uν

j ∈ Sj , we

compute local corrections vνl ∈ Vl := span{λ(j)
pl } from the nj local subproblems

vνl ∈ Vl : J (wν
l−1 + vνl ) + Φpl

(uν
j (pl) + vνl (pl))hpl

≤ J (wν
l−1 + v) + Φpl

(uν
j (pl) + v(pl))hpl

, ∀v ∈ Vl,
(3.2)

setting wν
l = wν

l−1 + vνl , l = 1, . . . , nj. Finally, we define MGS
j (uν

j ) := wν
nj
.

It is not difficult to show that MGS
j satisfies conditions (2.1) - (2.3).

If the nonlinearity φj does not have the form (3.1), then nonlinear Gauß-Seidel
relaxation is no longer applicable, because (2.2) may be violated. In this case, other
descent algorithms, such as bundle methods, should be used (cf. e.g. [13]).

4. Coarse Grid Correction

In most practical applications the functional φj is piecewise smooth. Then, for
given ūν

j = Mju
ν
j , we can find a closed convex subset Kūν

j
⊂ Sj and a smooth

functional φūν
j
: Sj → R, such that

ūν
j ∈ Kūν

j

φūν
j
(w) = φj(w) + const. ∀w ∈ Kūν

j
.

Roughly speaking, all w ∈ Kūν
j
must have the same phases as ūν

j .

Let us consider the constrained minimization of the smooth energy J + φūν
j

u∗
j ∈ Kūν

j
: J (u∗

j ) + φūν
j
(u∗

j ) ≤ J (v) + φūν
j
(v) ∀v ∈ Kūν

j
.(4.1)

As a consequence of (2.9), we get dist(uj ,Kūν
j
) → 0 as ν → ∞. Hence, the solutions

u∗
j of (4.1) tend to uj. Moreover, there is some hope that uj ∈ Kūν

j
holds for

ν ≥ ν0 with ν0 sufficiently large (see example 4.1 below). In this case, we even get
u∗
j = uj ∀ν ≥ ν0. As a consequence, a monotone iteration (2.4) with coarse grid

correction defined by Cj(ūν
j ) = u∗

j would produce the exact solution after a finite
number of steps.

Of course, we cannot expect to solve (4.1) exactly. The main advantage of (4.1)
is that Newton type linearization can be applied to the smooth energy J + φūν

j
.

More precisely, we approximate J + φūν
j
by the quadratic energy functional Jūν

j
,

Jūν
j
(w) = 1

2aūν
j
(w,w) − �ūν

j
(w) ≈ J (w) + φūν

j
(w) + const., w ∈ Kūν

j
,

where the bilinear form

aūν
j
(w,w) = a(w,w) + φ′′

ūν
j
(ūν

j )(w,w)(4.2)
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and the linear functional

�ūν
j
(w) = �(w)− φ′

ūν
j
(ūν

j )(w) + φ′′
ūν
j
(ūν

j )(ū
ν
j , w)

are obtained by Taylor’s expansion

φūν
j
(w) ≈ φūν

j
(ūν

j ) + φ′
ūν
j
(ūν

j )(w − ūν
j ) +

1
2φ

′′
ūν
j
(ūν

j )(w − ūν
j , w − ūν

j ).

The resulting linearized constrained problem

w∗
j ∈ Kūν

j
: Jūν

j
(w∗

j ) ≤ Jūν
j
(v) ∀v ∈ Kūν

j
(4.3)

can be regarded as a generalization of classical Newton linearization in case of
smooth functionals φj . Indeed, if φj is twice differentiable on Sj , we can take
Kūν

j
= Sj and (4.3) becomes a linear system.

Let w̃j be an approximate solution of (4.3). Then, we define

uν+1
j = Cj(ūν

j ) := ūν
j + ω(w̃j − ūν

j ),(4.4)

where the damping parameter ω has to be chosen such that the monotonicity (2.5)
holds. Here, we refer to well-known affine invariant damping strategies [4, 5].

If the exact solution w̃j = w∗
j of (4.3) is inserted in (4.4) and uj ∈ Kūν

j
holds

for all ν ≥ ν0, then we can expect that the resulting monotone iteration (2.4) is
converging quadratically for ν ≥ ν0. In practise, an approximation w̃j = MG(ūν

j )
of w∗

j is obtained by one step of a suitable iterative scheme MG. Here, multigrid
typically comes into play. As for classical Newton multigrid methods we can expect
that the convergence rates of MG asymptotically, i.e. for large ν, dominate the
convergence speed of the overall monotone iteration (2.4). Hence, (asymptotically)
fast solvers for (4.3) should produce (asymptotically) fast monotone iterations.

Example 4.1 (Nodal type nonlinearity)
Let Tj be resulting from j refinements of an intentionally coarse triangulation T0

of a bounded polygonal domain Ω. In this way, we obtain a sequence of triangula-
tions T0, . . . , Tj and corresponding nested spaces S0 ⊂ · · · ⊂ Sj of piecewise linear
finite element functions. We assume for convenience that the triangulations are
uniformly refined. Collecting all nodal basis functions from all refinement levels,
we obtain the multilevel nodal basis ΛS ,

ΛS =
(
λ(j)
p1

, λ(j)
p2

. . . , λ(j)
pnj

, . . . , λ(0)
p1

, . . . , λ(0)
pn0

)
,

with mS = nj+ · · ·+n0 elements. As usual, the ordering λl := λ
(kl)
pl , l = 1, . . . ,mS ,

is taken from fine to coarse. Now assume, for example, that φj is given by (3.1)
with

Φp(z) = z1+
1
2 ∀z ≥ 0, Φp(z) = +∞ ∀z < 0 ∀p ∈ Nj .

Then we can choose

Kūν
j
= {v ∈ Sj | 1

2 ū
ν
j (p) ≤ v(p) ∀p ∈ N ◦

j (ū
ν
j ), v(p) = 0 ∀p ∈ N •

j (ū
ν
j )},

where we have set

N •
j (ū

ν
j ) = {p ∈ Nj | ūν

j (p) = 0}, N ◦
j (ū

ν
j ) = Nj \ N •

j (ū
ν
j ).

For the approximate solution of the linearized constrained problem (4.3) we can use
the multilevel relaxation MG defined as follows. Starting with a given smoothed
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iterate wν
0 = ūν

j ∈ Kj = {v ∈ Sj | v(p) ≥ 0 ∀p ∈ Nj}, we compute local corrections

vνl ∈ Vl := span{λl} from the mS local subproblems

vνl ∈ Vl ∩ Kūν
j
: Jūν

j
(wν

l−1 + vνl ) ≤ Jūν
j
(wν

l−1 + v) ∀v ∈ Vl ∩ Kūν
j
,(4.5)

setting wν
l = wν

l−1 + vνl , l = 1, . . . ,mS . Finally, we define w̃j = MG(ūν
j ) := wν

mS .
In the linear self-adjoint case, i.e. for Kūν

j
= Sj or, equivalently, for smooth φj , this

is just the classical multigrid method with canonical restrictions and prolongations
and Gauß-Seidel smoother. In practise, the local subproblems (4.5) are modified a
bit in order to allow an implementation with optimal order of complexity [14, 16, 17].
In some cases, it may be more appropriate to use local damping parameters ωl

associated with each local correction vνl instead of the global parameter ω in the
correction step (4.4) [17]. Monotone iterations (2.4) involving such variants of
multilevel relaxation are called monotone multigrid methods.

If our original problem (1.1) is non-degenerate and nonlinear Gauß-Seidel relax-
ation MGS

j is used as fine grid smoother (cf. example 3.1), then it can be shown
that uj ∈ Kūν

j
holds for sufficiently large ν. Moreover, the linearized constrained

problem (4.3) asymptotically, i.e. for large ν, reduces to the linear problem

w∗
j ∈ S◦

j : auj (w
∗
j , v) = �uj (v) ∀v ∈ S◦

j(4.6)

on the reduced space

S◦
j = {v ∈ Sj | v(p) = 0 ∀p ∈ N •

j (uj)}.
Multilevel relaxations automatically reduce to linear multigrid methods for (4.6)
with multigrid convergence rates. Hence, we get asymptotic multigrid convergence
rates for the resulting monotone multigrid methods. In our numerical experiments,
we observed that the asymptotic behavior starts almost immediately, if nested it-
eration is used [17].

Example 4.2 (Gradient type nonlinearity)
Let Sj and Tj be defined as in the preceding example. Assume that φj is given

by

φj(v) =
∑
t∈Tj

|∇v(t)| ht

with | · | denoting the Euclidean norm and suitable weights ht. Then we can choose

Kūν
j
= {v ∈ Sj | 1

2 |∇ūν
j (t)| ≤ |∇v(t)| ∀t ∈ T ◦

j (ū
ν
j ), ∇v(t) = 0 ∀t ∈ T •

j (ūν
j )},

where we have set

T •
j (ūν

j ) = {t ∈ Tj | ∇ūν
j (t) = 0}, T ◦

j (ūν
j ) = Tj \ T •

j (ū
ν
j ).

Assume the fine grid smoother Mj has properties (2.1) - (2.3) and additionally
guarantees uj ∈ Kūν

j
for sufficiently large ν. Then, similar to in the previous

example, (4.3) asymptotically reduces to the linear problem (4.6) with reduced
space S◦

j now given by

S◦
j = {v ∈ Sj | ∇v(t) = 0 ∀t ∈ T •

j (uj)}.
Again, multilevel relaxations for (4.3) asymptotically reduce to linear multigrid
methods for this problem.

The actual construction of a fine grid smoother Mj with the desired properties
is the subject of current research.
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