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A generalization of Onsager’s reciprocity

relations to gradient flows with nonlinear

mobility

Abstract: Onsager’s 1931 ‘reciprocity relations’ result connects microscopic time-reversibility with a
symmetry property of corresponding macroscopic evolution equations. Among the many consequences is
a variational characterization of the macroscopic evolution equation as a gradient-flow, steepest-ascent,
or maximal-entropy-production equation. Onsager’s original theorem is limited to close-to-equilibrium
situations, with a Gaussian invariant measure and a linear macroscopic evolution. In this paper we
generalize this result beyond these limitations, and show how the microscopic time-reversibility leads
to natural generalized symmetry conditions, which take the form of generalized gradient flows.
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1 Introduction

1.1 Onsager’s reciprocity relations

In his two seminal papers in 1931, Lars Onsager showed how time-reversibility of a system implies
certain symmetry properties of macroscopic observables of the system (Ons31; OM53). In modern
mathematical terms the main result can be expressed as follows.

Theorem 1.1. Let Xt be a Markov process in R
n with transition kernel Pt(dx|x0) and invariant

measure µ(dx). Define the expectation zt(x0) of Xt given that X0 = x0,

zt(x0) = Ex0
Xt =

∫

xPt(dx|x0).

Assume that

1. µ is reversible, i.e., for all x, x0, and t > 0, µ(dx0)Pt(dx|x0) = µ(dx)Pt(dx0|x);
2. µ is Gaussian with mean zero and covariance matrix G.

3. t 7→ zt(x0) satisfies the equation

żt = −Azt, (1.1)

for some nonnegative n × n matrix A.

Then M := AG is symmetric positive definite, and if we define S(x) by µ(dx) = exp(S(x)) dx,

then equation (1.1) can be written as

żt = MDS(zt). (1.2)

Here we write DS for the derivative of S.
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Note that we purposefully avoid the use of thermodynamic terms such as temperature, pressure, or
energy, in order to highlight that the result is essentially mathematical in nature (which becomes even
more evident upon considering the proof as described in e.g. (dGM62, Sec. VII.4)). In the context of
thermodynamics, the ‘Markov process’ typically is some stochastic process given by the macroscopic
observables in question.

The symmetry property MT = M states equality of corresponding off-diagonal elements of M ,
which by equation (1.2) translates into equality of ‘cross-effect coefficients’. These are known as the
‘reciprocity relations’, and are a corner stone of linear irreversible thermodynamics. In addition to the
practical convenience of reducing the number of parameters, they also present a rare simplifying insight
into the wild world of irreversible processes.

In its original form, however, Theorem 1.1 only applies to near-Gaussian fluctuations around a given
stationary state, which translates into ‘close to equilibrium’. For this reason, many generalizations have
been proposed, e.g. (Cas45; Zie58; Gya70; HG82; GCdRC84; GC95; Gal96; MN07; Sei12; RZ15).

Despite these advances, there is still a major challenge. In Onsager’s argument the macroscopic
symmetry property arises from the microscopic reversibility, and it is exactly this connection that gives
Onsager symmetry its force. This connection is generalized in our paper (MPR14); in the current paper
we present this mathematical micro-to-macro connection from a more thermodynamic perspective.

The central observation that allows us to move forward is that the property ‘symmetry of a matrix’
is intrinsically linked to the linear nature of a matrix—the fact that a matrix is a linear operator. This
linear nature is an obstacle to generalization to nonlinear behaviour. We therefore generalize Onsager’s
relations in three steps:

I. We first remark that symmetry and positive definiteness of the mobility M are equivalent to the
property that equation (1.2) is a gradient flow;

II. We next generalize the concept of gradient flows (with linear mobilities) to generalized gradient

flows, in which the mobility may be a nonlinear map;
III. We finally show that under more general conditions than Onsager’s, the macroscopic evolution is

such a generalized gradient flow.

This final point is the generalization of Onsager’s relations: instead of guaranteeing symmetry of some
linear operator, which is equivalent to the macroscopic equation being a gradient flow, we guarantee
under more general conditions that the macroscopic equation is a generalized gradient flow. We argue
in this paper that this generalized gradient-flow property is the natural generalization of Onsager
symmetry, from the point of view of microscopic reversibility.

Onsager’s reciprocity relations
mobility is symmetric pos. def.

✛
equivalence

✲
Gradient flows

(linear) mobility generates GF

?

❄

Generalized gradient flows
(nonlinear) mobility function generates GGF

this paper

❄

We walk through these three steps one by one in the sections that follow.

Remark 1.2. One should pay attention to the fact that in probability theory reversibility means
detailed balance, whereas in thermodynamics, reversibility means that quantities such as entropy or
free energy remain constant along evolutions. In fact, probabilistic reversibility often leads to thermo-
dynamic irreversibility, as is the case here.

Remark 1.3. The results that we discuss in this paper are described in mathematical terms and in full
detail in (MPR14). In this paper we focus on the consequences of these results for thermodynamics.
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2 Step I: Definiteness is equivalent to gradient structure

We use the language of geometry, in which the states z are elements of a manifold Z, and at each
z ∈ Z there is a tangent plane TzZ consisting of all vectors tangent (thermodynamic fluxes) to Z at z.
If t 7→ zt is a smooth curve along the manifold Z, then the time derivative żt is a tangent vector, i.e.
żt ∈ Tzt

Z. Dual to the tangent plane TzZ at any z ∈ Z is the cotangent plane T ∗
z Z, whose elements

(driving forces) are linear functionals on tangents, i.e. each ξ ∈ T ∗
z Z is a linear mapping from TzZ to

R. We write 〈s, ξ〉 for the dual pairing between ξ ∈ T ∗
z Z and s ∈ TzZ, and we write TZ and T ∗Z for

the collection of all tangent and cotangent planes.

Definition 2.1. We call the triple (Z, S, M) a gradient system if S : Z → R and for each z ∈ Z,

M(z) is a symmetric positive definite linear mapping from T ∗
z Z to TzZ.

A curve z : [0, T ] → Z is then called a solution of the gradient flow if it solves the differential

equation

żt = M
(

zt

)

DS
(

zt

)

or equivalently DS
(

zt

)

= M(zt)−1żt. (2.1)

Although the equation (2.1) is also meaningful for more general linear mappings M , we purposefully
require symmetry and positive definiteness in order to call (2.1) a gradient flow, for a number of
reasons. First, the positive-definiteness forces S, which in many cases one can interpret as an entropy
or a negative free energy, to increase along solutions, since

d

dt
S

(

zt

)

= 〈DS
(

zt

)

, żt〉 = 〈DS
(

zt

)

, M
(

zt

)

DS
(

zt

)

〉 ≥ 0. (2.2)

Secondly, positive-definiteness implies invertibility of M(z) (there are generalizations possible where
M is only semidefinite). The third reason lies in the variational characterization of ż that we discuss
below. If M(z) and M(z)−1 are symmetric and positive definite, then they define norms 1

2 ξM(z)ξ and
1
2 sT M(z)−1s on cotangents ξ ∈ T ∗

z Z and tangents s ∈ TzZ respectively.
Using the norm on the tangent space, the evolution can also be given a variational characterization,

already recognized by Onsager, as

a curve t 7→ zt is a solution of the gradient flow if and only for each t and zt,

żt solves the maximization problem max
s∈TzZ

DS
(

zt

)T
s −

1
2

sT M(z)−1s.

Since the first term in the minimised expression above can be interpreted as the instantaneous pro-
duction of S, this evolution is often interpreted as ‘steepest ascent’ of S (e.g. (Ber87; MS06; Ber14)).
This variational characterization depends critically on the symmetry of M , and this is why the name
‘gradient system’ is reserved for symmetric operators M .

Note that in such a gradient flow the mobility operator M = M(z) may depend in any way on
the position z, but the dependence on the argument ξ = DS(z) is linear: ξ 7→ M(z)ξ is a linear map.
This is different from the case of nonlinear mobilities M , which are often written as ξ 7→ M(z, ξ)ξ, in
which this map depends nonlinearly on ξ. The generalized gradient-flow concept that we now introduce
allows for nonlinear dependence on ξ.

3 Step II: Generalized gradient systems

We generalize to systems with nonlinear mobility M by noting that a gradient flow can alternatively
be formulated by defining, for z ∈ Z, s ∈ TzZ and ξ ∈ T ∗

z Z,

Ψ(z, s) :=
1
2

〈M(z)−1s, s〉 and its convex dual Ψ∗(z, ξ) :=
1
2

〈ξ, M(z)ξ〉. (3.1)
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Here the convex duality is in the sense of Legendre-Fenchel transforms,

Ψ∗(z, ξ) = sup
s∈TzZ

〈ξ, s〉 − Ψ(z, s), and Ψ(z, s) = sup
ξ∈T ∗

z Z

〈ξ, s〉 − Ψ∗(z, ξ). (3.2)

Equation (2.1) can then also be written as

DsΨ(zt, żt) = DS(zt) or equivalently żt = DξΨ∗
(

zt, DS(zt)
)

, (3.3)

which, by Legendre-Fenchel theory, is equivalent to requiring

Ψ(zt, żt) + Ψ∗
(

zt, DS(zt)
)

− 〈DS(zt), żt〉 = 0. (3.4)

Generalized gradient systems are again of the form (3.3) and (3.4), but where Ψ and Ψ∗ need not
be of the quadratic form (3.1). Such formulations have a long history of study in both the thermo-
dynamic (Ede72; Grm93; GÖ97; Grm10; Grm12) and the mathematical literature (DGMT80; DG93;
CV90; LS95; MRS08; Mie11a; Mie11b), under various different names, such as Dissipation potentials,
Entropy-dissipation structures, Ψ-Ψ∗-structures, and many others. Here, Ψ and Ψ∗ need to satisfy a
number of conditions in order to yield a meaningful generalized formulation; these are summarized in
the following definition.

Definition 3.1. We call the triple (Z, S, Ψ) a generalized gradient system if S : Z → R, Ψ : TZ → R,

and for all z ∈ Z:

1. Ψ(z, ·) is convex in the second argument,

2. min Ψ(z, ·) = 0, and

3. Ψ(z, 0) = 0.

In addition, Ψ is called symmetric if Ψ(z, s) = Ψ(z, −s) for all (z, s) ∈ TZ.

A curve z : [0, T ] → Z satisfying (3.3) or (3.4) is then called a solution of the generalized gradient
flow induced by the generalized gradient system (Z, S, Ψ).

With the duality (3.2) we have the following equivalences for Conditions 2 and 3,

min Ψ(z, ·) = 0 ⇐⇒ Ψ∗(z, 0) = 0, (3.5a)

Ψ(z, 0) = 0 ⇐⇒ min Ψ∗(z, ·) = 0, (3.5b)

so that both Ψ ≥ 0 and Ψ∗ ≥ 0. This is a central part of the definition; it implies that for curves
satisfying (3.4), we have the nonlinear analogue of (2.2):

d

dt
S(zt) = 〈DS(zt), żt〉 = Ψ(zt, żt) + Ψ∗(zt, DS(zt)) ≥ 0.

Remark 3.2. In a generalized gradient flow the role of the mobility is played by the (potentially
nonlinear) map ξ 7→ DξΨ∗(z, ξ). Although this allows for nonlinear mobilities, the requirement that
DξΨ∗ is a derivative means that not all nonlinear mobilities M(z, ξ)ξ can be written as M(z, ξ)ξ =
DξΨ∗(z, ξ) for some Ψ∗; see (HS13) for a discussion.

4 Step III: Reversibility and large deviations lead to

generalized gradient structures

We now come to our main point. We generalize Onsager’s result by connecting reversibility with
generalized gradient flows, but in a more general context than that of Theorem 1.1. Instead of a fixed
system we choose a system with a parameter n, and consider the limit n → ∞. This allows us to treat
a very general class of systems using the theory of large deviations.

Let Zn
t be a sequence of stochastic processes with transition kernel P n

t and invariant measure µn.
Typically, Zn

t models a system with microscopic fluctuations, where n is a large quantity like the
number of particles in the system. Assume that
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(A) P n
t and µn satisfy the same reversibility condition as in Theorem 1.1, i.e. µn(dx0)P n

t (dx|x0) =
µn(dx)P n

t (dx0|x);
(B) The equilibrium distributions µn satisfy a large-deviation principle with rate function S, i.e. if Y n

are a random variables with distribution µn, then

Prob(Y n ≈ y) ∼
n→∞

exp
[

nS(y)
]

;

(C) For all T > 0, Zn satisfies a large-deviation principle of the form

Probµn

(

Zn
t

∣

∣

t∈[0,T ]
≈ z

∣

∣

t∈[0,T ]

)

∼
n→∞

exp
[

n (S(z0) − IT (z))
]

, IT (z) :=
∫ T

0

L (zt, żt) dt, (4.1)

where the subscript µn indicates that the process starts at a position drawn from µn.

These three assumptions are natural generalizations of the conditions of Onsager’s Theorem 1.1.
Condition (B) above is a natural generalization of the requirement that µ is Gaussian (Theorem 1.1,
condition 2). Note that since probabilities are bounded by one, Condition (B) implies that S ≤ 0,
which can be seen as the large-deviation counterpart of the normalization of probability measures; the
most probable behaviour in equilibrium is given by the maximizer(s) of S with value zero.

Condition (C) above is the natural extension of the assumption on the linear evolution of macro-
scopic quantities in Theorem 1.1, condition 3, but this requires a little more explanation. The typical
case is that L is what we call an L-function:

Definition 4.1. We call L an L-function1 if

1. L ≥ 0,

2. L (z, · ) is convex for all z,

3. L induces an evolution equation żt = AL (zt), in the sense that for all (z, s),

L (z, s) = 0 ⇐⇒ s = AL (z). (4.2)

Again, the fact that mins L (z, s) = 0 follows from the boundedness of probabilities. The convexity
is a standard consequence of the lower-semicontinuity given by large-deviation theory, but it will be
important below. The fact that L (z, ·) has a single minimum, however, is a strong requirement, which
is satisfied if in the limit n → ∞ the behaviour of Zn

t becomes deterministic (a form of the law of large
numbers). The limiting macroscopic equation is then żt = AL (zt).

A very large class of systems satisfies the assumptions above: diffusion-type equations arising from
stochastic lattice models, for instance (KOV89), or from many-particle Brownian motion (KO90), in-
cluding convection and mean-field interaction (DG87; FK06). Chemical reactions are another important
example, and we describe this in more detail in the next section. The method of Feng and Kurtz (FK06,
Sec. 8.6.1.2) provides an algorithm to derive such large-deviation principles in great generality.

The following theorem is our main result.

Theorem 4.2. Assume conditions (A)–(C) above. If L is an L-function, then it generates a general-

ized gradient system (Z, 1
2 S, Ψ) with symmetric potential Ψ, i.e. the macroscopic evolution żt = AL (zt)

(see (4.2)) can be written as the generalized gradient flow żt = DΨ∗
(

zt,
1
2 DS(zt)

)

.

Proof. The proof consists of two steps:

1. The reversibility implies a symmetry relation for L and S,

L (z, s) − L (z, −s) = −〈DS(z), s〉. (4.3)

1 The letter ‘L’ in ‘L-function’ refers to the word Lagrangian, a name often used for expressions of the form of

IT in (4.1). We thank the anonymous reviewer for pointing out that the name ‘L-function’ has also been used to

indicate Lyapunov functions (see e.g. (Ber86)), which is different concept (but note that Theorem 4.2 implies that

an L-function L with certain properties generates a Lyapunov function S).
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2. This symmetry implies that there exists a pair of potentials Ψ, Ψ∗, satisfying the requirements of
Definition 3.1, such that

L (z, s) = Ψ(z, s) + Ψ∗
(

z, 1
2 DS(z)

)

− 〈 1
2 DS(z), s〉. (4.4)

Part 1 is a well-known consequence of reversibility in the context of large deviations (Mae99;
MRVM00; Sei12), and its proof runs as follows. For an arbitrary (z, s) ∈ TZ, take any curve for which
(z0, ż0) = (z, s). From the reversibility follows the exact characterization, for all T > 0,

Probµn

(

Zn
t

∣

∣

t∈[0,T ]
≈ z

∣

∣

t∈[0,T ]

)

= Probµn

(

Zn
t

∣

∣

t∈[0,T ]
≈ σT z

∣

∣

t∈[0,T ]

)

where σT is the time-reversal operator (σT z)t = zT −t. By (4.1) this implies

S(z0) −

∫ T

0

L (zt, żt) dt = S(zT ) −

∫ T

0

L (zT −t, −żT −t) dt

= S(zT ) −

∫ T

0

L (zs, −żs) ds.

Upon dividing by T and taking the limit T → 0 we find (4.3).
The proof of part 2 follows from a manipulation of Legendre transforms; we refer to (MPR14,

Th. 2.1) for the details.

5 Example: chemical reactions

A large number of (generalized) gradient-flow formulations of macroscopic evolution equations can be
connected to large-deviation principles of their underlying stochastic processes, in the way that we
describe above (ADPZ11; DLR13; ADPZ13; DPZ13; BP14; MPR14; LMPR). Here we discuss a single
example, that of chemical reactions.

We consider chemical reactions of I species X1, . . . , XI of the form

α1jX1 + · · · + αIjXI

r
+

j

⇌

r
−

j

β1jX1 + · · · + βIjXI , j = 1, . . . , J,

under constant temperature and pressure.
Two natural models of this system are the Chemical Master Equation (e.g. (Gil00)) and the

Reaction-Rate Equation (e.g. (ÉT89)). The Chemical Master Equation (CME) describes a continuous-
time, discrete-space stochastic process in terms of numbers of particles of each type; the Reaction-Rate
Equation (RRE) is a deterministic equation for concentrations of species:

ċt =
J

∑

j=1

(

r+
j (ct) − r−

j (ct)
)

(βj − αj). (5.1)

Under reasonable conditions on the kinetics, in the limit of large volume and under well-mixed condi-
tions, the CME becomes deterministic, and its limit is given by the RRE (Kur73).

If the system satisfies both detailed balance and mass action, then (5.1) admits a stationary set of
concentrations c = (c1, . . . , cI ) and the net rate of reaction j can be written as

rj(c) := r+
j (c) − r−

j (c) = kj

[

uαj − uβj
]

where ui :=
ci

ci

,

and we write
uαj := u

α1j

1 . . . u
αIj

I and uβj := u
β1j
1 . . . u

βIj
I .

Note that typically the evolution takes place in a submanifold, generated by the particular values of the
quantities that the evolution preserves. Therefore c is not the only stationary state—each stoichiometic
subspace, defined by a particular value of all conserved quantities, contains exactly one stationary state.
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The generalized gradient structure (Z, 1
2 S, Ψ) for (5.1) is given by the driving functional

S(c) := −

I
∑

i=1

η
(

ci

ci

)

ci = −

I
∑

i=1

η(ui)ci, η(s) := s ln s − s + 1, (5.2)

and the exponential dissipation potential

Ψ∗
j (c, ξ) = 2kju

1
2

αj+ 1
2

βj
(

cosh
(

(αj − βj) · ξ
)

− 1
)

, Ψ∗(c, ξ) =
J

∑

j=1

Ψ∗
j (c, ξ). (5.3)

The functional S can be interpreted as a dimensionless negative free energy, for instance by noting that
the derivative of S(c) with respect to a concentration ci equals

∂ci
S(c) = −η′

(

ci

ci

)

= − log ci + log ci,

which is equal, up to constant factors and a minus sign, to the common expression for the chem-
ical potential µi = µstd

i + RT log ci. Nonquadratic potentials such as (5.3) have been discussed by
Grmela (Grm12) and similar expressions appear in the earlier literature (Fei72).

The restriction to the submanifold mentioned above is implicitly implemented by Ψ∗: since DΨ∗
j

is parallel to αj − βj , the range of DΨ∗ is the span of the vectors {αj − βj}J
j=1.

For monomolecular reactions we prove in (MPR14) that this generalized gradient system is indeed
generated by the large deviations of the corresponding Chemical Master Equation, which is the discrete
stochastic process in terms of numbers of particles of each species. In the forthcoming paper (MPPR15)
we show that the same is true for general mass-action systems with detailed balance. This shows that
this generalized-gradient-flow structure of chemical reactions has its origins in the large-deviations
behaviour of the underlying stochastic systems. The same is true for various other processes, such
as diffusion (ADPZ13), heat conduction (PRV14), passive transport across membranes (GM13), and
thermally activated motion (BP14), and we conjecture that this is actually a very general phenomenon.

6 Discussion

The strength of Onsager’s theorem lies in the combination of its broad scope (all processes in a certain
class) with a rigorous statement (the macroscopic equations have a certain structure). We generalize
this theorem by enlargening the class to all sequences of processes with a large-deviation principle;
our assertion, also rigorous, is an appropriate generalization of Onsager’s symmetry statement, which
coincides with the original symmetry in the case of linear processes.

Incidentally, this work shows how large-deviation theory, originally developed to understand math-
ematically such physical concepts as free energy and entropy, provides us with the tools also to un-
derstand dynamical generalizations of these concepts. In this way it appears to be the natural link
between the stochastic microscopic description and the deterministic macroscopic one.

Interestingly, the large-deviation viewpoint of this paper explains the appearance of nonquadratic
dissipation potentials in thermodynamics: when the underlying stochastic process has non-Gaussian
fluctuations, then the large-deviation rate functional has non-quadratic dependence on the generalized
velocity, and the dissipation potential in the generalized gradient flow is non-quadratic. The non-
quadratic nature therefore can be traced back to non-Gaussian fluctuations.

It would be very natural to consider systems with varying time-reversal parity, following Casimir (Cas45),
but at this moment this is only understood for a single example (DPZ13).

Acknowledgement. The authors are grateful to Gian Paolo Beretta, Miroslav Grmela, Markus
Hütter, and Hans-Christian Öttinger for their comments on an early version of this paper. AM and
DRMR were partially supported by DFG via SFB 1114 (projects C5 and C8); MAP was supported by
the NWO VICI grant 639.033.008.
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