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CARSTEN GRÄSER AND RALF KORNHUBER

Abstract. In this review, we intend to clarify the underlying ideas and the re-
lations between various multigrid methods ranging from subset decomposition,
to projected subspace decomposition and truncated multigrid. In addition, we
present a novel globally convergent inexact active set method which is closely
related to truncated multigrid. The numerical properties of algorithms are
carefully assessed by means of a degenerate problem and a problem with a
complicated coincidence set.

1. Introduction

Since the pioneering papers of Fichera [35] and Stampaccia [77] almost fifty years
ago, variational inequalities have proved extremely useful for the mathematical de-
scription of a wide range of phenomena in material science, continuum mechan-
ics, electrodynamics, hydrology and many others. We refer to the monographs of
Baiocchi and Capelo [3], Cottle et al. [28], Duvaut and Lions [32], Glowinski [37]
or Kinderlehrer and Stampaccia [50] for an introduction. Even the special case of
obstacle problems covers a large and still growing number of applications ranging
from contact problems in continuum mechanics to option pricing in computational
finance or phase transitions in metallurgy (cf., e.g., Rodrigues [72]). In addition, the
fast algebraic solution of discretized versions of highly nonlinear partial differential
equations or related variational inequalities can be often traced back to a sequence
of obstacle problems playing the same role as linear problems in classical Newton
linearization [52, 54, 55, 58]. Finally, apart from their practical relevance, obsta-
cle problems are fascinating mathematical objects of their own value which inherit
some, but far from all essential properties from their unconstrained counterparts.

On this background, many approaches for the iterative solution of obstacle prob-
lems have been suggested and pursued. Penalty methods based on straightforward
regularization are still popular in the engineering community. A mathematically
well-founded approach is to incorporate the constraints by Lagrange multipliers [37].
It is an advantage of this approach that very general constraints can be treated in a
systematic way. On the other hand it doubles the number of unknowns and leads to
indefinite problems. Active set strategies consist of an activation/inactivation step
that produces an actual guess for the coincidence set and a subsequent solution step
for the resulting reduced linear problem. This concept has been very popular since
the benchmarking work by Hackbusch and Mittelmann [40] and Hoppe [45, 46].
Recent new interest was stimulated by a reinterpretation of the active set approach
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in terms of nonsmooth Newton methods [43, 82]. As the existing convergence the-
ory typically requires the exact solution of the linear subproblems the combination
with inexact (multigrid) solvers is often performed on a heuristic level [48, 49, 61].

In this review we concentrate on extensions of classical multigrid methods to self-
adjoint elliptic obstacle problems with box-constraints. Our aim is to bridge the
gap between the underlying simple ideas motivated by linear subspace decompo-
sition and detailed descriptions of the final implementation as multigrid V -cycles.
We also intend to clarify the relations between different concepts ranging from
subset decomposition [78], projected subspace decomposition [1, 2, 63] to mono-
tone multigrid [51] and even active set strategies both with regard to convergence
analysis and numerical properties. In particular, we propose a novel truncated
nonsmooth Newton multigrid method which can be as well regarded as an inexact
active set algorithm or a slight modification of truncated monotone multigrid. Acti-
vation/inactivation is performed by a projected Gauß-Seidel step, linear solution is
replaced by just one truncated multigrid step (cf. Kornhuber and Yserentant [60])
and global convergence is achieved by damping.

Roughly speaking, it turns out that increasing flexibility goes with decreasing
theoretical coverage ranging from multigrid convergence rates for multilevel sub-
set decomposition or projected multilevel relaxation to strong mesh-dependence
of truncated monotone multigrid or truncated nonsmooth Newton multigrid for
badly chosen initial iterates. On the other hand, increasing flexibility seems to in-
crease the convergence speed considerably in the case of reasonable initial iterates:
Combined with, e.g., nested iteration, truncated monotone multigrid or truncated
nonsmooth Newton multigrid methods converge even for complicated coincidence
sets with similar convergence speed as classical linear multigrid methods for un-
constrained problems. The lack of robustness of truncated monotone multigrid or
active set strategies is that local inactivation by projected Gauß-Seidel or related
strategies [43] might deteriorate the convergence speed, because slow next-neighbor
interaction might dominate for overestimated coincidence sets. As a natural remedy,
we also propose hybrid methods where local activation/inactivation is replaced by
a global standard monotone multigrid step. In our numerical experiments, hybrid
version prove extremely efficient for degenerate problems.

2. Continuous problem and discretization

2.1. Constrained minimization, variational inequalities, and finite ele-

ments. Let Ω be a bounded, polyhedral domain in the Euclidean space R
d, d =

1, 2, 3 and let H ⊂ H1(Ω) be a closed subspace. We consider the minimization
problem

(2.1) u ∈ K : J (u) ≤ J (v) ∀v ∈ K
with the closed, convex, and non-empty set K,

K = {v ∈ H | v ≥ ϕ a.e. in Ω} ⊂ H,
as generated by a suitable obstacle function ϕ ∈ H1(Ω)∩C(Ω). We emphasize that
all algorithms and convergence results to be presented can be generalized to sets K
where also an upper obstacle is present. The energy functional J ,

(2.2) J (v) = 1
2a(v, v)− ℓ(v),
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is induced by a symmetric, H-elliptic, bilinear form a(·, ·) and a functional ℓ ∈ H ′.
For simplicity, we restrict our considerations to

a(v, w) =

∫

Ω

∇v · ∇w dx, ℓ(v) =

∫

Ω

fv dx,

with f ∈ L2(Ω) and H = H1
0 (Ω). Obviously, a(·, ·) defines a scalar product on H ,

and, by the Poincarè–Friedrichs inequality, the corresponding energy norm

(2.3) ‖v‖ = a(v, v)1/2

is equivalent to the canonical norm in H1(Ω), i.e.,

(2.4) α‖v‖H1(Ω) ≤ ‖v‖ ≤ ‖v‖H1(Ω) ∀v ∈ H
holds with a positive constant α ∈ R. The minimization problem (2.1) has a
unique solution (cf., e.g., Stampacchia [77] or Glowinski [37, Section I.3]) and can
be equivalently rewritten as the variational inequality

(2.5) u ∈ K : a(u, v − u) ≥ ℓ(v − u) ∀v ∈ K.
Introducing the coincidence set Ω•,

Ω• = {x ∈ Ω | u(x) = ϕ(x)}, Ω◦ = Ω \ Ω•,

it turns out that u is the weak solution of the reduced linear elliptic problem

(2.6) −∆u(x) = f(x) ∀x ∈ Ω◦

with boundary values u(x) = 0 for x ∈ ∂Ω◦ ∩ ∂Ω and u(x) = ϕ(x) elsewhere. We
emphasize that the coincidence set Ω• or, equivalently, the reduced computational
domain is not known a priori.

For sufficiently regular data, e.g., for f ∈ L2(Ω), ϕ ∈ H2(Ω), and convex domains
Ω, the solution satisfies u ∈ H2(Ω) [72, Corallary 5:2.3]. In general, second order
derivatives of u jump across the free boundary Γ = Ω•∩Ω◦. Therefore, in contrast to
linear elliptic problems, the regularity of u is limited to u ∈ Hs(Ω) with s < 2.5 even
for arbitrarily smooth data. See Brézis [24] for a more general result. Regularity or
stability of the free boundary Γ is considered in the monograph by Rodrigues [72].

Let us now consider a multilevel finite element discretization of (2.1). A trian-
gulation T of Ω ⊂ R

d is a set of d–simplices such that
⋃

t∈T t = Ω and such that
the intersection of t, t′ ∈ T is either a k–simplex with k < d or empty. We consider
a nested sequence

T0 ⊂ T1 ⊂ · · · ⊂ Tj
of triangulations resulting from successive refinement of a given triangulation T0.
We assume that T0 is shape regular in the sense that it consists of a finite, inten-
tionally small, number of non-degenerate simplices. Though, if not explicitly stated
otherwise, all algorithms and theoretical results to be presented can be extended
to adaptive refinement, we assume, for simplicity, that the triangulations are uni-
formly refined. In two space dimensions this means that each triangle t ∈ Tk−1 is
divided into four congruent subtriangles to obtain Tk. In this way, lower and upper
bounds of the interior angles are preserved in course of refinement. Such a stable
decomposition of each tetrahedron into eight sub-tetrahedra is more complicated
(cf., e.g., Bey [7] or Bornemann et al. [11]). Introducing the step sizes hk,

hk = max
t∈Tk

diam(t), k = 0, . . . , j,
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we then get

(2.7) hj = O(2−j), chk ≤ 1
2hk−1 ≤ Chk, k = 1, . . . , j,

with positive constants c, C independent of k and j. Note that c = C = 1 for
d = 2. On each level k, we choose piecewise linear finite elements

Sk = {v ∈ H | v|t is linear ∀t ∈ Tk},
in order to obtain a nested sequence of finite dimensional subspaces

(2.8) S0 ⊂ S1 ⊂ · · · ⊂ Sj ⊂ H.
Each space Sk is spanned by the nodal basis

Λk = {λ(k)
p | p ∈ Nk}, λ(k)

p (q) = δpq ∀p, q ∈ Nk (Kronecker–δ).

Nk is denoting the set of the nk vertices of Tk that are contained in Ω. The finite
element approximation uj ∈ Sj of u is obtained by replacing the set K by its discrete
analogue Kj ,

(2.9) Kj = {v ∈ Sj | v ≥ ϕj in Ω},
generated by the nodal interpolation ϕj ∈ Sj of ϕ. The resulting discrete mini-
mization problem

(2.10) uj ∈ Kj : J (uj) ≤ J (v) ∀v ∈ Kj

is equivalent to the variational inequality

(2.11) uj ∈ Kj : a(uj, v − uj) ≥ ℓ(v − uj) ∀v ∈ Kj .

Introducing the discrete coincidence set N •
j ,

N •
j = {p ∈ Nj | uj(p) = ϕ(p)}, N ◦

j = Nj \ N •
j ,

it is easily checked that uj is the solution of the reduced linear problem

(2.12) a(uj , v) = ℓ(v) ∀v ∈ S◦j = {v ∈ Sj | v(p) = 0 ∀p ∈ N •
j }

which is a discrete analogue of (2.6). The discrete problem (2.11) is called non–
degenerate, if the condition

(2.13) ℓ(λ(j)
p )− a(uj , λ

(j)
p ) < 0 ∀p ∈ N •

j

is satisfied. As ℓ(λ
(j)
p ) − a(uj , λ

(j)
p ) ≤ 0, p ∈ Nj , follows immediately from (2.11),

condition (2.13) states that uj must not fulfill the discretized Poisson equation in
active nodes p ∈ N•

j . For non–degenerate problems, sufficiently small perturbations
of the right hand side ℓ preserve the coincidence set N •

j . Similar conditions for the
continuous problem (2.5) provide the stability of the continuous free boundary Γ.
We refer to Rodrigues [72, Section 6:5] for details.

The optimal error estimate ‖u−uj‖ = O(hj) holds for u ∈ H∩H2(Ω), f ∈ L2(Ω),
and ϕ ∈ H2(Ω) (cf. Falk [34] or Ciarlet [26, Section 5.1]). First steps towards
optimal L2–error estimates have been made by Natterer [64]. Limited regularity
of u is reflected by limited order of the discretization error. More precisely, even
for arbitrarily smooth data the discretization error of piecewise quadratic finite
elements only behaves like O(hs

j) with s < 1.5 (cf. Brezzi et al. [25]).
For many practical problems, in particular in three space dimensions, it is ab-

solutely necessary to use locally refined grids in order to reduce the number of
unknowns and therefore the numerical complexity. A posteriori estimates of the
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discretization error providing appropriate local refinement indicators have been in-
vestigated by Veeser [83], Bartels and Carstensen [5], Kornhuber [53], Braess [13]
and others. Nochetto et al. [66] derived a posteriori estimates of the coincidence set
Ω• by so–called barrier sets. Convergence proofs for adaptive finite element meth-
ods have been considered by Perez et al. [68], Siebert and Veeser [75] and Braess
et al. [14].

3. Linear Subspace Decomposition Methods

3.1. Spectral properties of elliptic bilinear forms. In this section, we consider
the extreme case of an empty coincidence set Ω• = ∅. Obviously, the reduced
Poisson problem (2.6) then simplifies to the variational equality

(3.1) u ∈ H : a(u, v) = ℓ(v) ∀v ∈ H

which is equivalent to the unconstrained minimization problem

(3.2) u ∈ H : J (u) ≤ J (v) ∀v ∈ H.

Let us state a fundamental property of elliptic bilinear forms.

Proposition 3.1. A symmetric, H–elliptic bilinear form a(·, ·) has a countable
number of positive, real eigenvalues µk,

0 < µ1 ≤ µ2 ≤ µ3 ≤ · · · ,

with no finite accumulation point and limk→∞ µk = ∞. The corresponding eigen-
functions ek ∈ H,

a(ek, v) = µk(ek, v)L2(Ω) ∀v ∈ H,
form an a–orthogonal basis of H.

For a proof we refer, e.g., to Raviart and Thomas [70, pp. 135] or Renardy and
Rogers [71, pp. 299].

Example 3.2. Choosing Ω = (0, 1) and a(v, w) = (v′, w′)L2(Ω), we have

µk = (kπ)2, ek(x) = sin(kπx), k ∈ N.

Proposition 3.1 implies that there is an a–orthogonal splitting

(3.3) H = V1 + V2 + V3 · · · , Vk = span{ek},

into subspaces Vk representing a scale of increasing frequencies µk. Now let u0 ∈ H
be some guess of u. Due to the a–orthogonality of the splitting (3.3), the corrections
vk ∈ Vk as obtained by minimizing J separately on each subspace Vk provide the
exact solution:

(3.4) u = u0 +
∞
∑

k=1

vk, vk =
ℓ(ek)− a(u0, ek)

a(ek, ek)
ek.

Unfortunately, the eigenfunctions ek are usually not known in practice.
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3.2. Successive subspace correction and multigrid. We now concentrate on
fast solvers for the Ritz–Galerkin approximation

(3.5) uj ∈ Sj : a(uj , v) = ℓ(v) ∀v ∈ Sj

or, equivalently,

(3.6) uj ∈ Sj : J (uj) ≤ J (v) ∀v ∈ Sj

of the continuous problem (3.1) or (3.2), respectively. Similar to (3.4), we can solve

(3.6) separately on a–orthogonal subspaces Vk = span{e(j)k }, k = 1, . . . , nj, spanned

by the eigenfunctions e
(j)
k of a(·, ·)|Sj×Sj

. This observation gave rise to well–known
fast Fourier methods (cf., e.g., [69, Section 19.4]). Unfortunately, the explicit con-

struction of e
(j)
k is restricted to differential operators with constant coefficients and

rectangular or cuboid domains Ω. However, in the light of Proposition 3.1, eigen-
functions must represent a scale of frequencies.

Therefore, if certain subspaces Vl represent a scale of frequencies, then the cor-
responding splitting Sj = V1 + V2 + · · · + Vm might be “almost” a–orthogonal in
some sense. Hence, successive minimization of energy J on Vl should provide a fast
solver. This idea is our starting point for the construction of multigrid methods.

Let

(3.7) Sj = V1 + V2 + · · ·+ Vm

be some splitting of Sj . Then, successive minimization of energy J on Vl leads to

the following algorithm for computing a new iterate uν+1
j from some given uν

j ∈ Sj .

Algorithm 3.3. (Successive minimization)
given: w0 = uν

j ∈ Sj

for l = 1, . . . ,m do:
{

solve:
vl ∈ Vl : J (wl−1 + vl) ≤ J (wl−1 + v) ∀v ∈ Vl (local minimization)

wl = wl−1 + vl (intermediate iterates)
}

new iterate: uν+1
j = wm = uν

j +
m
∑

l=1

vl

We now try to choose the splitting (3.7) in such a way that Algorithm 3.3 gen-
erates an iterative scheme with mesh independent convergence rates.

The subproblems for the corrections vl can be easily solved in case of one–
dimensional subspaces Vl. Straightforward nodal splitting

(3.8) Sj =

nj
∑

l=1

Vl, Vl = span{λ(j)
pl
}, l = 1, . . . , nj ,

produces the well–known Gauß–Seidel relaxation. Obviously, subspaces Vl as used

in (3.8) do not represent a scale of frequencies. Only high–frequency functions λ
(j)
pl

are involved. Hence, it is not astonishing that Gauß–Seidel iteration rapidly reduces
high–frequency contributions of the error but scarcely affects low frequencies, (cf.,
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e.g., Hackbusch [39, pp. 49]). In order to incorporate low frequencies, we now make
use of the hierarchy (2.8).

Collecting all basis functions λ
(k)
p from all finite element spaces Sk, we define the

so–called multilevel nodal basis Λ,

Λ =

j
⋃

k=0

Λk = {λl | l = 1, . . . ,mS}, mS = n0 + · · ·+ nj .

Remark 3.4. The underlying enumeration l = l(p, k) is counting all nodes p on
all levels k. Conversely, a given number l characterizes the corresponding pair

(pl, kl) = (p, k)(l). For example, λl(p,k) = λk
p or, conversely, λl = λ

(kl)
pl . We assume

that l = l(p, k) is taken from fine to coarse, i.e., k > k′ implies l(p, k) < l(p, k′).

From an heuristic point of view, the multilevel splitting

(3.9) Sj =

mS
∑

l=1

Vl, Vl = span{λl}, l = 1, . . . ,mS ,

represents a scale of frequencies ranging from low–frequency functions λl ∈ Λ0

to high–frequency functions λl ∈ Λj. We hope that such functions are ”almost”

a–orthogonal. In fact, it turns out that the linear independent subset Λ̂,

Λ̂ = Λ0 ∪
j
⋃

k=1

{λ(k)
p | p ∈ Nk \ Nk−1} ⊂ Λ,

called hierarchical basis of Sj , is in fact a–orthogonal for space dimension d = 1.
From the multilevel splitting (3.9), Algorithm 3.3 generates the multilevel relaxation

(3.10) uν+1
j = uν

j +

mS
∑

l=1

vl, vl =
ℓ(λl)− a(wl−1, λl)

a(λl, λl)
λl,

where wl = wl−1 + vl and w0 = uν
j .

The following abstract convergence result is a special case of Theorem 4.4 by
Xu [85] (see also Xu and Zikatanov [89]).

Theorem 3.5. Assume that the splitting (3.7) has the following two properties.
There is a constant C0 > 0 such that for all v ∈ Sj there exist vl ∈ Vl satisfying

(3.11) v =

m
∑

l=1

vl,

m
∑

l=1

‖vl‖2 ≤ C0‖v‖2.

There is a constant C1 > 0 such that

(3.12)

m
∑

l,k=1

|a(vl, wk)| ≤ C1

(

m
∑

l=1

‖vl‖2
)

1
2
(

m
∑

k=1

‖wk‖2
)

1
2

holds for all vl ∈ Vl and wk ∈ Vk, l, k = 1, . . . ,m.
Then the iterates (uν

j ) produced by Algorithm 3.3 satisfy the error estimate

(3.13) ‖uν+1
j − uj‖2 ≤

(

1− 1

C0(1 + C1)2

)

‖uν
j − uj‖2 ∀ν ≥ 0.

For a–orthogonal subspaces Vl the conditions (3.11) and (3.12) clearly hold with
C0 = C1 = 1. Moreover, the Cauchy–Schwartz inequality guarantees that we can
always choose C1 ≤ m. As a first example, we consider the nodal splitting (3.8).
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Proposition 3.6. The nodal splitting (3.8) satisfies the conditions (3.11) and
(3.12) with C0 = O(h−2

j ) and C1 = O(1).

The iterates (uν
j ) produced by the Gauß–Seidel iteration satisfy

‖uν+1
j − uj‖2 ≤ (1− Ch2

j)‖uν
j − uj‖2 ∀ν ≥ 0

with a constant C > 0 independent of j.

Proof. Let v ∈ Sj and vl = v(pl)λ
(j)
pl

, l = 1, . . . , nj . Exploiting an inverse inequality

and the orthogonality of the basis functions λ
(j)
p with respect to the lumped L2–

scalar product 〈v, w〉 =
∑

p∈Nj
v(p)w(p)hp with the associated norm | · |0, we get

nj
∑

l=1

‖vl‖2 � h−2
j

nj
∑

l=1

‖vl‖2L2(Ω) � h−2
j

nj
∑

l=1

|vl|20 = h−2
j |v|20 � h−2

j ‖v‖2,

where � means that the inequality holds up to a generic constant (see [85]). Ob-

viously, a(λ
(j)
pl
, λ

(j)
pk

) = 0 holds except for neighboring nodes pl, pk. Hence, C1 is
bounded by the maximal number of neighbors which depends on the shape regu-
larity of T0. The upper bound for the convergence rate now follows directly from
Theorem 3.5. �

While condition (3.12) is not an issue for the nodal splitting (3.8), it becomes
problematic for the multilevel decomposition (3.9).

Remark 3.7. The multilevel splitting (3.9) satisfies condition (3.12) with

C1 = O(1) for d = 1, C1 = O(j) for d = 2, C1 = O(2j/2) for d = 3.

The proof follows from arguments by Yserentant [90, Lemma 2.7]. Hence, even if
we could now satisfy (3.11) with a generic constant C0, Theorem 3.5 would still not
exclude exponential decay of our multilevel relaxation for d = 3. One way out of
this dilemma is to merge the one-dimensional subspaces Vl = span{λl} into larger
ones. The exact solvability of the resulting larger minimization problems can be
preserved by a coloring argument, as we will see later in Section 5.1. Another option
is to arrange the computation of the corrections vl according to the refinement levels
in the following way.

We consider the splitting of Sj into subspaces

(3.14) Vk = Sk, k = 0, . . . , j,

which directly reflects the hierarchy (2.8). Gauß–Seidel relaxation on Vk gives rise
to the bilinear form bk(·, ·),

(3.15) bk(v, w) =

nk
∑

i,l=1

i≤l

v(pi)a
(

λ(k)
pi
, λ(k)

pl

)

w(pl), v, w ∈ Vk,

where the nodes pi ∈ Nk are ordered in the same way as the corresponding sub-

spaces Vl = span{λ(kl)
pl } on level kl = k. As Gauß–Seidel relaxation rapidly reduces

high frequency components on Vk, the form bk(·, ·) is called a smoother on Vk. Now
the multilevel relaxation (3.10) can be rewritten as follows.

Algorithm 3.8. (Successive subspace correction)

given: wj+1 = uν
j ∈ Sj
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for k = j, . . . , 0 do:
{

solve:
vk ∈ Vk : bk(vk, v) = ℓ(v)− a(wk+1, v) ∀v ∈ Vk (pre–smoothing)

wk = wk+1 + vk (intermediate iterates)
}

new iterate: uν+1
j = w0 = uν

j +

j
∑

k=0

vk

Following Xu [85] such kind of algorithms are called successive subspace correc-
tion methods. The convergence analysis is based on a generalization of Theorem 3.5
to inexact solution on the subspaces Vk by so-called smoothers b(·, ·). Selecting ap-
propriate subspaces Vk and smoothers bk(·, ·), a large number of multilevel and
domain decomposition methods can be reformulated and analyzed in this way.

Exploiting the linearity of the given problem, the intermediate iterates wk ∈ Sj

can be eliminated by successive updates of the residual. In this way, Algorithm 3.8
can be formulated as a classical multigrid V–cycle.

Algorithm 3.9. (Multigrid V–cycle with 1 pre–smoothing step)
given: uν

j

initialize: rj = ℓ− a(uν
j , ·), aj(·, ·) = a(·, ·)

for k = j, . . . , 1 do:
{

solve:
vk ∈ Vk : bk(vk, v) = rk(v) ∀v ∈ Vk (pre–smoothing)

rk := rk − ak(vk, ·) (update of the residual)

rk−1 = rk|Sk−1

ak−1(·, ·) = ak(·, ·)|Sk−1×Sk−1

(canonical restriction)

}

solve:
v0 ∈ V0 : b0(v0, v) = r0(v) ∀v ∈ V0 (approx. coarse grid solution)

for k = 1, . . . , j do:
{
vk := vk + vk−1 (canonical interpolation)

}

new iterate: uν+1
j = uν

j + vj

Canonical restrictions rk−1 and ak−1(·, ·) of the residual rk = ℓ−a(wk+1, ·) ∈ S′k
and the bilinear form ak(·, ·) are defined by rk−1(v) = rk(v) and ak−1(w, v) =
ak(v, w) for all v, w ∈ Sk−1 ⊂ Sk, respectively. Selecting the nodal basis Λk of Sk
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and using the canonical isomorphism

Sk ∋ v =
∑

p∈Nk

v(p)λ(k)
p ←→ (v(p))p∈Nk

= v ∈ R
nk ,

all substeps of Algorithm 3.9 are translated into matrix vector operations as avail-
able on the computer. It is easily checked that each step of Algorithm 3.9 requires
O(nj) floating point operations (flops). Reverse enumeration of the subspaces Vk

in (3.14), or, equivalently, of the subspaces Vl in (3.9), corresponds to 1 post–
smoothing step. The combination of (multiple) pre– and post–smoothing steps or
W–cycles can be formulated in a similar way.

Our heuristic reasoning is confirmed by the celebrated mesh–independent con-
vergence of multigrid methods. Extending the proof of Bramble et al. [18] for
symmetric smoothers bk(·, ·) to the actual non–symmetric case, the following con-
vergence result was shown by Neuss [65].

Theorem 3.10. There is a ρ < 1 depending only on the shape regularity of T0 and
on the ellipticity constant α in (2.4) such that

(3.16) ‖uν+1
j − uj‖ ≤ ρ‖uν

j − uj‖ ∀ν ≥ 0

holds for all u0
j ∈ Sj .

Multigrid steps on level j are more costly than multigrid steps on coarser grids.
Hence, it seems reasonable to compute initial iterates u0

k := ũk−1 inductively for
each k = 1, . . . , j by a suitable number of multigrid steps on the preceding level.
This procedure is called nested iteration (cf. Hackbusch [39, Chapter 5]) or full
multigrid (cf. Brandt [22]). Nested iteration preserves the optimal accuracy ‖u −
uj‖ = O(hj). More precisely, starting with ũ0 = u0 and using the stopping criterion

(3.17) ‖uk − ũk‖ ≤ σ
2 ‖uk − u0

k‖ , k = 1, 2, . . . , j,

with some constant σ < 1 independent of k, we finally obtain ‖u − ũj‖ = O(hj)
using an overall amount of O(nj) flops. Iterative schemes with this property are
sometimes called optimal. More sophisticated stopping criteria provide optimality
even of nested Gauß–Seidel relaxation. This procedure is called cascadic multigrid
(cf. Bornemann and Deuflhard [10]), or backslash cycle. The exact finite element
solution u0 on the (hopefully) coarse grid T0 can be computed by a direct solver. In
order to check the stopping criterion (3.17) a posteriori estimates of the algebraic
error ‖uk − uν

k‖ are required. For ρ taken from Theorem 3.10, we immediately get

(3.18) (1 + ρ)−1‖uν+1
k − uν

k‖ ≤ ‖uk − uν
k‖ ≤ (1− ρ)−1‖uν+1

k − uν
k‖

utilizing the triangle inequality. Obviously, multigrid corrections provide uniform
lower and upper bounds of the algebraic error.

3.3. Concluding remarks. At first sight, our considerations seem to be more
complicated than classical approaches to multigrid (cf., e.g., Hackbusch [38], pp. 17).
However, the actual interpretation has the advantage that it suggests direct exten-
sions to obstacle problems later on.

We used a very intuitive notion of frequencies. Analytically, the definition (3.14)
of subspaces Vk is motivated by the property

(3.19) Q0Sj = V0, (Qk −Qk−1)Sj ⊂ Vk, k = 1, . . . , j,
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where Qk denotes the L2–projection on Sk. In order to guarantee (3.19) for adap-
tively refined grids, it is sufficient to choose the subspace

Vk = span{Λk \ Λk−1} ⊂ Sk

spanned only by the new nodal basis functions (see the Xu [86, 87] and the references
cited therein). Straightforward selection Vk = Sk could deteriorate the optimal
complexity even up to O(n2

j ) in case of strongly local refinement.

We come back to the reinterpretation of (3.19) in terms of frequencies. It is
well–known (cf., e.g., Bramble and Xu [20]) that

(3.20) ‖v −Qkv‖L2(Ω) ≤ Chk‖v‖ ∀v ∈ Sj

holds with C independent of k and j. As a consequence of (3.20) and an inverse
inequality, all functions v ∈ (Qk − Qk−1)

2Sj ⊂ (Qk − Qk−1)Sj ⊂ Vk have the
property

C−2h−2
k ≤ a(v, v)

(v, v)
≤ ch−2

k ,

where (·, ·) denotes the scalar product in L2. In this sense, the subspaces Vk repre-
sent a scale of frequencies. The relation of high frequencies and locality is discussed
to some extend in a survey by Xu [88].

Convergence properties of general successive subspace correction methods (cf.
Algorithm 3.8) can be analyzed in an abstract framework as developed by Bram-
ble, Pasciak, Wang, and Xu [18, 19], Bramble and Pasciak [17], Dryja and Wid-
lund [31], Xu [85] and others. The underlying arguments were partly anticipated
by Yserentant [90] for the special case of hierarchical splittings

(3.21) V0 = I0Sj , Vk = (Ik − Ik−1)Sj , k = 1, . . . , j,

where Ik : Sj → Sk denotes nodal interpolation.
Using this abstract theory, the most crucial point in the proof of Theorem 3.10

is to show that the splitting (3.14) is stable. This means that each v ∈ Sj can be
decomposed into a sum v = v0 + v1 + · · ·+ vj of vk ∈ Vk in such a way that

(3.22)

j
∑

k=0

4k‖vk‖2L2(Ω) ≤ C1‖v‖2

holds with some C1 independent of j. Note that the approximation property (3.20)
together with H1–stability of Q0 provides (3.22) with C1 growing linearly in j.
Utilizing the equivalence of norms in suitable Besov and Sobolev spaces, (3.22) was
first shown by Oswald [67] and Dahmen and Kunoth [29]. For extensions related to
adaptively refined grids, we refer to Bornemann and Yserentant [12] and Bramble
and Pasciak [17] or Xu [85]. In contrast to the classical multigrid convergence theory
of Hackbusch [38] and Braess and Hackbusch [15] no additional regularity of u is
required in order to obtain (3.22) and the resulting mesh–independent convergence
(3.16). On the other hand, we get no information how multiple smoothing would
improve the convergence rate.

Note that the stability of the hierarchical splitting (3.21) deteriorates quadrat-
ically in two space dimensions and exponentially for d = 3. As a consequence,
the convergence rates of associated hierarchical basis multigrid methods deterio-
rate quadratically and exponentially for two and three space dimensions, respec-
tively (cf. Yserentant [90], Bank, Dupont and Yserentant [4], Deuflhard, Leinen and
Yserentant [30]). On the other hand, hierarchical splittings have some advantages
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concerning complexity and robustness which make them competitive for certain
two–dimensional problems.

For further information on successive subspace correction and multigrid, we rec-
ommend the monograph of Bramble [16] and the surveys of Xu [85, 87, 88] and
Yserentant [91]. The relation of subspace correction and domain decomposition is
discussed in some detail by Smith, Bjørstad and Gropp [76].

4. Subset Decomposition Methods

We now concentrate on the obstacle problem

uj ∈ Kj : J (uj) ≤ J (v) ∀v ∈ Kj

as stated in Section 2.1. As minimization over Sj is now replaced by minimization
over Kj , it is natural to replace the decomposition (3.7) of Sj into subspaces Vl by
a related decomposition

(4.1) Kj = K1 +K2 + · · ·+Km, Kl ⊂ Vl,

of Kj into closed, convex subsets Kl. We assume that there is a family of mappings
Rl : Kj → Vl satisfying

(4.2) Rlv ∈ Kl, v =

m
∑

l=1

Rlv ∀v ∈ Kj .

Then successive minimization of the energy J on Kl leads to the following basic
subset decomposition algorithm.

Algorithm 4.1. (Subset Decomposition Method)
given: w0 = uν

j ∈ Kj .

for l = 1, . . . ,m do:
{

Dl = −Rlu
ν
j +Kl (local defect constraints)

solve:
vl ∈ Dl : J (wl−1 + vl) ≤ J (wl−1 + v) ∀v ∈ Dl (local minimization)

wl = wl−1 + vl (intermediate iterates)
}

new iterate: uν+1
j = wm = uν

j +

m
∑

l=1

vl.

By construction, all intermediate iterates wl are feasible in the sense that wl ∈ Kj

and J (wl) ≤ J (wl−1), l = 1, . . . ,m.

Remark 4.2. The defect constraints Dl only depend on the given iterate uν
j and

not on the intermediate corrections vl.

As a first example, let us consider the nodal splitting (3.8) of Sj into subspaces

Vl = span{λ(j)
pl
}. In this case, the corresponding subset decomposition

(4.3) Kj =

nj
∑

l=1

Kl, Kl = {v ∈ Vl | v(pl) ≥ ϕj(pl)}
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and the restrictions Rlv = v(pl)λ
(j)
pl

are uniquely determined. Inserting these spec-
ifications into the basic Algorithm 4.1, we obtain the well–known projected Gauß–
Seidel relaxation (cf. Glowinski [37, Chapter V]). The local corrections vl are given
by

(4.4) vl = max

{

rl(λ
(j)
pl

)

a(λ
(j)
pl
, λ

(j)
pl

)
,−uν

j (pl) + ϕ(pl)

}

λ(j)
pl

denoting rl = ℓ−a(wl−1, ·) ∈ S′j . We introduce the corresponding iteration operator
Mj : Kj → Kj defined by

(4.5) Mj(u
ν
j ) = uν

j +

nj
∑

l=1

vl

for further reference.
Generalizing its unconstrained counterpart, the projected Gauß–Seidel relax-

ation typically inherits rapidly deteriorating convergence rates for decreasing mesh
size. We expect faster convergence from additional corrections representing a scale
of frequencies and therefore introduce a multilevel decomposition into the subsets

(4.6) Kl = {v ∈ Vl | vl ≥ φl} ⊂ Vl = span{λl}, l = 1, . . . ,mS ,

associated with the multilevel nodal basis functions λl = λ
(kl)
pl

(cf. Remark 3.4).
Recall that the subspaces Vl = span{λl} lead to classical multigrid methods as
explained in the preceding section. The local obstacles φl ∈ Vl are chosen in such
a way that

(4.7) ϕj =

mS
∑

l=1

φl.

This decomposition is not unique. However, it will turn out below that the following
construction of restriction operators Rl : Kj → Kl leads to an algorithm which does
not depend on the actual choice of the local obstacles φl. As a starting point, we
define modified interpolation operators I⊖k : Sj → Sk, k = 0, . . . , j, according to

I⊖k v =
∑

p∈Nk

vpλ
(k)
p , vp = min{v(q) | q ∈ Nj ∩ int suppλ(k)

p }.

Obviously, I⊖j v = v. Moreover, we have

(4.8) v ≥ 0 ⇒ I⊖k v ≥ 0, I⊖k v ≥ I⊖k−1v ∀v ∈ Sj ,

because int suppλ
(k)
p ⊂ int suppλ

(k−1)
p . For convenience, we set I⊖−1 = 0. Utilizing

l = l(pl, kl), we now define the restrictions

(4.9) Rlv =
(

I⊖kl
(v − ϕj)− I⊖kl−1(v − ϕj) + φl

)

(pl)λl, l = 1, . . . ,mS .

As a consequence of (4.8), the restrictions Rl satisfy the conditions (4.2).
Inserting Kl and Rl as defined in (4.6) and (4.9), respectively, into the basic Al-

gorithm 4.1, we obtain a multilevel subset decomposition method. It was originally
proposed and analyzed by Tai [78] under the name constraint decomposition method.
Here we have described a slight modification by taking the minimum over the nodes

p ∈ int suppλ
(k)
p and not over suppλ

(k)
p in the definition of I⊖k . This modification

might lead to slightly faster convergence by slightly less restrictive coarse grid cor-
rection and clarifies the relation to monotone multigrid methods to be presented
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later. Similar to the projected Gauß-Seidel method the corrections provided by
multilevel subset decomposition can be evaluated in closed form according to

(4.10) vl = max

{

rl(λl)

a(λl, λl)
,−Rlu

ν
j (pl) + φl(pl)

}

λl,

where pl is the supporting point of λl = λ
(kl)
pl

.
The convergence analysis of the multilevel subset decomposition algorithm (4.10)

will be based on the following abstract convergence result by Tai [78].

Theorem 4.3. Assume that the restriction operators Rl fulfill the stability condi-
tion

(4.11)

mS
∑

l=1

‖Rlv −Rlw‖2 ≤ C0‖v − w‖2 ∀v, w ∈ Kj

with a constant C0 ≥ 0 and that the underlying space decomposition (3.7) satisfies
the condition (3.12).

Then, for any u0
j ∈ Kj the iterates (uν

j )ν≥0 produced by Algorithm 4.1 satisfy the
error estimates

(4.12) J (uν+1
j )− J (uj) ≤ ρ

(

J (uν
j )− J (uj)

)

∀ν ≥ 0

and

(4.13) ‖uν
j − uj‖2 ≤ 2ρν

(

J (u0
j)− J (uj)

)

∀ν ≥ 0

with

(4.14) ρ = 1− 1

(
√

1 + C∗ +
√
C∗)2

, C∗ =
(

2C1 + C0C
2
1

)

.

Observe that (4.13) follows directly from (4.12) and

J (v)− J (uj) ≥ 1
2‖v − uj‖2 ∀v ∈ Kj .

Remark 4.4. In the unconstrained case Kj = Sj, the estimate (4.11) is equivalent
to (3.11), if the restrictions Rl are linear mappings.

As a first example, we consider the projected Gauß–Seidel relaxation (4.4).

Proposition 4.5. The restriction operators Rl induced by the nodal splitting (4.3)
satisfies condition (4.11) with the same constant C0 = O(h−2

j ) as appearing in
Proposition 3.6.

The iterates (uν
j ) produced by the projected Gauß–Seidel relaxation (4.4) satisfy

‖uν
j − uj‖2 ≤ 2(1− Ch2

j)
ν
(

J (u0
j)− J (uj)

)

∀ν ≥ 0

with a constant C > 0 independent of j.

Proof. As nodal interpolation Rlv = v(pl)λ
(j)
pl

is linear, the conditions (4.11) and
(3.11) are equivalent. �

Now we concentrate on the multilevel relaxation (4.10). In contrast to the con-
vergence results for linear multigrid methods as presented in the preceding section,
the following theorem is restricted to quasiuniform meshes and a suitable ordering

of the spaces Vl = span{λ(kl)
pl
} on each level kl. More precisely, we decompose

(4.15) Nk =

i0
⋃

i=1

N i
k, k = 0, . . . , j,
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by coloring the planar graph consisting of the nodes and edges of the triangulation
Tk with i0 colors. Such a decomposition exists with i0 ≤ 4 by the famous four–color
theorem. By construction, we have

(4.16) int suppλ(k)
p ∩ int suppλ(k)

q = ∅ ∀p, q ∈ N i
k, p 6= q.

We assume that the spaces Vl = span{λ(kl)
pl
} on each level kl are ordered according

to the decomposition (4.15) in the sense that the sets N i
k are enumerated one after

the other. The following convergence result is due to Tai [78].

Theorem 4.6. Assume that the space dimension is d = 2. Then the restriction
operators Rl defined in (4.9) fulfill the condition (4.11) with

(4.17) C0 = O(j + 1)2.

For any u0
j ∈ Kj the iterates (uν

j )ν≥0 produced by multilevel subset decomposition

method (4.10) satisfy

‖uν
j − uj‖2 ≤ 2(1− C(j + 1)−2)ν

(

J (u0
j)− J (uj)

)

∀ν ≥ 0

with a constant C > 0 independent of j.

Proof. Let v, w ∈ Kj . Denoting

v(k) = I⊖k (v − ϕj)− I⊖k−1(v − ϕj), w(k) = I⊖k (w − ϕj)− I⊖k−1(w − ϕj)

we can collect the summands according to the levels to obtain

(4.18)

mS
∑

l=1

‖Rlv −Rlw‖2 =

j
∑

k=0

∑

p∈Nk

|v(k)(p)− w(k)(p)|2‖λ(k)
p ‖2

�
j
∑

k=0

h−2
k

∑

p∈Nk

|v(k)(p)− w(k)(p)|2 h2
k �

j
∑

k=0

h−2
k ‖v(k) − w(k)‖2L2(Ω).

Note that the local obstacles φl appearing in (4.9) cancel out each other. Further-

more, we have used that in d = 2 space dimensions ‖λ(k)
p ‖ is uniformly bounded

by a constant depending only on the shape regularity of T0 and that the weighted
sum of squared nodal values is equivalent to the L2-norm. Now the cornerstone of
the proof is the stability estimate

(4.19) ‖I⊖k (v − ϕj)− I⊖k (w − ϕj)− (v − w)‖2L2(Ω) � (1 + j − k)hk‖v − w‖2

stated in Theorem 2 by Tai [78] which can be shown literally in the same way for
the slightly modified operators I⊖k . Using (4.19), we immediately get

‖v(k) − w(k)‖2L2(Ω) � (j − k + 1)h2
k‖v − w‖2.

Inserting this estimate into (4.18), we obtain condition (4.11) with C0 � (j + 1)2.
In order to check condition (3.12) we consider the splitting

(4.20) Sj = V0 +

j
∑

k=1

i0
∑

i=1

V i
k, V0 = S0, V i

k = span{λ(k)
p | p ∈ N i

k}.

As a consequence of (4.16), the subset decomposition method induced by the de-
composition

(4.21) Ki
k =

⋃

p∈N i
k

Kl(p,k), Ri
k =

∑

p∈N i
k

Rl(p,k) k = 0, . . . , j, i = 1, . . . , i0,
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is producing exactly the same iterates as the original multilevel method (4.10).
Moreover, the decomposition (4.21) directly inherits condition (4.11) with C0 �
(j + 1)2 from the original splitting. The reason for this reinterpretation is that for
the underlying space decomposition (4.20) the condition (3.12) with C1 = O(1)
immediately follows from the well–known strengthened Cauchy–Schwarz inequality
(cf. Yserentant [90, Lemma 2.7])

|a(vk, wl)| �
(

1√
2

)|k−l|

‖vk‖‖wl‖ ∀vk ∈ Sk, wl ∈ Sl.

The final error estimate is an immediate consequence of Theorem 4.3. �

The proof of the estimate (4.17) essentially relies on the stability of nodal in-
terpolation and therefore is restricted to d = 2 space dimensions. While even
mesh-independent bounds are available for d = 1 only exponential bounds can be
shown in three space dimensions.

We now concentrate on the efficient reformulation of the multilevel subset de-
composition method (4.10) as a multigrid V−cycle. While the intermediate iterates
can be removed in a similar way as in the linear case, we now have to find a way
to check the constraints Dl without visiting the fine mesh. For given uν

j ∈ Kj the
constraints Dl can be rewritten as

Dl = −Rlu
ν
j +Kl = {zλl | z ≥ ψl}

where
ψl = ψ(kl)(pl), ψ(k) = −(I⊖k − I⊖k−1)(u

ν
j − ϕj).

We emphasize that the choice of the local obstacles φl in the decomposition (4.6)
has no effect on Dl and thus on the whole iteration. It is convenient to introduce
the counterparts I⊕k : Sj → Sk of I⊖k by

I⊕k v =
∑

p∈Nk

vpλ
(k)
p , vp = max{v(q) | q ∈ Nj ∩ int supp λ(k)

p }

and I⊕−1 = 0. Note that −I⊕k v = I⊖k (−v). The modified interpolation operators I⊕j
satisfy the recursion formula

I⊕k−1v = Rk−1
k I⊕k v, k = 1, . . . , j, I⊕j v = v ∀v ∈ Sj

with monotone restriction operators Rk−1
k : Sk → Sk−1 defined by

(4.22)
(

Rk−1
k v

)

(p) = max{v(q) | q ∈ Nk ∩ int suppλ(k−1)
p }, p ∈ Nk−1,

for k = j, . . . , 1 and R−1
0 = 0. As a consequence, the interpolated defect obstacles

χ(k) = I⊕k (ϕj − uν
j ) can be evaluated recursively according to

χ(k−1) = Rk−1
k χ(k), k = j, . . . , 0, χ(j) = ϕj − uν

j .

The resulting hierarchical decomposition

ϕj − uν
j =

j
∑

k=0

ψ(k), ψ(k) = χ(k) − χ(k−1)

of the defect obstacle ϕj − uν
j is illustrated in Figure 1. The left picture illustrates

the monotone restriction χ(j−1) (dashed) of a given defect obstacle (solid). Further
monotone restriction provides χ(j−2) as depicted in the right picture. A hierarchical
decomposition is obtained from the increments ψ(j), ψ(j−1), and ψ(j−1).
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0

 

 

fine obstacle χ(j)

coarse obstacle χ(j−1)

interior of suppλ
(j−1)
p

0

 

 

fine obstacle χ(j)

coarse obstacles χ(j−k)

Figure 1. Restriction (left) and hierarchical decomposition
(right) of defect obstacle

We are now ready to reformulate the multilevel subset decomposition algorithm
(4.10) as a multigrid V-cycle with optimal complexity O(nj).

Algorithm 4.7. (Multigrid V–cycle with 1 pre–smoothing step)
given: uν

j

initialize: rj = ℓ− a(uν
j , ·), aj(·, ·) = a(·, ·), χ(j) = ϕj − uν

j

for k = j, . . . , 1 do:
{

χ(k−1) = Rk−1
k χ(k) (monotone restriction)

Dk = {v ∈ Sk | v ≥ ψ(k)}, ψ(k) = χ(k) − χ(k−1) (defect obstacles)
solve:
v(k) ∈ Dk : bk(v(k), v − v(k)) ≥ rk(v − v(k)), ∀v ∈ Dk (pre-smoothing)

rk := rk − ak(v(k), ·) (update of the residual)

rk−1 = rk|Sk−1
ak−1(·, ·) = ak(·, ·)|Sk−1×Sk−1

(canonical restriction)
}

solve:
v(0) ∈ D0 : b0(v

(0), v − v(0)) ≥ r0(v − v(0)), ∀v ∈ D0 (initial grid smoothing)

for k = 1, . . . , j do:
{

v(k) := v(k) + v(k−1) (canonical interpolation)
}

new iterate: uν+1
j = uν

j + v(j)

Algorithm 4.7 can be implemented as a V (1, 0)-cycle multigrid method with
projected Gauß-Seidel smoother and canonical restrictions and prolongations. Only
the monotone restrictions Rk−1

k of the defect obstacles have to be added to an
existing multigrid code. In order to incorporate several pre- or postsmoothing
steps the original sets Kl and restrictions Rl are repeated several times after certain
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modifications preserving the consistency conditions (4.1) and (4.2). For example,

a V (1, 1) cycle is obtained by 2mS restriction operators R̃l which are defined by

R̃l = 1
2Rl for l = 1, . . .mS and repeated in reverse order for l = m + 1, . . . , 2mS .

Analogously, the convex sets K̃l are generated by φ̃l = 1
2φl for l = 1, . . .mS and

repeated in reverse order for l = m + 1, . . . , 2mS . We will use this setting in
our numerical computations. The convergence analysis of such algorithms can be
carried out along the lines explained above.

4.1. Concluding remarks. It seems that Algorithm 4.7 is the first multigrid
method for obstacle problems that allowed for polylogarithmic bounds for the con-
vergence rates. Moreover, to our knowledge it is still the only algorithm with proven
multigrid convergence rates which can be implemented as a V -cycle (cf. Section 5).

The same theoretical framework can be used to analyze Jacobi-like versions of
Algorithm 4.1. The advantage of such methods is that the corrections can be
computed in parallel, because the update of the intermediate iterates is simply
skipped. On the other hand, convergence has to be enforced by damping parameters
α ≤ nj which might slow down convergence considerably in comparison with the
sequential version. We refer to Tai [42, 78] for details.

Similar to linear subspace decomposition, the abstract convergence result can be
also applied to overlapping domain decomposition methods. For further informa-
tion, we refer to Tai [42, 78, 81] and the references cited therein.

5. Projected subspace decomposition methods

5.1. Projected relaxation methods. Another natural extension of linear sub-
space correction to obstacle problems is to perform successive constrained mini-
mization on the subspaces Vl. For a given splitting (3.7) of Sj such kind of direct
extension of Algorithm 3.3 to the obstacle problem (2.10) reads as follows.

Algorithm 5.1. (Successive minimization)
given: w0 = uν

j ∈ Sj .
for l = 1, . . . ,m do:

{
Dl =

(

− wl−1 +Kj

)

∩ Vl (local defect constraints)

solve:
vl ∈ Dl : J (wl−1 + vl) ≤ J (wl−1 + v) ∀v ∈ Dl (local minimization)

wl = wl−1 + vl (intermediate iterates)
}

new iterate: uν+1
j = wm = uν

j +

m
∑

l=1

vl.

Remark 5.2. In contrast to the subset decomposition Algorithm 4.7 the defect
constraints now depend on the intermediate iterates and thus on the preceding cor-
rections vl.

As a first example, we consider the nodal splitting (3.9). In this case, the basic
Algorithm 5.1 is again producing the projected Gauß–Seidel relaxation Mj with
local corrections vl given in (4.4).
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In order to generalize classical multigrid methods, we now insert the multilevel
splitting (3.9) into Algorithm 5.1. The resulting projected multilevel relaxation was
suggested by Mandel [36, 62, 63] and later investigated by many authors [1, 2, 42,
51, 81]. The corresponding corrections vl are given explicitly by

(5.1) vl = max

{

rl(λl)

a(λl, λl)
, max

p∈Nj∩int supp λl

−wl−1(p) + ϕ(p)

λl(p)

}

λl.

The convergence analysis of (5.1) will be based on the following abstract con-
vergence result by Badea, Tai, and Wang [2] for the basic Algorithm 5.1.

Theorem 5.3. Assume that the splitting (3.7) has the following two properties.
There is a constant C0 > 0 such that for all v, w ∈ Kj and sl ∈ Vl with

w +
∑l−1

i=1 si ∈ Kj for l = 1, . . . ,m there exist zl ∈ Vl, 1, . . . ,m, satisfying

(5.2)

v − w =

m
∑

l=1

zl, w +

l−1
∑

i=1

si + zl ∈ Kj , l = 1, . . . ,m,

m
∑

l=1

‖zl‖2 ≤ C0

(

‖v − w‖2 +

m
∑

l=1

‖sl‖2
)

.

The condition (3.12) holds with a constant C1 > 0.
Then the iterates (uν

j ) produced by Algorithm 5.1 satisfy the error estimates

(5.3) J (uν+1
j )− J (uj) ≤ ρ

(

J (uν
j )− J (uj)

)

∀ν ≥ 0

and

(5.4) ‖uν
j − uj‖2 ≤ 2ρν

(

J (u0
j)− J (uj)

)

∀ν ≥ 0

with

(5.5) ρ = 1− 1

(
√

1 + C∗ +
√
C∗)2

, C∗ =
(

2(1 +
√

C0)C1 + C0C
2
1

)

.

Remark 5.4. In the unconstrained case Kj = Sj, the condition (5.2) is equivalent
to condition (3.11) with v replaced by v − w.

Let us first apply Theorem 5.3 to the projected Gauß–Seidel relaxation (4.4).

Proposition 5.5. The nodal splitting (3.8) satisfies condition (5.2) with the same
constant C0 = O(h−2

j ) as appearing in Proposition 3.6.

The iterates (uν
j ) produced by the projected Gauß–Seidel relaxation (4.4) satisfy

‖uν
j − uj‖2 ≤ 2(1− Ch2

j)
ν
(

J (u0
j)− J (uj)

)

∀ν ≥ 0

with a constant C > 0 independent of j.

Proof. For given v, w and sl the unique decomposition zl = (v(pl) − w(pl))λ
(j)
pl

clearly satisfies the estimate in (5.2) with the same constant as in (3.11). The

remaining condition w+
∑l−1

i=1 si + zl ∈ Kj , l = 1, . . . , nj , is automatically fulfilled.
�

A polylogarithmic upper bound for the multilevel relaxation (5.1) has been shown
just recently by Badea [1].
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Theorem 5.6. Assume that the space dimension is d = 2 and that dim S0 =

1. Assume further that the spaces Vl = span{λ(kl)
pl
} on each level kl are ordered

according to the decomposition (4.15).
Then the multilevel splitting (3.9) satisfies condition (5.2) with

(5.6) C0 = O(j + 1)5.

The iterates (uν
j ) produced by the projected multilevel relaxation (5.1) satisfy

(5.7) ‖uν
j − uj‖2 ≤ 2(1− C(j + 1)−5)ν

(

J (u0
j)− J (uj)

)

∀ν ≥ 0

with a constant C > 0 independent of j.

As in the proof of Theorem 4.6, a coloring argument yields condition (3.12) with
a constant C1 = O(1). The corner stone of the estimate (5.6) of the stability
constant C0 is a stability result for a modified interpolation operator I+

k : Sj → Sk.

Similarly to I⊖k appearing in Algorithm 4.7, the operator I+
k (we adopt the notation

of Tai [78] and Badea [1], respectively) is defined by

I+
k v =

∑

p∈Nk

v+
p λ(k)

p , v+
p = min{v+(q) | q ∈ suppλ(k)

p }, v+ = max{0, v},

and, for d = 2, has the stability properties

‖I+
k v − v‖L2(Ω) � h2

k(1 + j − k)‖v‖2,

‖I+
k v‖L2(Ω) � ‖v‖L2(Ω), ‖I+

k v‖2 � (1 + j − k)‖v‖2.
according to Lemma 4.3 in [1]. Due to the well-known Sobolev imbedding theorem
even mesh-independent stability holds for d = 1 but only exponential bounds are
available in three space dimensions. We emphasize that I+

k only appears in the
proof and not in the algorithm itself.

In the case dim S0 > 1, the results of Theorem 5.6 hold for the splitting

Sj = S0 +

mS
∑

l=n0+1

Vl,

or, equivalently, for exact solution on the coarsest grid.

Remark 5.7. In contrast to the multilevel subset decomposition Algorithm 4.7 the
multilevel relaxation (5.1) cannot be implemented as a multigrid V -cycle, because
the intermediate iterates wl enter the defect constraints Dl in an nonlinear way.
More precisely, an additional interpolation to the fine grid Tj is necessary to evalu-
ate the correction at each node p on each refinement level k. Therefore the numerical
complexity of each iteration step is ranging from O(nj lognj) in case of uniform
refinement to even O(n2

j ) for highly locally refined grids.

5.2. Monotone multigrid methods. The multilevel relaxation (5.1) suffers from
two drawbacks

• sub-optimal complexity ranging from O(nj lognj) up to O(n2
j ).

• poor asymptotic convergence speed due to poor coarse grid correction.

While the first issue has already been addressed in Remark 5.7, the second one
requires further explanation. Assume, for the moment, that the coincidence set
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N •
j is known so that we are left with the linear reduced problem (2.12). Then, all

subspaces Vl with the property

int suppλl ∩ N •
j 6= ∅

must not contribute to the correction, because λl 6∈ S◦j . Such kind of poor coarse
grid correction often slows down the asymptotic convergence speed of the multi-
level relaxation (5.1) in comparison with the unconstrained case. Following Korn-
huber [51], we therefore iteratively adapt the multilevel nodal basis functions λl to
the reduced space S◦j . More precisely, we introduce so–called truncated nodal basis
functions λl, l > nj , according to

(5.8) λ̃l(p) =

{

0 if p ∈ N •
j (ūν

j )

λl(p) else
, p ∈ Nj .

As the exact coincidence set N •
j is not known a priori, we truncate with respect to

its actual approximation

N •
j (ūν

j ) = {p ∈ Nj | ūν
j (p) = ϕ(p)}

provided by fine-grid smoothing

(5.9) ūν
j =Mj(u

ν
j )

of the given iterate uν
j . Note that truncation (5.8) just means nodal interpolation

of λl to the actual approximation

(5.10) S̃j = S̃j(ū
ν
j ) = {v ∈ Sj | v(p) = 0 ∀p ∈ N •

j (ūν
j )}

of the reduced space S◦j . The corresponding splitting

(5.11) Sj =

nj
∑

l=1

Vl +

mS
∑

l=nj+1

Ṽl, Ṽl = span{λ̃l},

gives rise to a truncated multilevel relaxation. The subspaces Vl = span{λl},
l = 1, . . . , nj reproduce the leading projected Gauß–Seidel step (5.9). The trun-

cated subspaces Ṽl improve the coarse grid correction, because now all λ̃l with
the property int suppλl ∩

(

Nj \ N •
j

)

6= ∅ do contribute once N •
j (ūν

j ) = N •
j is

known. Until then, the actual splitting (5.11) is adapted to the actual coincidence

set N •
j (ūν

j ) in each iteration step. The corrections vl ∈ Ṽl are given by

(5.12) vl = max

{

rl(λ̃l)

a(λ̃l, λ̃l)
, max

p∈Nj∩int supp λ̃l

−wl−1(p) + ϕ(p)

λ̃l(p)

}

λ̃l.

for λ̃l 6= 0 and vl = 0 otherwise.

Remark 5.8. By construction of the coarse grid spaces Ṽl = span{λ̃l}, we have

N •
j (ūν

j ) ⊂ N •
j (uν+1

j ).

Hence, in contrast to the original multilevel relaxation (5.1), inactivation, i.e. re-
moving nodes from N •

j , is now exclusively performed by projected Gauß–Seidel re-
laxation.
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A second modification of the multilevel relaxation (5.1) is needed to allow for an
implementation as a multigrid V -cycle with optimal complexity. To this end, we
consider the minimization problems

(5.13) vl ∈ D̃l : J (wl−1 + vl) ≤ J (wl−1 + v) ∀v ∈ D̃l,

with modified coarse–grid constraints

D̃l = {zλ̃l | z ≥ ψl}, l = nj + 1, . . . , nS ,

and local defect obstacles ψl ∈ Vl. Once ψl is available, the constraint D̃l can be
checked without visiting the fine grid. The condition

(5.14) 0 ≥ ψl ≥ max
p∈int supp λ̃l

−wl−1(p) + ϕ(p)

on the local defect obstacles ψl provides

0 ∈ D̃l ⊂
(

− wl−1 +Kj

)

∩ Ṽl

and thus guarantees feasibility (cf. Algorithm 5.1).

Remark 5.9. Replacing −wl−1 + Kj by the coarse grid constraints D̃l can be
regarded as an intrinsic damping of (5.12). More precisely, denoting the corrections
provided by (5.12) and (5.13) by v∗l and vl, respectively, we have

(5.15) vl = ωlv
∗
l

with some ωl ∈ [0, 1].

We now present a recursive construction of local defect obstacles ψl. Let

ψl = ψ(kl)(pl)

with suitable defect obstacles ψ(k) ∈ Sk to be defined as follows. Starting with
v(j) = 0 and ψ(j) ∈ Sj , defined by

ψ(j)(p) =

{ −∞ if p ∈ N •
j (ūν

j )

−ūν
j (p) + ϕ(p) else

,

successive update and monotone restriction

ψ(k−1) = Rk−1
k

(

ψ(k) − v(k)
)

inductively guarantees condition (5.14). Using the enumeration l = l(p, k) (cf.
Remark 3.4), the overall correction v(k) on level k < j is given by

v(k) =
∑

p∈Nk

vl(p,k) ∈ S̃k = span{λ̃l(p,k)} | p ∈ Nk}.

The restriction operator Rk−1
k : Sk → Sk−1 defined in (4.22) has been already used

in Algorithm 4.7.
Now, the solution of the local problems (5.13) on level k can be equivalently

formulated as projected Gauß–Seidel smoothing

v(k) ∈ Dk : b̃k(v(k), v − v(k)) ≥ rk(v − v(k)) ∀v ∈ Dk

with the constraints

Dk = {v ∈ S̃k | v(p) ≥ ψ(k)(p) ∀p ∈ Nk} ⊂ S̃k,
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the bilinear form

(5.16) b̃k(v, w) =

nk
∑

i,l=1

i≤l

v(pi)a
(

λ̃(k)
pi
, λ̃(k)

pl

)

w(pl), v, w ∈ S̃k,

and the residual rk = ℓ− a(ūj, ·)−
∑j−1

i=k+1 a(v
(i), ·) ∈ S′j ⊂ S̃′k.

Finally, truncation of λl(p,k) = λ
(k)
p can be performed recursively according to

(5.17) λ̃(k)
p =

∑

q∈Nk+1

λ(k)
p (q) λ̃(k+1)

q , p ∈ Nk,

starting with λ̃
(j)
p = 0, if p ∈ N •

j (ūν
j ) and λ̃

(j)
p = λ

(j)
p , otherwise.

The resulting truncated multigrid method can be formulated as a multigrid V –
cycle with optimal complexity. It is called monotone, because, by construction, the
coarse grid correction does not increase the energy.

Algorithm 5.10. (Truncated monotone multigrid V–cycle with 1 pre-smoothing step)
given: uν

j

fine grid smoothing: ūν
j =Mj(u

ν
j ), v(j) = 0

initialization of residual and bilinear form: rj = ℓ− a(ūν
j , ·), aj(·, ·) = a(·, ·)

truncation: rj := rj |S̃j
, aj(·, ·) := aj(·, ·)|S̃j×S̃j

initialization of defect obstacle: ψ(j)(p) = −ūν
j (p) + ϕ(p) ∀p ∈ Nj

truncation: ψ(j)(p) := −∞, if p ∈ N •
j (ūν

j )

initial restriction:
rj−1 = rj |S̃j−1

, aj−1(·, ·) = aj(·, ·)|S̃j−1×S̃j−1
, ψ(j−1) = Rj−1

j ψ(j)

for k = j − 1, . . . , 1 do:
{

solve:
v(k) ∈ Dk : b̃k(v(k), v − v(k)) ≥ rk(v − v(k)) ∀v ∈ Dk (pre–smoothing)

rk := rk − ak(v(k), ·) (update of the residual)
ψ(k) := ψ(k) − v(k) (update of the defect obstacle)

rk−1 = rk|S̃k−1
ak−1(·, ·) = ak(·, ·)|S̃k−1×S̃k−1

(canonical restriction)

ψ(k−1) = Rk−1
k ψ(k) (monotone restriction)

}

solve:
v(0) ∈ D0 : b0(v

(0), v − v(0)) ≥ r0(v − v(0)) ∀v ∈ D0 (initial grid smoothing)

for k = 1, . . . , j do:
{

v(k) := v(k) + v(k−1) (canonical interpolation)
}
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new iterate: uν+1
j = uν

j + v(j)

Implementation of the truncation step amounts to annihilating all rows and
columns of the stiffness matrix and the right hand side that correspond to active
nodes p ∈ N •

j (ūν
j ). Then, according to (5.17), the algebraic formulation of the

canonical restriction of the residual rk and the bilinear form ak(·, ·) from S̃k to

S̃k−1 involves the same weights as for the standard spaces Sk and Sk−1. After pro-
longation, we only have to set v(j)(p) := 0 for all p ∈ N •

j (uν
j ). No other changes of

canonical restriction and prolongation procedures are necessary. Projected Gauß–
Seidel smoothing has to be modified in order to skip all coefficients with vanishing
diagonal elements. Only monotone restriction of the defect obstacles has to be
newly added to an existing multigrid code.

Remark 5.11. In addition to the initial restriction on the fine grid, truncation
can be performed recursively on all levels. According to numerical computations,
this variant often leads to a faster detection of the coincidence set.

Of course, it is possible to apply the concept of modified defect constraints Dl

directly to the multilevel relaxation (5.1) without any truncation of λl. This im-
mediately leads to a modification of (5.1) which can be implemented as a multigrid
V–cycle. As just the standard multilevel nodal basis functions are involved in this
case, such algorithms are called standard monotone multigrid method.

Algorithm 5.12. (Standard monotone multigrid V–cycle with 1 pre-smoothing step)
proceed as in Algorithm 5.10 but skip the truncation of rj, aj(·, ·), and ψ(j)

Remark 5.13. In contrast to the truncated Algorithm 5.10, the standard version
Algorithm 5.12 allows for activation and inactivation by coarse grid correction.

Monotone multigrid methods with multiple pre– and post–smoothing or W–
cycles can be derived in a similar way.

The global convergence of monotone multigrid methods relies on the following
lemma.

Lemma 5.14. Assume that the iterates uν
j are produced by an algorithm of the

form

(5.18) ūν
j =Mj(u

ν
j ), uν+1

j = Cj(ūν
j )

with Mj : Kj → Kj denoting the projected Gauß–Seidel iteration (4.4) and some
Cj : Kj → Kj satisfying the monotonicity condition

(5.19) J (Cj(w)) ≤ J (w) ∀w ∈ Kj .

Then uν
j → uj holds for any initial iterate u0

j ∈ Kj.

Proof. The sequence of iterates is bounded, because J (uν
j ) ≤ J (u0

j) holds for all ν.

As Sj has finite dimension andKj is closed, there is a subsequence (uνk

j ) and u∗j ∈ Kj

such that uνk

j → u∗j for k →∞. The local corrections vl depend continuously on the
intermediate iterates wl−1 so that, consisting of nested continuous functions, the
Gauß–Seidel relaxationMj is continuous on Kj . The monotonicity (5.19) implies

J (u
νk+1

j ) ≤ J (uνk+1
j ) ≤ J (Mj(u

νk

j )) ≤ J (uνk

j )
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and passing to the limit k → ∞, we obtain J (Mj(u
∗
j )) = J (u∗j ). This leads to

Mj(u
∗
j ) = u∗j , because the local corrections vl = 0 are uniquely determined by

(4.4). Denote r = ℓ − a(u∗j , ·). Then (4.4) yields the complementarity property

r(λ(j)
p ) ≤ 0, u∗j (p) ≤ ϕ(p), r(λ(j)

p )(−u∗j(p) + ϕ(p)) = 0 ∀p ∈ Nj .

providing r(v − u∗j) ≤ 0 for all v ∈ Kj . Hence, u∗j solves (2.11). As uj = u∗j is

uniquely determined, each convergent subsequence of (uν
j ) must converge to uj.

This concludes the proof. �

By construction of the algorithms, our first convergence result is an immediate
consequence of Lemma 5.14.

Theorem 5.15. The monotone multigrid algorithms 5.10 and 5.12 converge for
any initial iterate u0

j ∈ Kj.

We now concentrate on the asymptotic convergence speed of the truncated mono-
tone multigrid method 5.10.

Lemma 5.16. Assume that the non–degeneracy condition (2.13) is satisfied. Then,
after a sufficiently large number of steps, Algorithm 5.10 is reducing to a linear
multigrid method for the reduced linear problem (2.12) which is generated by the
splitting

(5.20) S◦j =

mS
∑

l=1

V ◦
l , V ◦

l = span{λ◦l },

with λ◦l obtained by nodal interpolation of λl to S◦j .

Proof. First, we show that

(5.21) N •
j (uν

j ) = N •
j ∀ν ≥ ν0

holds for sufficiently large ν0. Let p ∈ Nj \ N •
j . Then the convergence uν

j → uj

implies uν
j (p) > ϕ(p) and thus N •

j (uν
j ) ⊂ N •

j for sufficiently large ν. Conversely,
if p ∈ N •

j , then the strict complementarity (2.13) and the convergence of the

intermediate iterates wl → uj (which follows by the same arguments as used in the
proof of Lemma 5.14) asymptotically provide

ℓ(λ̃l)− a(wl−1, λ̃l) < 0

for all λ̃l with p ∈ int supp λ̃l. Here, we have set λ̃l = λ
(j)
pl

for l = 1, . . . , nj.
As a consequence, we get p ∈ N •

j (ūν
j ) and vl = 0 for all l = nj , . . . ,mS with

p ∈ int supp λ̃l. Hence, p ∈ N •
j (uν

j ) and thus N •
j ⊂ N •

j (uν
j ) for sufficiently large ν.

The equality (5.21) provides vl = 0, if pl ∈ N •
j (uν

j ), l = 1, . . . , nj , and λ̃l = λ◦l ,

l = nj + 1, . . . ,mS , for ν ≥ ν0. Hence, the original splitting (5.11) asymptotically
reduces to (5.20). We now show that there is some ε ∈ R such that

(5.22) 0 > −ε ≥ ψl ∀ν ≥ ν1
holds for all l with λ◦l 6≡ 0 and sufficiently large ν1 ≥ ν0. First note that ψl =
ψl(w0, . . . , wl−1) is a continuous function of the intermediate iterates. By construc-
tion, we have

ψ∗
l := ψl(uj , . . . , uj) = max

p∈int supp λ◦
l

−uj(p) + ϕ(p) < 0
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for λ◦l 6≡ 0. Let ψ∗ < 0 be the maximum of all such ψ∗
l < 0. Then, (5.22) clearly

holds for any positive ε < −ψ∗ and sufficiently large ν. As uj solves (2.12) and
wl → uj, we asymptotically get |rl(λ◦l )| ≤ ε. In combination with (5.22), this
proves the assertion. �

Utilizing Lemma 5.16, Kornhuber [51] showed asymptotic convergence rates of
truncated monotone multigrid methods by adopting linear multigrid convergence
theory.

Theorem 5.17. Assume that the strict complementarity condition (2.13) holds
and let d = 2. Then, there is a ν0 ∈ N such that the iterates (uν

j ) produced by
Algorithm 5.10 satisfy the error estimate

(5.23) ‖uν+1
j − uj‖ ≤

(

1− c(j + 1)−4
)

‖uν
j − uj‖

with a constant c > 0 independent of j.

Proof. The assertion follows directly from Theorem 2.5 by Neuss [65] using The-
orem 5.3 by Kornhuber and Yserentant [60] to verify condition (V1) with K0 =
O((j + 1)2) and the Cauchy–Schwarz inequality to provide condition (V2) with
K1 = O(j + 1). �

Remark 5.18. In arbitrary space dimensions, the asymptotic convergence rate is
bounded by 1−c(j+1)−3 under the additional condition that the coincidence set N •

j

is rich enough in a certain sense. For example, coincidence sets consisting of single
lines or points are excluded. We refer to Kornhuber and Yserentant [60, Section 6]
for details.

The truncated multilevel relaxation (5.12) with sub-optimal complexity shows
exactly the same asymptotic behavior as Algorithm 5.10.

Remark 5.19. The asymptotic convergence rates of the standard monotone multi-
grid method stated in Algorithm 5.12 are even bounded by 1 − c(j + 1)−2 in 2D
and, under the additional assumptions on N •

j mentioned above, by 1−c(j+1)−1 in
arbitrary space dimensions. The improvements result from a strengthened Cauchy–
Schwarz inequality that holds for decompositions from standard coarse grid spaces Sk

(cf. Yserentant [90, Lemma 2.7]).

The original projected multilevel relaxation (5.1) shows exactly the same asymp-
totic behavior as Algorithm 5.12.

Recall from the Remarks 5.8 and 5.13 that inactivation both in the truncated
multilevel relaxation (5.12) and in Algorithm 5.10 is performed exclusively by pro-
jected Gauß–Seidel relaxation on the fine grid. Hence, starting with u0

j = ϕj , a
global detaching effect of a point source f is distributed only by next–neighbor in-
teraction. This simple example contradicts global mesh–independent convergence
rates for the truncated monotone multigrid methods. Mesh-independent conver-
gence rates for the standard version were observed in practical computations but
theoretical justification still seems to be an open problem.

5.3. Concluding remarks. Standard and truncated multigrid methods were in-
troduced by Mandel [62, 63] and Kornhuber [51], respectively. A related algorithm
by Brandt and Cryer [23] relies on the FAS (full apprioximation storage) approach
by Brandt [21]. In order to guarantee that the exact solution of the obstacle prob-
lem is a fixed point of the method, they modified the restriction of the residual (but
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not of the stiffness matrix) similar to the truncation appearing in Algorithm 5.10.
The methods often exhibits similar convergence speed as truncated multigrid but
sometimes fails to converge (see Bollrath [9, p. 29] or Kornhuber [51] for a com-
parison). Preliminary experimental results for cascadic–type iterations have been
presented by Blum, Braess, and Suttmeier [8].

First results on asymptotic multigrid convergence rates are due to Kornhu-
ber [51]. Major contributions to global bounds for the convergences rates were
made by Badea, Tai and coworkers [1, 2, 42, 80]. They also used the same theoreti-
cal framework to analyze Jacobi-like versions of Algorithm 5.1, where the update of
the intermediate iterates is simply skipped so that the corrections can be computed
in parallel. As for related subset decomposition methods, convergence has to be
enforced by severe damping which might slow down convergence considerably in
comparison with the sequential version. Similar to linear subspace decomposition,
the abstract convergence result can be also applied to overlapping domain decom-
position methods. For further information, we refer to Badea, Tai and Wang [2]
and the references cited therein.

A projected space decomposition method of domain-decomposition-type was pro-
posed by Schöberl [74] for Signorini problems in linear elasticity. Exploiting that
the number of unknowns in the bulk grows with higher order than the number
of unknowns on the boundary he showed mesh-independent convergence. Block
versions of monotone multigrid methods for scalar obstacle problems can be also
applied directly to Signorini’s problem in linear elasticity, provided that the normal
directions are constant along the Signorini boundary (cf., e.g., Belsky [6]). Spa-
tially varying normal directions can be incorporated by suitable weighting factors
as suggested by Kornhuber and Krause [56]. Wohlmuth and Krause [84] extended
monotone multigrid to mortar–discretized two-body contact. Their main idea is
a hierarchical splitting of the ansatz space into a linear space with vanishing rel-
ative deformation and the (constrained) nodal displacements at the slave side of
the (potential) contact boundary. The resulting algorithm preserves the asymp-
totic convergence speed of unconstrained multigrid methods even for realistic 3D
geometries in biomechanical applications [59].

Projected multilevel relaxation and monotone multigrid has been extended to
smooth non-quadratic energy functionals [79, 81] and also to variational inequalities
of the form

uj ∈ Sj : a(uj , v − uj) + φj(v)− φj(uj) ≥ ℓ(v − uj) ∀v ∈ Sj ,

with suitable superposition operators φj , see [52, 55]. Applications include frictional
contact in elasticity [33] or phase field models [57, 58].

6. From truncated multigrid to inexact active set methods

6.1. A nonsmooth Newton–like method and inexact variants. The trun-
cated monotone multigrid method stated in Algorithm 5.10 has the flavor of an
active set approach: The actual coincidence set N •

j (ūν
j ) is fixed by the leading

projected Gauß–Seidel relaxation and then is essentially preserved by subsequent
coarse grid correction. We will now clarify this analogy by deriving a nonsmooth
Newton–like method which will turn out to be closely related to Algorithm 5.10.
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Conversely, reduction of energy suggests a natural way to provide global conver-
gence of inexact active set methods involving approximate solutions of the arising
linear problems as resulting from, say, one multigrid step.

The main idea is to reformulate the obstacle problem (2.10) as the nonlinear
system

(6.1) uj ∈ Sj : Fj(uj) = 0, Fj =Mj − I,
where Mj denotes projected Gauß–Seidel relaxation (4.4) and I is the identity
operator on Sj . Observe that Fj is not differentiable, but Lipschitz–continuous.

In order to derive a nonsmooth Newton–like method for (6.1), it is convenient
to identify finite element functions with the coefficient vectors of their nodal basis
representation:

v =

nj
∑

i=1

viλ
(j)
pi
∈ Sj ←→ v = (vi)

nj

i=1 ∈ R
nj .

In this way, (6.1) can be reformulated as the nonsmooth, nonlinear system

u ∈ R
nj : F (u) = 0, F = M − I, M(v) =Mj(v),

with I denoting the unit matrix in R
nj . From now on, we drop underlines, as long

as no confusion is likely to occur, e.g., we simply write ϕ = (ϕi)
nj

i=1 instead of ϕ
j
.

We finally introduce the usual stiffness matrix A,

A = L+D +R, A = (aik)
nj

i,k=1, aij = a(λ(j)
pi
, λ(j)

pk
),

which is split into its lower diagonal, diagonal, and upper diagonal parts L, D, and
R, respectively.

Let us consider some fixed w ∈ R
nj , denoting w̄ = M(w). We define the corre-

sponding set of active indices

N• = N•(w̄) = {i ∈ N | w̄i = ϕi}, N = {1, 2, . . . , nj},
and the subset

U = U(N•) = {v ∈ R
nj | (M(v))i = ϕi ⇔ i ∈ N•} ∈ R

nj

of all vectors such that projected Gauß-Seidel relaxation provides the same active
set N•. It will turn out that F is affine linear on U . In order to derive an ex-
plicit representation of y = F (w), w ∈ U , we reformulate (4.4) by straightforward
calculation to obtain

yi = (ϕ− w)i ∀i ∈ N•,
(

(L+D)y
)

i
= (b −Aw)i ∀i ∈ N \N•.

Using the truncation matrix T = T (N•) = (Tik) ∈ R
nj ,nj defined by

Tik =

{

1, if i = k ∈ N \N•

0, else
,

this leads to the desired formula

(6.2) F (w) =
(

T (L+D) + I − T
)−1(

T (b−Aw) + (I − T )(ϕ− w)
)

.

By construction, (6.2) holds for arbitrary w ∈ U . As the mapping w 7→ N•(w) ⊂ N
is well-defined on R

nj , we have

R
nj =

⋃

N•⊂N

U(N•), N•
1 6= N•

2 ⇒ U(N•
1 ) ∩ U(N•

2 ) = ∅.
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Hence, for given w ∈ R
nj , (6.2) suggests the linearization

∂F (w) = −
(

T (L+D) + I − T
)−1(

TA+ (I − T )
)

, T = T (N•(w̄)), w̄ = M(w).

As the sets U(N•) ⊂ R
nj might degenerate to lower–dimensional objects, ∂F might

not be a generalized derivative in the sense of Clarke [27, Chapter 2]. Hence, the
associate iterative scheme

(6.3) uν+1 = uν −
(

∂F (uν)
)−1

F (uν)

can be regarded as a nonsmooth Newton–like method.
We derive a more convenient representation of uν+1. Inserting the above defini-

tion of ∂F and the representation (6.2) into (6.3), we get the linear system

(6.4) (TA+ I − T )uν+1 = Tb+ (I − T )ϕ, T = T (N•(ūν)), ūν = M(uν)

for uν+1. By definition of T and by application of I − T to equation (6.4) we get

(I − T )ūν = (I − T )uν+1 = (I − T )ϕ.

Using these identities, (6.4) can be reformulated as the linear system

(6.5) (TAT + I − T )vν = T (b−Aūν), T = T (N•(ūν)), ūν = M(uν)

for the correction vν = uν+1 − ūν ∈ R
nj .

In terms of finite element functions this system takes the form

(6.6) vν+1
j ∈ S̃j : a(vν+1

j , v) = ℓ(v)− a(ūν
j , v) ∀v ∈ S̃j , ūj =Mj(u

ν
j ),

with S̃j defined in (5.10). We are ready to state a crucial observation of this section.

Remark 6.1. An inexact variant of the nonsmooth Newton–like method (6.3) is
obtained by simply ignoring the coarse–grid defect obstacles ψ(k) in Algorithm 5.10.

Let ṽν
j be some approximation of the solution vν+1

j of (6.6). In order to en-
force global convergence, we enforce decreasing energy by successive projection and
damping. In a multigrid context, it is natural to use fine–grid smoothing

wν
j =Mj(ū

ν
j + ṽν

j )

for the projection of ūν
j + ṽν

j to Kj (simple lumped L2–projection leads to very
similar results). Subsequent damping leads to the new iterate

(6.7) uν+1
j = ūν

j + ων(wν
j − ūν

j ), ων = argmin
ω∈[0,1]

J (ūν
j + ω(wν

j − ūν
j )).

By Lemma 5.14, the resulting iterative scheme is globally convergent for any choice
of ṽν

j ∈ Sj . Approximating the solution of (6.6) by one truncated multigrid sweep,

we obtain the following algorithm (recall the definition (5.10) of S̃j).

Algorithm 6.2. (Truncated nonsmooth Newton multigrid V–cycle with global damp-
ing)

given: uν
j

fine grid smoothing: ūν
j =Mj(u

ν
j ), v(j) = 0

initialization of residual and bilinear form: rj = ℓ− a(ūν
j , ·), aj(·, ·) = a(·, ·)

truncation: rj := rj |S̃j
, aj(·, ·) := aj(·, ·)|S̃j×S̃j

initial restriction:
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rj−1 = rj |S̃j−1
, aj−1(·, ·) = aj(·, ·)|S̃j−1×S̃j−1

for k = j − 1, . . . , 1 do:
{

solve:
v(k) ∈ S̃k : b̃k(v(k), v − v(k)) = rk(v − v(k)) ∀v ∈ S̃k (pre–smoothing)

rk := rk − ak(v(k), ·) (update of the residual)
rk−1 = rk|S̃k−1

, ak−1(·, ·) = ak(·, ·)|S̃k−1×S̃k−1
(canonical restriction)

}

solve:
v(0) ∈ S̃0 : b0(v

(0), v − v(0)) = r0(v − v(0)) ∀v ∈ S̃0 (approx. sol. on T0)

for k = 1, . . . , j do:
{

v(k) := v(k) + v(k−1) (canonical interpolation)
}

wν
j =Mj(ū

ν
j + v(j)) (projection)

ων = argmin
ω∈[0,1]

J (ūν
j + ω(wν

j − ūν
j )) (global damping)

new iterate: uν+1
j = ūν

j + ων(wν
j − ūν

j )

Implementation of the truncation step amounts to annihilating all rows and
columns of the stiffness matrix and the right hand side that correspond to active
nodes p ∈ N •

j (ūν
j ). Then, essentially, any standard multigrid implementation can

be used for the coarse grid correction v(j). The only modifications are that Gauß–
Seidel smoothing has to skip all coefficients with vanishing diagonal elements and
that we have to set v(j)(p) := 0 for all p ∈ N •

j (ūν
j ) after prolongation.

Remark 6.3. Algorithm 6.2 is open for various kinds of modifications, such as
cg–acceleration of coarse grid correction, multiple nonlinear post–smoothing before
or after global damping or line search ω ∈ R instead of mere damping.

We abandon these options in favor of a better comparison with the other algo-
rithms presented in this paper. In any case, convergence follows from Lemma 5.14.

Theorem 6.4. Algorithm 6.2 converges for any initial iterate u0
j ∈ Sj.

Remark 6.5. Inactivation in Algorithm 6.2 is performed exclusively by projected
Gauß–Seidel relaxation, as in truncated monotone multigrid.

As a consequence of Remark 6.5, we can hardly expect global mesh–independent
convergence rates of Algorithm 6.2. Indeed, if we start with u0

j = φj in case of a
point source f and an exact solution uj > φj , then the number of next-neighbor
inactivation steps cannot be independent of nj. This was already pointed out at
the end of Section 5.2. On the other hand, we expect high convergence speed for
reasonable initial iterates, i.e., if the coincidence set N •

j is resolved sufficiently well.
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6.2. Concluding remarks. The truncated nonsmooth Newton multigrid method
as stated in Algorithm 6.2 can be regarded as an active set strategy combined with a
linear multigrid method for the resulting reduced linear problems. Other active set
strategies combined with multigrid are well–known for quite a while. We refer, e.g.,
to the poineering work of Hackbusch and Mittelmann [40] or the now often called
primal dual active set strategies by Hoppe [45, 46, 47]. In contrast to our approach,
primal dual active set strategies are essentially iterating on the complementarity
condition. For a recent re–interpretation in terms of non–smooth analysis, we refer,
e.g., to M. Ulbrich [82] or Hintermüller, Ito, and Kunisch [43]. The convergence
proofs typically rely on M–matrix properties of the stiffness matrix and assume
that the reduced linear subproblems are solved exactly. Both assumptions are
seldom met in practical computations. For example, adaptive mesh refinement
involving edge bisection already violates the M–matrix property. Nevertheless,
inexact versions on adaptively refined grids are often used on a heuristic basis.

Numerical experiments for Signorini’s problem by Krause [61] indicate that the
convergence properties of the overall iteration strongly depend on the choice of the
multigrid solver for the reduced linear subproblems. According to his computa-
tions, truncated linear multigrid, as involved in Algorithm 6.2 seems to be the best
choice. Truncated linear multigrid was introduced by Hoppe and Kornhuber [48]
and later analyzed by Kornhuber and Yserentant [60]. Numerical experiments for
two-body contact problems by Sander [73] confirm the observations of Krause [61]
that truncated nonsmooth Newton multigrid 6.2 usually converges faster than trun-
cated monotone multigrid 5.10.

7. Numerical Assessment

7.1. Numerical test problems. For most of the multigrid algorithms to be de-
scribed below numerical experiments with “generic” test problems like, e.g., simpli-
fied elasto–plastic torsion [37, Chapter II] have been already reported elsewhere [51].
The two following examples are particularly designed to check the robustness of
multigrid algorithms with respect to complicated and unstable coincidence sets.
We always consider the square Ω = (−1, 1)2, the initial triangulation T0 consisting
of four congruent triangles and apply j = 9 uniform refinement steps to obtain the
final triangulation Tj with 523 265 interior nodes.

7.1.1. Spiral problem. The fact that the coincidence set N •
j usually has no rep-

resentation on coarser grids sets a particular challenge for any kind of multigrid
approach to obstacle problems. In order to highlight this intrinsic difficulty, we
consider the obstacle function

ϕ(x(r, φ)) = sin(2π/r + π/2− φ) +
r(r + 1)

r − 2
− 3r + 3.6, r 6= 0,

and ϕ(0) = 3.6 with polar coordinates x(r, φ) = reiφ. For the right hand side f = 0
this choice leads to the spiral set N •

j as illustrated in the left picture of Figure 2.
Obviously, functions v ∈ S0 do not have much to do with the approximate solution
uj on the final level j = 9.

7.1.2. Degenerate problem. Many multigrid solvers for obstacle problems reduce to
linear multigrid methods for the reduced linear problem (2.12), once the coincidence
set N •

j has been detected. For sufficiently good initial iterates, such methods take
advantage of the good convergence properties of linear multigrid. In order to check
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Figure 2. Coincidence sets of spiral problem (left) and degener-
ate problem (right)

their robustness, we consider a degenerate continuous problem with an approximate
coincidence setN •

j that is extremely hard to find. Related practical problems occur,
e.g., in the simulation of deep drawing processes. For the given obstacle

ϕ(x1, x2) = −(x2
1 − 1)(x2

2 − 1),

the selection of the right hand side f = −∆ϕ causes u = ϕ on Ω to be the solution
of (2.1). As a consequence, the solution uj of the discretized obstacle problem, the
solution of its unconstrained analogue, and the obstacle ϕj converge to a common
limit. As a consequence, the coincidence set N •

j becomes arbitrarily unstable with
increasing refinement and thus can be hardly detected by iterative solvers. Accord-
ing to the right picture in Figure 2, the (black) coincidence set is not only unstable
but fairly complicated as well.

7.2. Multilevel Subset Decomposition Versus Projected Multilevel Re-

laxation. In our numerical experiments, we check the robustness of the conver-
gence behavior with respect to given “bad” initial iterates and “good” initial it-
erates as obtained by nested iteration. The convergence behavior is illustrated by
iteration histories showing the algebraic error ‖uj − uν

j ‖ over the iteration steps
ν. In order to evaluate possible mesh–dependence, we introduce the asymptotic
convergence rates

(7.1) ρk = ν∗

√

‖uj − uν∗

k ‖
‖uj − u1

j‖
, k = 0, . . . , j,

where ν∗ is chosen such that ‖uj−uν∗

k ‖ < 10−11 and the initial iterate u0
j is obtained

by nested iteration.
We first compare the convergence behavior of the multilevel subset decomposi-

tion method MSD stated in Algorithm 4.7 and of the projected multilevel relax-
ation (4.10) called PMLR. We always consider V (1, 1) cycles.

7.2.1. Spiral problem. In our first experiment, we consider the discrete problem
stated in Section 7.1.1 with a complicated, spiral coincidence set. We first observe
that the convergence behavior of MSD and PMLR is almost independent of the
choice of the initial iterate x0

j . This is illustrated in Figure 3 and the left picture in

Figure 4, showing the iteration histories for initial iterates on the obstacle u0
j = ϕj ,

above the obstacle u0
j = ϕj + 10 and obtained by nested iteration. For bad initial
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iterates as considered in Figure 3, the leading fast reduction of the error is due to
fast reduction of high-frequency components. The asymptotic convergence rates
both of MSD and PMLR seem to saturate with increasing refinement level j as
depicted in the right picture of Figure 4. This is in good accordance with the
theoretical results stated in Theorem 4.6 and Theorem 5.6, respectively. However,
due to the dynamic adaptation of the underlying splitting of the defect obstacles
uν

j −ϕj , PMLR shows a considerable faster convergence speed than MSD as soon as
the exact coincidence set N •

j is detected. While the asymptotic convergence rates
of PMLR seems to be bounded by 0.7, the convergence rates of MSD exceed 0.9 on
level j = 9.

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

10
5

 

 

MSD
PMLR

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

10
5

 

 

MSD
PMLR

Figure 3. Spiral problem: Iteration histories for the initial iter-
ates u0

j = ϕj (left) and u0
j = ϕj + 10 > ϕj (right)
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Figure 4. Spiral problem: Iteration history for nested iteration
(left) and asymptotic convergence rates (right)

7.2.2. Degenerate problem. Comparing the convergence behavior of MSD and
PMLR for the degenerate problem stated in Section 7.1.2 we first observe a similar
robustness of both methods with respect to different initital iterates as before. This
is illustrated by the iteration histories for initial iterates on the obstacle u0

j = ϕj ,

above the obstacle u0
j = ϕj + 10 and obtained by nested iteration as depicted in

Figure 5 and the left picture in Figure 6. Observe that this time PMLR exhibits
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leading fast convergence even for nested iteration, illustrating that the resulting
initial iterate is not too good in this (almost) degenerate case. In contrast to the
spiral example the exact coincidence set is now hard to detect. As a consequence,
apart from a slightly faster leading convergence of PMLR, the convergence speed
of MSD and PMLR is very similar for all the three initial iterates. As before, the
asymptotic convergence rates seem to saturate for both methods. According to the
right picture in Figure 6 they seem to be bounded by 0.7 for both methods. We
should not forget at this point that PMLR has a higher complexity than MSD (cf.
Remark 5.13). More precisely, for j = 9 levels the cpu time for each step is about
twice as large for PMLR than for MSD.

To sum up, both the convergence behavior of PMLR and MSD is almost invariant
with respect to different initial iterates and/or degeneracy of the problem. Such
kind of robustness nicely reflects the convergence analysis reported in Section 5.1,
where non–degeneracy does not play a role as well.
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Figure 5. Degenerate problem: Iteration histories for the initial
iterates u0

j = ϕj (left) and u0
j = ϕj + 10 > ϕj (right)
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Figure 6. Degenerate problem: Iteration history for nested it-
eration (left) and asymptotic convergence rates (right)
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7.3. Projected Multilevel Relaxation Versus Monotone Multigrid. We in-
vestigate the convergence behavior of the truncated monotone multigrid method
TMMG stated in Algorithm 5.10 and of the standard version SMMG stated in
Algorithm 5.12. As we are interested to see to which extend the convergence prop-
erties of PMLR are preserved by its V -cycle counterpart SMMG, we include the
results of PMLR for a comparison. We always consider V (1, 1) cycles.

7.3.1. Spiral problem. We consider the discrete problem stated in Section 7.1.1.
The iteration histories for the “bad” initial iterates u0

j = ϕj , u
0
j = ϕj +10 > ϕj and

nested iteration are shown in Figure 7 and the left picture of Figure 8, respectively.
Let us first notice that the intrinsic damping (cf. Remark 5.9) leading to op-

timal complexity hardly slows down the convergence of SMMG as compared to
PMLR. Optimal resolution of the constraints at the cost of suboptimal complexity
improves the convergence speed of PMLR only for u0

j = ϕj + 10. Both methods
provide almost identical results otherwise. In particular, the convergence behavior
of SMMG is still almost independent of the choice of initial iterates. This is dif-
ferent for TMMG. Starting with u0

j = ϕj the iteration begins very slowly, because

inactivation is performed exclusively by projected Gauß–Seidel relaxation (cf. Re-
mark 5.8). However, once the coincidence set is approximated sufficiently well, the
iteration accelerates tremendously. The asymptotic convergence rates of TMMG
are essentially the same as for the corresponding linear multigrid method applied
to an unconstrained Poisson problem on Ω. This supports our heuristic reasoning
in Section 5. For u0

j = ϕj +10 > ϕj coarse grid correction can contribute right from
the start. This leads to faster convergence throughout the iteration as illustrated
in Figure 7 (right). Again, the asymptotic linear convergence speed is reached once
the coincidence set is approximated sufficiently well. According to Figure 8 (left)
asymptotic linear convergence starts immediately for nested iteration. In this case,
the performance of TMMG can be hardly distinguished from classical multigrid
for unconstrained problems. Figure 8 shows ρk over the corresponding number of
unknowns nk, k = 2, . . . , 9. The asymptotic convergence rates seem to saturate at
about 0.73 (PMLR and SMMG) and 0.41 (TMMG). In comparison with previous
computations for generic problems [44, 51], the complicated coincidence set does
not seem to deteriorate the convergence properties of all three methods.
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Figure 7. Spiral problem: Iteration histories for the initial iter-
ates u0

j = ϕj (left) and u0
j = ϕj + 10 > ϕj (right)
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Figure 8. Spiral problem: Iteration history for nested iteration
(left) and asymptotic convergence rates (right)

7.3.2. Degenerate problem. We consider the discrete problem stated in Section 7.1.2.
The iteration histories of PMLR, SMMG, and TMMG for the initial iterates u0

j =

ϕj , u
0
j = 0 > ϕj , and nested iteration are depicted in Figure 9 and Figure 10 (left),

respectively.
Let us first compare the convergence properties of PMLR and SMMG. Both

methods perform quite similarly for u0
j = ϕj . However, the decelerating effect of

intrinsic damping in SMMG is clearly visible in the remaining two cases. This ef-
fect is stronger than before, because in this example uj and ϕj are almost identical.
Starting with u0

j = ϕj , TMMG also behaves qualitatively as before: After a tran-
sient phase dominated by slow inactivation by projected Gauß–Seidel relaxation,
the iteration accelerates considerably, reaching linear multigrid convergence speed.
However, this time it takes about 80 steps until the coincidence set is approximated
sufficiently well. If u0

j = 0 or nested iteration is used, the behavior of TMMG now
can be hardly distinguished from SMMG. In contrast to the non–degenerate case,
truncation now does not have much of a positive effect, because the exact coin-
cidence set is detected not until one or two steps before the desired accuracy is
reached. As a consequence, the asymptotic convergence rates depicted in Figure 10
(right) are now comparable for all three methods. Summing up, SMMG and PMLR
do not suffer from degeneracy while, apart from possible slow inactivation, TMMG
now essentially behaves like SMMG.

7.4. Truncated Monotone Multigrid Versus Truncated Nonsmooth New-

ton Multigrid. We apply the truncated nonsmooth Newton multigrid method
TNMG stated in Algorithm 6.2 to the test problems introduced in Section 7.1. For
a comparison we include the results of the related truncated monotone multigrid
method TMMG stated in Algorithm 5.10. We always consider V (1, 1) cycles.

In our numerical experiments, we check the robustness of the convergence be-
havior with respect to given “bad” initial iterates and “good” initial iterates as
obtained by nested iteration. The convergence behavior is illustrated by iteration
histories showing the algebraic error ‖uj−uν

j ‖ over the iteration steps ν. In order to
evaluate possible mesh–dependence, we consider the asymptotic convergence rates
ρk, k = 0, . . . , j as introduced in (7.1).
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Figure 9. Degenerate Problem: Iteration histories for the initial
iterates u0

j = ϕj (left) and u0
j = 0 > ϕj (right)
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Figure 10. Degenerate Problem: Iteration history for nested
iteration (left) and asymptotic convergence rates (right)

7.4.1. Spiral problem. We consider the discrete problem stated in Section 7.1.1.
The iteration histories for the “bad” initial iterates u0

j = ϕj , u
0
j = ϕj + 10 > ϕj

and for nested iteration are shown in Figure 11 and the left picture of Figure 12,
respectively. As expected from Remark 6.5, inactivation by projected Gauß–Seidel
iteration initially slows down the convergence speed for the initial iterate u0

j = ϕj .

Fast convergence throughout the iteration is observed for u0
j = ϕj +10 > ϕj . While

TNMG performes slightly better than TMMG for those “bad” initial iterates, both
methods provide almost identical results, if nested iteration is applied. In this case
the performance of both TMMG and TMMG can be hardly distinguished from
classical multigrid for unconstrained problems. The asymptotic convergence rates,
apparently saturating at about 0.41, are almost the same, cf. Figure 12 (right).
In view of its simplicity and its potential for further improvements (line search,
cg–acceleration) these results suggest that TNMG should be preferred to TMMG.

7.4.2. Degenerate problem. We consider the discrete problem stated in Section 7.1.2.
The iteration histories for the initial iterates u0

j = ϕj , u
0
j = 0 > ϕj and for nested

iteration are shown in Figure 13 and the left picture of Figure 14, respectively.
Note that u0

j = ϕj provides the minimal initial error in this case. Nevertheless,
starting from the obstacle, next–neighbor inactivation by projected Gauß–Seidel
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Figure 11. Spiral problem: Iteration histories for the initial
iterates u0

j = ϕj (left) and u0
j = 0 > ϕj (right)
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Figure 12. Spiral problem: Iteration history for nested iteration
(left) and asymptotic convergence rates (right)

relaxation slows down the convergence speed of TNMG until the coincidence set is
approximated sufficiently well. As in the preceding experiment, TNMG performs
only slightly better than TMMG in this case. However, starting from u0

j = 0 > ϕj ,
TMMG is clearly outperformed by TNMG: While intrinsic local damping is reduc-
ing the effect of coarse grid correction in TMMG, global damping as used in TNMG
is less pessimistic in this case.

The situation is quite different, if nested iteration is applied. After a very fast
reduction of the high–frequency components of the error, the coarse grid correction
of TNMG produces some kind of undershoot in the sense that the approximate co-
incidence set is much too large. This leads to slow convergence during the following
inactivation phase. Finally, once the coincidence set is approximated sufficiently
well, asymptotic linear convergence is reached. This behavior occurs on all re-
finement levels k = 2, . . . , 9. Hence, the increasing asymptotic convergence rates
depicted in the right picture of Figure 14 rather reflects the increasing length of
the intermediate inactivation phase than the asymptotic convergence speed itself.
More robust global inactivation by standard monotone multigrid will be discussed
below.
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Figure 13. Degenerate Problem: Iteration histories for the ini-
tial iterates u0

j = ϕj (left) and u0
j = 0 > ϕj (right)
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Figure 14. Degenerate Problem: Iteration history for nested
iteration (left) and asymptotic convergence rates (right)

7.5. Concluding remarks. Our numerical experiments show that there is a cer-
tain tradeoff between robustness and convergence speed. In perfect agreement with
theory the multilevel relaxation MSD, the projected multilevel relaxation PMLR
and its V -cycle counterpart show a remarkable amount of robustness, but much
slower convergence than classical multigrid methods for related unconstrained prob-
lems. Conversely, truncated monotone multigrid TMMG and the related truncated
nonsmooth Newton multigrid method TNMG are very fast for generic problems
and initial iterates but might run into trouble for certain bad initial iterates (cf.
Remark 5.8 and 5.13) and degenerated cases.

Similar to truncated monotone multigrid TMMG or truncated nonsmooth New-
ton multigrid TNMG the inactivation in present primal dual active set strategies
is based on local next–neighbor interaction [45, 46, 43]. This explains why mesh–
independent convergence of such methods is still (and might remain) open. In
addition, local inactivation typically leads to deteriorating convergence speed, if
the approximate coincidence set is much too large. As a remedy, it seems natural
to use global inactivation by one step of the standard monotone multigrid STDMG.
The resulting hybrid multigrid method HMG thus combines robustness with fast
asymptotic convergence. Note that, by construction, such hybrid multigrid method
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are globally convergent. To illustrate the possible benefit of the hybrid approach,
we again consider the degenerate problem stated in section 7.1.2 with initial iterates
obtained by nested iteration. The iteration history of HMG is shown in the left pic-
ture of Figure 15. For a fair comparison with SMMG and TNMG, we counted each
step of HMG twice. Combining the robustness of multilevel relaxation with fast
asymptotic convergence of truncated multigrid, HMG clearly outperforms SMMG
and TNMG. According to the right picture in Figure 15 the convergence rates seem
to saturate at about 0.3. A theoretical justification is left to future research.
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Figure 15. Degenerate Problem: Iteration history for nested
iteration (left) and asymptotic convergence rates (right)
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d’obstacle. M2 AN, 24:711–736, 1990.

[48] R.H.W. Hoppe and R. Kornhuber. Adaptive multilevel methods for obstacle
problems. SIAM J. Numer. Anal., 31(2):301–323, 1994.
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