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Abstract We describe an abstract interface for the geometric coupling of finite el-
ement grids. The scope of the interface encompasses a wide range of domain de-
composition techniques in use today, including nonconforming grids and grids of
different dimensions. The couplings are described as sets of remote intersections,
which encapsulate the relationships between pairs of elements on the coupling in-
terface.

The abstract interface is realized in a moduledune-grid-glue for the soft-
ware framework DUNE. Several implementations of this interface exist, including
one for general nonconforming couplings and a special efficient implementation for
conforming interfaces. We present two numerical examples to show the flexibility
of the approach.

1 Introduction

Domain decomposition methods are a standard tool for a wide range of multiphysics
problems. Whenever the application involves subdomains with different equations,
discretizations, or grid types, coupling conditions and domain decomposition algo-
rithms need to be employed. We refer to [7] for a general introduction.

Even though domain decomposition methods have found widespread use, the
software support available is generally not satisfactory.Implementing domain de-
composition methods can be tedious and error prone, especially when nonmatch-
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ing grids are involved. A central problem is finding the geometric correspondences
between the grids. Today, there still exist mainly ad hoc solutions geared towards
specific purposes, with little chance of code reuse.

In this article, we propose a general implementation as partof the DUNE frame-
work [1]. DUNE is a set of C++ libraries providing support for various aspects of
grid-based PDE solution methods such as grids, linear algebra, or shape functions.
DUNE’s main goal is flexibility, achieved by defining abstract interfaces to such
things as grids and shape functions, and allowing the user toselect the appropriate
implementation according to his or her needs. DUNE also promotes code reuse by
a modular architecture and by allowing legacy implementations to be used with the
interface.

For our domain decomposition infrastructure we have tried to follow the same
philosophy:

• We propose abstract interfaces to general grid coupling mechanisms, allowing to
implement most existing domain decomposition algorithms.

• We allow and encourage the use of existing coupling implementations as legacy
backends.

• We strive to make the code efficient, using generic programming where appro-
priate.

Adhering to the modular structure of DUNE, our code is available as a DUNE

module, termeddune-grid-glue.

2 General Grid Coupling

Ω1
Ω2

Γ
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GΓ1 GΓ2 GM

Fig. 1 Left: two domainsΩ1 andΩ2 that meet at a common interfaceΓ . Center: the restrictions
of the two grids onΓ . Right: together they form the set of remote intersectionsGM .

We begin by describing the concept of the abstract grid coupling interface. For
simplicity we focus on the case of nonoverlapping coupling.Consider two domains
Ω1, Ω2 that meet at a common interfaceΓ (Fig. 1). Both domains are assumed to be
discretized by grids, not necessarily simplicial. The restrictions of the grids to the
coupling boundary, denoted byGΓ1 andGΓ2, are not related to each other in any way.
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Overlaying these two boundary grids results in a set of intersections of the el-
ements ofGΓ1 andGΓ2, which we callGM. Together with the embeddings intoGΓ1

andGΓ2, the intersections constitute the information necessary to implement most
nonoverlapping domain decomposition algorithms.

As an example, consider the mortar method. There, the coupling is effected
through a mass matrix

M ∈ R
n×m, Mi j =

∫

Γ
φiψ j ds, (1)

where theφi , ψ j , 0≤ i < n, 0≤ j < m, are finite element basis functions onGΓ1 and
GΓ2, respectively. The matrix can be computed by splitting the integral in (1) into a
sum of integrals over individual elements ofGM. By construction, to each element
e∈ GM correspond unique elements ofGΓ1 andGΓ2, and associated shape functions
there. If a quadrature rule is available fore, then

∫

eφiψ j dscan be computed directly.
Otherwise,eneeds to be triangulated and

∫

φiψ j dscomputed for each triangle.
The approach covers more than just mortar methods. If the twogrids onΩ1 and

Ω2 match, the setGM degenerates and we haveGM = GΓ1 = GΓ2. In this case, the
set of intersectionse together with their embeddings into the elements ofG1 and
G2 allows to identify the grid vertices, or, more generally, edge and face degrees
of freedom. Overlapping couplings can be handled by lettingGM have the same
dimension as the computational gridsG1 andG2. Finally, consider ad-dimensional
grid attached in parallel to the boundary of ad + 1-dimensional one (cf. Sec. 5.2).
The grids may or may not be conforming onΓ . This time coupling is between the
surface gridGΓ2 and the gridG1 itself. As the dimensions are the same, a set of
intersections just as in Fig. 1 is obtained.

3 Implementation: Remote Intersections

The intersections described in the previous section bear close resemblance to the in-
tersections that are part of the DUNE grid interface [2, Sec. 4]. Within a single grid,
DUNE intersections describe the coupling between neighboring elements. An inter-
section between two elementse1 ande2 is the (set-theoretic) intersection between
θe1 andθe2, whereθe1 andθe2 are the subsets of the world space occupied bye1 and
e2, respectively. TheIntersection class of the DUNE grid interface provides
information about these set intersections, e.g. their geometry in the world space, the
geometry in coordinates ofe1 ande2, normal vectors, and whether an intersection is
conforming.

In the case of domain decomposition methods, the elementse1 ande2 are el-
ements of different gridsG1 and G2. However, the relevant information remains
largely the same. We will call such intersectionsremote intersections, to distinguish
them from the intersections of the DUNE grid interface. Remote intersections may
be set-theoretic intersections ifG1 andG2 meet at a common interfaceΓ . In case of
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contact problems, where there may be a positive distance betweenGΓ1 andGΓ2, the
remote intersections can be defined via a contact mappingΦ : GΓ1 → GΓ2 (cf. [9]).

Due to the conceptual similarity between remote intersections and grid inter-
sections it is natural to make the implementation of remote intersections resemble
DUNE intersections as well. Thedune-grid-glue module provides the class
RemoteIntersection, which again has methods for the geometry of the inter-
section in world space, geometries in local coordinates ofe1 ande2, normal vectors,
etc. The main differences concern methods that deal with global coordinates. Since
θe1 andθe2 may actually be disjoint (e.g., in a contact problem), thereare two em-
beddings of the remote intersection in the world space. For the same reason, there
are two methods for the normal vectors. Please see the class documentation provided
with the module for details.

Access to the remote intersections is provided via three types of DUNE-style
iterators. TheRemoteIntersectionIterator iterates over the entire set of
remote intersections and can be used to, e.g., assemble mortar mass matrices. The
DomainIntersectionIteratorsandTargetIntersectionIterators
iterate over all remote intersections of a given element ofG1 orG2, respectively. This
can be useful to assemble element-wise contributions in DG methods.

4 Constructing Couplings

The construction of sets of remote intersections proceeds in two steps. First, the grid
interface boundaries or coupling parts are extracted and transformed to an interme-
diate representation. Then, two such extracted grids are combined to yield the set of
remote intersections.

4.1 Extractors

Extractor classes select the subsets of grid entities that are involved in the
coupling. They are classified according to the codimension (with respect to the
grids) of the objects they extract. The most common one,Codim1Extractor,
extracts boundary faces, and will be used for nonoverlapping couplings. The faces
are marked using predicate classes provided by the user. TheCodim0Extractor
extracts actual elements. Such extractors will be needed for an overlapping cou-
pling. A Codim2Extractor has not been implemented yet, but may be useful to
couple, e.g., 1d partial differential equations to sequences of edges in a 3d mesh.

The extracted grid entities can be manipulated with a geometric transformation
µ : R

n1 → R
n2, n1 ≤ n2. This may be a deformation or an embedding into a higher-

dimensional space. There are various uses for such a feature. For example, you may
want to consider coupled problems on deformed meshes, such as the finite-strain
contact problem described in [8]. Also, when coupling a 1d grid to the boundary of
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a 2d grid, then most likely the 1d grid implementation will live in a 1d world. A
transformation can then be used to place the 1d grid in the 2d world and deform it,
if necessary (see Sec. 5.2 for an example).

4.2 Computing Remote Intersections

With the two interacting grid parts extracted, they can be combined to obtain the set
of remote intersections. How this should be implemented differs considerably de-
pending on the actual scenario. A general implementation computing remote inter-
sections would have to handle nonmatching grids and geometries, grids of arbitrary
dimensions and element types. Besides being very difficult to write and debug, such
a program would be inefficient in more regular situations such as when the grids
match.

To resolve this dilemma we follow the DUNE philosophy. We prescribe an ab-
stract interface that algorithms computing remote intersections should conform to.
We then provide different implementations of the interfacefor different cases such
as contact problems, conforming meshes, or overlapping grids. Also in accordance
with the DUNE philosophy, legacy implementations can be used through theinter-
face.

The current default implementation uses the PSURFACE library. This library was
originally written to manage boundary parametrizations [6], and extended to also
handle mappings for contact problems [9]. It manages piecewise affine mappings
between simplicial hypersurfaces in 2d and 3d. The surfacesare identified by a
normal projectionΦ : Γ1 → Γ2. PSURFACE is free software and can be downloaded
fromhttp://numerik.mi.fu-berlin.de/dune/psurface.

Also, a special efficient implementationConformingMerge for conforming
couplings is available.

5 Numerical Examples

In this last chapter we demonstrate some of the possibilities ofdune-grid-glue
with two example applications. The first one, a two-body contact problem, has al-
ready appeared in [1], where the coupling was implemented using PSURFACE di-
rectly.

5.1 Contact Between a Structured and an Unstructured Grid

In this first example we compute mechanical contact between ahuman femur
bone and an elastic foundation. Consider two disjoint domainsΩ1, Ω2 in R

3. The

http://numerik.mi.fu-berlin.de/dune/psurface
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Fig. 2 Two-body contact problem. Left: schematic view. Center: coarse grids. Right: close-up view
of the deformed solution.

boundaryΓi = ∂Ωi , i = 1,2, of each domain is decomposed in three disjoint parts
Γi = Γi,D ∪Γi,N ∪Γi,C. With fi ∈ (L2(Ωi))

3 two body force density fields we look for
functionsui ∈ (H1(Ωi))

3 which fulfill

−divσ(ui) = fi,

and suitable boundary conditions. The stress tensorσ is defined asσ = E
1+ν (ε +

ν
1−2ν trεI), and ε(u) = 1

2(∇u + ∇uT) is the linear strain tensor. For the contact
condition, assume that the areas where contact occurs will be subsets ofΓ1,C

and Γ2,C. These two contact boundaries are identified using a homeomorphism
Φ : Γ1,C → Γ2,C, and this identification is used to define an initial distancefunc-
tion g : Γ1,C → R, g(x) = ‖Φ(x)− x‖. The contact condition then states that the
relative normal displacement of any two pointsx, Φ(x), x∈ Γ1,C, should not exceed
this normal distance, in formulas

u1|Γ1,C ·n1 +(u2◦Φ)|Γ2,C ·n2 ≤ g, (2)

whereni , i = 1,2, is the unit outward normal ofΓi,C. Condition (2) can be derived
as a linearization of the actual nonpenetration condition and is reasonable to use in
the context of linear elasticity [4].

For the discretization of the problem we use first-order Lagrangian elements for
the interior and dual mortar elements for the contact condition. That is, (2) is dis-
cretized in a weak form requiring

∫

Γ1,C

[

u1|Γ1,C ·n1 +(u2◦Φ)|Γ2,C ·n2
]

θ ds≤
∫

Γ1,C

gθ ds (3)

for all θ from a cone of dual mortar test functions defined onΓ1,C [10]. The resulting
discrete obstacle problem is solved with a truncated nonsmooth Newton multigrid
method as described by Gräser et al. [5].

As the femur geometry we choose the distal part of the VisibleHuman femur
data set. As grid implementations we useUGGrid for the femur and the struc-
tured hexahedralSGrid for the foundation. Material parameters areE = 17 GPa,
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ν = 0.3 for the bone and softerE = 250 MPa,ν = 0.3 for the obstacle. The latter
is clamped at its base, whereas a uniform displacement of 3 mmdownward is pre-
scribed on the top section of the bone (see Fig. 2). The bone serves as the nonmortar
domain. The computation of (3) involves a mortar mass matrixsimilar to (1). Two
Codim1Extractors are used to mark the contact boundaries and the remote in-
tersections are computed using the PSURFACE backend. The result can be seen in
Fig. 2, right.

5.2 Coupling a 2d Richards Equation and a 1d Shallow-Water
Equation

Γ

Ω

shallow-water eq.,
OneDGrid

Richards eq.,
UGGrid

Fig. 3 Coupling the Richards equation to the shallow-water equation.

In the second example we show howdune-grid-glue can be used to couple
two domains of differing dimensions.1 Consider a domainΩ as in Fig. 3. It is sup-
posed to represent a vertical section of ground. We assume unsaturated subsurface
flow modeled by the Richards equation

θ (p)t +divv(p) = 0, v(p) = −K kr(θ (p))∇(p−ρgz),

for the water pressurep in Ω . We denote the upper horizontal boundary ofΩ by Γ
and assume surface water there modeled by the shallow water equations

ht +divq = F (4)

qt +div(q2/h+0.5gh2) = −gh∇ f ,

for the surface water heighth and the horizontal water fluxq.
The two equations are coupled by assuming that the pressurep of the ground

water onΓ equals the hydrostatic pressure induced by the surface water

p = ρgh,

and that the flowv ·n acrossΓ enters the surface water balance as an additive term
in (4).

1 The authors would like to thank C. Grümme and H. Berninger for their help with this example.
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The coupled problem is solved with a Dirichlet–Neumann-type solver. At each
iteration i, a Richards problem is solved onΩ with Dirichlet boundary conditions
pi = ρghi on Γ using a multigrid solver as described in [3]. Then 1 000 stepsof
the shallow-water equation are computed using a Lax–Friedrichs scheme. The flow
vi ·n of subsurface water acrossΓ is interpolated in time and used as the source term
in (4).

The Richards equation is discretized on a uniform triangle grid using theUGGrid
grid manager. For the shallow water equation aOneDGrid is used. From the
UGGrid, the interfaceΓ is extracted using aCodim1Extractor and the entire
OneDGrid is extracted with aCodim0Extractor. A transformationτ : R→R

2

is given to theCodim0Extractor that places the 1d grid on the coupling bound-
aryΓ such that the grids match. TheConformingMerge backend is used to gen-
erate the remote intersections. Fig. 3 shows several steps in the evolution of the
problem.
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