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Abstract In this paper, we analyse and approximate a nonlinear stationary Stokes
problem that describes the motion of glacier ice. The existence and uniqueness of so-
lution are proved and an a priori error estimate for the finite element approximation
is found. In a second time, we combine the Stokes problem with a transport equation
for the volume fraction of ice which describes the time evolution of a glacier. The
accumulation due to snow precipitation and the melting are accounted in the source
term of the transport equation. A decoupling algorithm allows the diffusion and
the advection problems to be solved using a two-grids method. As an illustration,
we simulate Aletschgletscher, Switzerland, over the 21st century by using realistic
climatic conditions.

Introduction

Most of mountain glaciers of the world are currently shrinking and it is expected
that this trend will continue as global warming progresses. However, the changes of
glaciers do not only result from climatic conditions. Indeed, ice moves like a vis-
cous fluid under gravitational forces such that steep bedrocks of mountain glaciers
generate downhill ice flows. In the same time, accumulation of ice due to snow
precipitation and melting continuously increase or decrease the glacier surface. To
simulate and predict the future of glaciers, one needs to combine the equations of the
fluid mechanic which describe the ice flows and a mass balance model that accounts
for mass conservation and external exchanges of ice due to climate.
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The goal of this paper is to provide an overview of theoretical results, numerical
techniques and applications of a glacier model. The model we consider in the article
is fully three-dimensional, i.e. it does not include any simplification due to the small
aspect ratio of glacier like most of existing models, see [10].

This paper is divided into two sections. Section 1 concerns the stationary non
linear Stokes problem that describes the motion of ice. The model is described in
Subsection 1.1, we prove the existence and the uniqueness of a solution in Sub-
section 1.2 and propose an approximation by finite elements in Subsection 1.3. In
contrast, Section 2 combines the previous Stokes model with a transport equation
to describe the time evolution of a real glacier. Subsections 2.1 and 2.2 are dedi-
cated to the physical model and the numerical approximation, respectively. As an
illustration, a simulation of Aletschgletscher is presented in Subsection 2.3.

1 Stationary problem

1.1 Model

Call Ω ∈ R3 a finite volume of ice that is lying on a given topography, see Fig. 1.
The boundary of Ω splits into the ice-air interface called ΓN and the ice-bedrock
interface. On this latter, ice might be stuck to the ground or slide. For this reason,
we distinguish two cases and we call ΓD the non-sliding and ΓR the sliding parts of
the ice-bedrock interface. Finally, we have ∂Ω = ΓN ∪ΓD∪ΓR. In what follows, we
assume ΓN and ΓR are C 1 and ΓD 6= /0.

Ice

Bedrock

Air

ΩΓD

ΓN

u

u
ΓR

Fig. 1 Section of a three-dimensional domain of ice with notations.

Ice is commonly considered as an incompressible non-Newtonian fluid that fol-
lows the Glen’s flow law [10]. In fact, ice is so viscous that acceleration effects
can be neglected. More precisely, the velocity u and the pressure p of ice solve the
stationary nonlinear Stokes problem in Ω :
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−2div(µε(u))+∇p = ρg, (1)
div(u) = 0, (2)

where ε(u) = 1
2 (∇u+∇uT ) is the rate of strain tensor, µ the viscosity of ice, ρ is

the density of ice and g the gravity force. The viscosity µ of Glen’s flow law is a
function of |ε(u)| :=

√
ε(u) : ε(u) with ε(u) : ε(u) = ∑

3
i, j=1 ε(u)2

i j, that is uniquely
defined by the following nonlinear equation:

1
2µ

= A(τn−1
0 +(

√
2µ|ε(u)|)n−1), (3)

where A is a positive parameter, n ≥ 1 is Glen’s exponent and τ0 > 0 is a small
regularization parameter. When n = 1, then µ is constant and equations (1) (2) cor-
respond to the classical linear Stokes problem related to a Newtonian fluid [4, 8].
In the framework of glaciology, n is often taken equal to 3, see [13]. Equations (1)
(2) are supplied by three kind of conditions on the boundary of Ω . First, no force
applies on the ice-air interface, then we have the following Neumann condition:

2µε(u) ·n− pn = 0, on ΓN , (4)

where n is the unit outward normal vector along the boundary of the domain Ω .
Second, a zero-Dirichlet condition applies on the no-sliding ice-bedrock interface,
then we have the following Dirichlet condition:

u = 0, on ΓD. (5)

Third, a nonlinear sliding condition [12, 14, 20] applies on the remaining ice-
bedrock interface, then we have the following Dirichlet-Robin condition:

u ·n = 0, (2µε(u) ·n) · ti =−αu · ti i = 1,2 on ΓR, (6)

where {ti}i=1,2 are two orthogonal vectors tangent to the boundary ΓR and α =
α(|u|) is the sliding coefficient that is given by:

α(|u|) = c(|u|+ t0)
1
n−1, (7)

where n is Glen’s exponent, c is a positive parameter and t0 > 0 is a small regulari-
sation parameter.

1.2 Well-posedness of problem (1) - (7)

To analyse the problem (1) - (7), one needs to introduce the next two Banach spaces
for velocity and pressure fields

V := {v ∈ [W 1,r(Ω)]3, v = 0 on ΓD, v ·n = 0 on ΓR}, Q := Lr′(Ω), (8)



4 Guillaume Jouvet and Jacques Rappaz

where r := 1+ 1/n and r′ := n+ 1 are conjugate exponents related to Glen’s ex-
ponent n. The weak form of problem (1) - (7) with boundary conditions (4) (5) (6)
consists of finding (u, p) ∈V ×Q such that

2
∫

Ω

µ(|ε(u)|)ε(u) : ε(v)dV + ∑
i=1,2

∫
ΓR

α(|u|)(u · ti)(v · ti)dS (9)

−
∫

Ω

p div(v)dV +
∫

Ω

q div(u)dV = ρ

∫
Ω

g ·vdV, (10)

for all (v,q)∈V×Q. We can check (see [13, 17]) that the weak formulation (9) (10)
is meaningful by using the definition (7) of α and the behaviour of µ as function of
s = |ε(u)| which satisfies:

C1

(1+ s)1− 1
n
≤ µ(s)≤ C2

(1+ s)1− 1
n
, ∀s≥ 0, (11)

where C1,C2 are positive constants. To eliminate the pressure field in the formulation
(9) (10), we consider the divergence-free velocity space:

Vdiv := {v ∈V, div(v) = 0, v = 0 on ΓD, v ·n = 0 on ΓR}. (12)

Then, the reduced formulation consists of finding u ∈Vdiv such that:

2
∫

Ω

µ(|ε(u)|)ε(u) : ε(v)dV + ∑
i=1,2

∫
ΓR

α(|u|)(u · ti)(v · ti)dS = ρ

∫
Ω

g ·vdV, (13)

for all v ∈ Vdiv. Problem (13) rewrites as a minimization problem in Vdiv for the
functional:

J(u) :=
∫

Ω

(∫ |ε(u)|
0

sµ(s)ds
)

dV +
1
2

∫
ΓR

(∫ |u|
0

tα(t)dt
)

dS−ρ

∫
Ω

u ·gdV. (14)

Using (3), (7) and Korn’s inequality, one can prove the strong continuity of J in V ,
the strict convexity of J, and the coercivity property:

J(v)≥ D1‖v‖r
W 1,r −D2, (15)

for all v ∈V , and for constants D1,D2 > 0. Continuity, strict convexity and coerciv-
ity of J are proved in lemma 3.5, lemma 3.6 and lemma 3.7 in [17], respectively.
The existence and the uniqueness of a minimizer (and then of a solution of the re-
duced problem (13)) follows from arguments of convex analysis, see the details in
[13, 17]. Moreover, we can show that the spaces V and Q satisfy the inf-sup condi-
tion [13, 17]:

C < inf
q∈Q

sup
v∈V

∫
Ω

q div(v)dV
‖q‖Lr′‖v‖W 1,r

, (16)
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for a constant C > 0. This inf-sup condition ensures the existence of a unique of
p ∈ Q such that (u, p) satisfies the mixed formulation (9) (10), see [4]. Finally, we
have the next theorem.

Theorem 1 ([17]). There exists a unique couple (u, p) ∈ (V,Q) satisfying the weak
formulation (9) (10).

1.3 Numerical approximation of problem (1) - (7)

In this subsection, we assume that Ω is a convex polyhedral domain and TH is
a regular tetrahedral mesh of Ω parametrised by H, the highest diameter of the
elements of TH . Call VH ⊂ V and QH ⊂ Q some finite dimensional approximation
spaces on TH of V and Q that satisfy the inf-sup condition (16) when replacing V
and Q by VH and QH . The discrete problem consists of finding (uH , pH) ∈ (VH ,QH)
such that:

2
∫

Ω

µ(|ε(uH)|)ε(uH) : ε(vH)dV + ∑
i=1,2

∫
ΓR

α(|uH |)(uH · ti)(vH · ti)dS (17)

−
∫

Ω

pH divvHdV +
∫

Ω

qH divuHdV = ρ

∫
Ω

g ·vHdV, (18)

for all (vH ,qH) ∈ (VH ,QH). The existence and the uniqueness of a solution of the
discrete problem (17) (18) can be proved by using the same arguments than for
problem (9) (10), when replacing V and Q by VH and QH .

The error between the solution of the exact problem (9) (10) and the solution
of the discrete problem (17) (18) can be analysed by following the arguments of
[1, 3, 9]. First, the method consists of analysing the error using a quasi-norm that
depends on the solution u, see [1]. Second, we deduce an inequality in standard
norms (theorem 3.8 in [17]) by using some properties of the quasi-norm. Eventually,
interpolation inequalities yield to an a priori estimate in the next theorem.

Theorem 2 ([17]). Assume that, for all κ ∈ [r,2], there exists a continuous operator
πH : [W 2,κ ]3 −→VH that satisfies:

‖v−πH(v)‖W 1,κ ≤Ch‖v‖W 2,κ , ∀v ∈ [W 2,κ ]3, (19)

and a continuous operator ρH : W 1,κ ′ −→ QH that satisfies:

‖q−ρH(q)‖Lκ ′ ≤Ch‖q‖W 1,κ ′ , ∀q ∈W 1,κ ′ , (20)

where κ ′ is such that 1/κ + 1/κ ′ = 1. Assume VH and QH satisfy the inf-sup con-
dition (16). Let (u, p) be the solution of problem (9) (10) and let (uH , pH) be the
solution of problem (17) (18). If (u, p) ∈ ([W 2,κ ]3,W 1,κ ′), where κ ∈ [r,2], then we
have:

‖u−uH‖W 1,r +(‖p− pH‖Lκ ′ )
κ ′
2 ≤ D h

κ
2 , (21)
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where D = D(‖u‖W 2,κ ,‖p‖W 1,r′ )> 0.

The estimate (21) suggests a linear convergence with respect to H as long as the
solution is sufficiently smooth, i.e. (u, p) ∈ ([W 2,2]3,W 1,2). However, numerical ex-
periences [17] have shown intact order of convergence with less regular solutions.
This suggests the non-optimality of the estimate (21), as noticed in [9] for a compa-
rable problem.

2 Evolution problem

2.1 Model

In this section, we consider the time dependent problem that couples the Stokes
equation of Section 1 to a transport equation. Let t be the time variable that ranges
in the interval [0,T ]. At each time t, the velocity field u(t) solves the stationary
Stokes problem (1) - (7) in the domain of ice Ω(t), with boundaries ΓD(t), ΓN(t)
and ΓR(t). Since glaciers take complex shapes with changing topologies, we opt for
an Eulerian formulation to describe the changes of the ice geometry Ω(t) [19].

Call Λ a cavity of R3 that contains Ω(t) at any time t ∈ [0,T ]. The presence of
ice in Λ is described by the characteristic function (called later volume fraction of
ice) [16, 19] ϕ : Λ × (0,T )→ R defined by:

ϕ(x,y,z, t) =
{

1, if (x,y,z) ∈Ω(t),
0, else. (22)

The mass conservation principle [14, 16] leads to the following transport equation
for the volume fraction of ice :

∂ϕ

∂ t
+u ·∇ϕ = bδΓN(t), (23)

where b(x,y,z, t) is the height of ice added or removed due to precipitation and
melting and δΓN(t) is the density of surface (or Dirac measure) on the ice-air interface
ΓN(t). Since ϕ is discontinuous across the interface ice-air, equation (23) must be
understood in a weak sense.

2.2 Numerical approximation

Let 0 = t0 < t1 < ... < tN = T be a uniform subdivision of the time interval [0,T ].
Call un and ϕn some approximations of u and ϕ at time n. At each time step n,
problems (1) - (7) and (23) are solved successively. First, we find un by solving
the diffusion problem (1) - (7) on Ω n, the ice domain being defined by the volume
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fraction of ice ϕn. Second, we find ϕn+1 by solving the advection problem (23) from
ϕn and un.

Diffusion and advection problems are advantageously solved on two different
fixed meshes, denoted TH and Th, respectively, see [2, 16, 18] and Fig. 2. Indeed,
on one hand, the complex shape of bedrock topographies incites us to use an un-
structured mesh (TH , where H is the typical size of a tetrahedron). On a second
hand, the advection problem (23) is easier to solve on a structured grid made of
cells (Th, where h is the size of cells). Moreover, Th can be chosen finer since the
advection problem (23) is less CPU time consuming than the diffusion problem. The
fine mesh allows us to reduce the numerical diffusion of the free surface ΓN . A good
trade-off between accuracy and efficiency is H ' 5h, see [18]. Note that TH fits
the bedrock from below but is built higher than the surface of ice at any time while
Th covers the whole cavity Λ , see Fig. 2. Transfer of variables ϕn and un between
meshes Th and TH are ensured by linear interpolations.

Ice

Air

Bedrock

Ω

Th

TH Λ

Fig. 2 Exemple of the space discretisation: TH is an unstructured mesh that fits the bedrock to-
pography while Th is a finer grid overlapping TH .

On one part of the mesh TH , we implement a finite element method to solve the
diffusion problem (1) - (7). First, we select the elements of TH that are on the ice
domain by using the nodal values of ϕn on TH [18]. Second, we use continuous,
piecewise linear finite elements for the velocity and pressure fields to solve (1) - (7).
Since this choice of space is not stable for satisfying the inf-sup condition (16), see
Subsection 1.3, one can either enrich the space of velocities by a bubble function or
add a stabilisation term in the discrete variational formulation [6, 14]. We opt for the
latter. A fixed point method is used to solve the nonlinearity due to the non-linear
viscosity (3), see [16].

On the regular grid Th, we implement the method of characteristics to solve
the advection problem (23). For each cell of Th, the volume fraction of ice ϕn is
advected according to the velocity field un, and then projected onto the grid Th,
see [16, 18]. An additional algorithm, SLIC (Simple Line Interface Calculation),
reduces the numerical diffusion of ϕ that is introduced during the projection step
[19]. To account for the right-hand-side of the equation (23), the volume fraction of
ice of surface cells are filled or emptied according to b(tn), see [16]. The resulting
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transport algorithm is unconditionally stable and CFL numbers greater than one can
be used.

We refer to [14, 16, 18] for more details about the advection and diffusion steps.

2.3 Simulation of Aletschgletscher

Aletschgletscher, Switzerland, is the largest glacier of the European Alps. In 1999,
it had a length of about 22 km, an area of about 83 km2 and a volume of ice of
about 15 km3 [5]. The numerical simulation of this glacier from 1880 to 1999 was
performed in [13, 15] and proved to reproduce accurately the observations after
fitting parameters A and c.

This experiment aims to simulate Aletschgletscher over the 21st century accord-
ing to a plausible climatic scenario. To be as realistic as possible, we opt for the
median scenario of the regional climate models given in [7] which predicts an in-
crease of the temperature of 3.8◦C during the 21st century. From this climatic trend,
we simulate the daily snow precipitations and the melting everywhere on the glacier
from 1999 to 2100 [11, 15]. Summing the ice accumulation and ablation over each
year gives the mass balance function b to be used in (23).

The bedrock topography of Aletschgletscher was reconstructed from measure-
ments [5], and the elevation of the ice surface is available for 1999. From these
data, the two meshes TH and Th are generated as described in [14]. The size of
the meshes is: H ∼ 100 m and h = 20 m. The time step 0.5 year proves to be a
good trade-off between efficiency and stability. Physical parameters are chosen as
follows. Glen’s exponent n is set to 3 and the regularisation parameters are set to
τ0 =

√
0.1 bar and t0 = 0 = 0.01 m a−1. Sliding effects are only accounted below

the altitude 2400 m a.s.l [15] (ΓR), while above ice is supposed to be fixed to the
bedrock (ΓD). The rate factor A and the sliding coefficient c are calibrated such that
they minimize the mean-square error between computed and measured ice surface
velocities, see [15]. As a result, we obtain A = 0.1 bar−3 a−1 and c = 0.3 bar m−1/3

a1/3.
Snapshots each 25 years of the simulation are displayed in Fig. 3. According to

our simulation, Aletschgletscher will continue to decay until almost disappearing by
2100 if the climate should indeed follow the trend of the chosen scenario. Note that,
if the retreat remains limited until 2050, one should expect a strong acceleration of
the retreat rate after 2050.

Acknowledgements The first author was supported by the Deutsche Forschungsgemeinschaft
(project KL 1806 5-1).
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1999

2025

2075

2050

2100

Fig. 3 Aletschgletscher in 1999 (initialisation), 2025, 2050, 2075 and 2100 according to the sim-
ulation.
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